A homeowner connects a rain barrel to a downspout leading from the roof of their house. Assuming the downspout channels all of the water from 500 ft² of the roof area (the area when viewed from above), how long will it take to fill a 55 gallon rain barrel during a rain storm with a constant rain accumulation rate of 1 in. per hour?

(6)

SOLUTION:

Apply Conservation of Mass to a control volume surrounding the interior of the rain barrel.

Apply conservation of mass to a control volume san ounding the interior of the full barren.	
$\frac{dM_{CV}}{dt} = \sum_{in} \dot{m} - \sum_{out} \dot{m},$	(1)
where,	
$\frac{dM_{CV}}{dt} = \frac{d(\rho V)}{dt} = \rho \frac{dV}{dt} = ?,$	(2)
(where $ ho$ is the water density, which is assumed constant. The V represents the volume of the water	
within the control volume),	
$\sum_{in} \dot{m} = ho \dot{h} A$,	(3)
(where \dot{h} is the accumulation rate on the roof and A is the roof area)	
$\sum_{out} \dot{m} = 0$ (The rain barrel outlet valve is assumed closed.)	(4)
Substitute and solve for the rate of water volume increase in the rain barrel,	
$\rho \frac{dv}{dt} = \rho \dot{h}A \implies \frac{dv}{dt} = \dot{h}A.$	(5)
Using the given values,	
$\dot{h} = 1$ in./hr = (1/12) ft/hr,	
A = 500 ft ² ,	
$\Rightarrow dV/dt = 41.67 \text{ ft}^3/\text{hr} = 311.69 \text{ gal/hr} (1 \text{ ft}^3 = 7.48052 \text{ gal}).$	

Since the rain accumulation rate is a constant,

 $V_T = (dV/dt)T \implies T = V_T/(dV/dt),$

where T is the time required to reach an accumulation volume of V_T . For V_T = 55 gal, T = 0.176 hr = 10.6 min.