A homeowner connects a rain barrel to a downspout leading from the roof of their house. Assuming the downspout channels all of the water from $500 \mathrm{ft}^{2}$ of the roof area (the area when viewed from above), how long will it take to fill a 55 gallon rain barrel during a rain storm with a constant rain accumulation rate of 1 in . per hour?

SOLUTION:

Apply Conservation of Mass to a control volume surrounding the interior of the rain barrel.

$$
\begin{equation*}
\frac{d M_{C V}}{d t}=\sum_{i n} \dot{m}-\sum_{o u t} \dot{m} \tag{1}
\end{equation*}
$$

where,

$$
\begin{equation*}
\frac{d M_{C V}}{d t}=\frac{d(\rho V)}{d t}=\rho \frac{d V}{d t}=?, \tag{2}
\end{equation*}
$$

(where ρ is the water density, which is assumed constant. The V represents the volume of the water within the control volume),
$\sum_{i n} \dot{m}=\rho \dot{h} A$,
(where \dot{h} is the accumulation rate on the roof and A is the roof area)
$\sum_{\text {out }} \dot{m}=0$ (The rain barrel outlet valve is assumed closed.)
Substitute and solve for the rate of water volume increase in the rain barrel,
$\rho \frac{d V}{d t}=\rho \dot{h} A \Rightarrow \frac{d V}{d t}=\dot{h} A$.
Using the given values,
$\dot{h}=1 \mathrm{in} . / \mathrm{hr}=(1 / 12) \mathrm{ft} / \mathrm{hr}$,
$A=500 \mathrm{ft}^{2}$,
$\Rightarrow d V / d t=41.67 \mathrm{ft}^{3} / \mathrm{hr}=311.69 \mathrm{gal} / \mathrm{hr} \quad\left(1 \mathrm{ft}^{3}=7.48052 \mathrm{gal}\right)$.
Since the rain accumulation rate is a constant,
$V_{T}=(d V / d t) T=>T=V_{T} /(d V / d t)$,
where T is the time required to reach an accumulation volume of V_{T}. For $V_{T}=55 \mathrm{gal}, T=0.176 \mathrm{hr}=10.6 \mathrm{~min}$.

