In a vapor-compression refrigeration cycle, ammonia exits the evaporator as saturated vapor at $-22^{\circ} \mathrm{C}$. The refrigerant enters the condenser at $16 \mathrm{bar}(\mathrm{abs})$ and $160^{\circ} \mathrm{C}$, and saturated liquid exits at 16 bar (abs). There is no significant heat transfer between the compressor and its surroundings, and the refrigerant passes through the evaporator with a negligible change in pressure. If the refrigerating capacity is 150 kW , determine:
a. the mass flow rate of refrigerant,
b. the power input to the compressor,
c. the coefficient of performance, and
d. the isentropic compressor efficiency.

SOLUTION:

First determine the properties at the various states using Tables from Moran et al., $7^{\text {th }}$ ed.
State 1: $T_{1}=-22^{\circ} \mathrm{C}$, saturated vapor (Table A-13)
$\Rightarrow p_{1}=1.7390 \mathrm{bar}, h_{1}=1415.08 \mathrm{~kJ} / \mathrm{kg}, s_{1}=5.6457 \mathrm{~kJ} /(\mathrm{kg} . \mathrm{K})$
State 2: $p_{2}=16$ bar, $T_{2}=160^{\circ} \mathrm{C} \Rightarrow$ superheated vapor (Table A-15)
$\Rightarrow h_{2}=1798.45 \mathrm{~kJ} / \mathrm{kg}, s_{2}=5.7475 \mathrm{~kJ} /(\mathrm{kg} . \mathrm{K})$
State 3: $p_{3}=16$ bar, saturated liquid (Table A-14)

$$
\Rightarrow T_{3}=41.03{ }^{\circ} \mathrm{C}, h_{3}=376.46 \mathrm{~kJ} / \mathrm{kg}, s_{3}=1.3729 \mathrm{~kJ} /(\mathrm{kg} . \mathrm{K})
$$

State 4: throttling process from 3 to 4 , constant pressure from 4 to 1

$$
\Rightarrow h_{4}=h_{3}=376.46 \mathrm{~kJ} / \mathrm{kg}, p_{4}=p_{1}=1.7390 \mathrm{bar}
$$

The mass flow rate may be determined by applying the $1^{\text {st }}$ Law to the evaporator and making use of the refrigeration capacity $\left(=\dot{Q}_{\text {added }}=150 \mathrm{~kW}\right)$,

$$
\begin{align*}
& \dot{Q}_{\text {added }}=\dot{m}\left(h_{1}-h_{4}\right) \Rightarrow \dot{m}=\frac{\dot{Q}_{\text {added }}}{\left(h_{1}-h_{4}\right)}, \tag{1}\\
& \Rightarrow \dot{m}=0.144 \mathrm{~kg} / \mathrm{s} .
\end{align*}
$$

The power input into the compressor is found by applying the $1^{\text {st }}$ Law to the compressor,

$$
\begin{align*}
& \dot{W}_{\text {on comp }}=\dot{m}\left(h_{2}-h_{1}\right), \tag{2}\\
& \Rightarrow \dot{W}_{\text {on comp }}=55.4 \mathrm{~kW} .
\end{align*}
$$

The coefficient of performance for the refrigeration cycle is defined as,

$$
\begin{align*}
& \mathrm{COP}_{\mathrm{ref}} \equiv \frac{\dot{Q}_{\text {added }}}{\dot{W}_{\text {on }}} \tag{3}\\
& \Rightarrow \mathrm{COP}_{\mathrm{ref}}=2.71 .
\end{align*}
$$

The isentropic efficiency of the compressor is defined as,

$$
\begin{equation*}
\eta_{\text {comp }} \equiv \frac{\dot{W}_{\text {on comp }, s}}{\dot{W}_{\text {on comp }}}=\frac{\dot{W}_{\text {on comp } s} / \dot{m}}{\dot{W}_{\text {on comp }} / \dot{m}}=\frac{h_{2 s}-h_{1}}{h_{2}-h_{1}}, \tag{4}
\end{equation*}
$$

where
$p_{2 s}=p_{2}=16$ bar and $s_{2 s}=s_{1}=5.6457 \mathrm{~kJ} /(\mathrm{kg} . \mathrm{K}) \Rightarrow h_{2 s}=1755.38 \mathrm{~kJ} / \mathrm{kg}, T_{2 s}=143{ }^{\circ} \mathrm{C}$ (interpolating from Table A-15),
$\Rightarrow \eta_{\text {comp }}=0.888$.

