In a vapor-compression refrigeration cycle, ammonia exits the evaporator as saturated vapor at -22 °C. The refrigerant enters the condenser at 16 bar (abs) and 160 °C, and saturated liquid exits at 16 bar (abs). There is no significant heat transfer between the compressor and its surroundings, and the refrigerant passes through the evaporator with a negligible change in pressure. If the refrigerating capacity is 150 kW, determine:

- a. the mass flow rate of refrigerant,
- b. the power input to the compressor,
- c. the coefficient of performance, and
- d. the isentropic compressor efficiency.

SOLUTION:

First determine the properties at the various states using Tables from Moran et al., 7th ed.

- State 1: $T_1 = -22$ °C, saturated vapor (Table A-13) $\Rightarrow p_1 = 1.7390$ bar, $h_1 = 1415.08$ kJ/kg, $s_1 = 5.6457$ kJ/(kg.K)
- State 2: $p_2 = 16$ bar, $T_2 = 160$ °C \Rightarrow superheated vapor (Table A-15) $\Rightarrow h_2 = 1798.45$ kJ/kg, $s_2 = 5.7475$ kJ/(kg.K)
- State 3: $p_3 = 16$ bar, saturated liquid (Table A-14) $\Rightarrow T_3 = 41.03 \text{ °C}, h_3 = 376.46 \text{ kJ/kg}, s_3 = 1.3729 \text{ kJ/(kg.K)}$
- State 4: throttling process from 3 to 4, constant pressure from 4 to 1 $\Rightarrow h_4 = h_3 = 376.46 \text{ kJ/kg}, p_4 = p_1 = 1.7390 \text{ bar}$

The mass flow rate may be determined by applying the 1st Law to the evaporator and making use of the refrigeration capacity (= \dot{Q}_{added} = 150 kW),

$$\dot{Q}_{added} = \dot{m} \left(h_1 - h_4 \right) \Rightarrow \dot{m} = \frac{Q_{added}}{\left(h_1 - h_4 \right)},$$

$$\Rightarrow \boxed{\dot{m} = 0.144 \text{ kg/s}}.$$
(1)

The power input into the compressor is found by applying the 1st Law to the compressor,

The coefficient of performance for the refrigeration cycle is defined as,

$$COP_{ref} \equiv \frac{Q_{added}}{\dot{W}_{on}},$$

$$\Rightarrow \boxed{COP_{ref} = 2.71}.$$
(3)

The isentropic efficiency of the compressor is defined as,

$$\eta_{\text{comp}} \equiv \frac{W_{\text{on comp,s}}}{\dot{W}_{\text{on comp}}} = \frac{W_{\text{on comp,s}}/\dot{m}}{\dot{W}_{\text{on comp}}/\dot{m}} = \frac{h_{2s} - h_1}{h_2 - h_1},\tag{4}$$

where

 $p_{2s} = p_2 = 16$ bar and $s_{2s} = s_1 = 5.6457$ kJ/(kg.K) $\Rightarrow h_{2s} = 1755.38$ kJ/kg, $T_{2s} = 143$ °C (interpolating from Table A-15), $\Rightarrow \boxed{\eta_{\text{comp}} = 0.888}$.