As shown in the following figure, air enters the diffuser of a jet engine operating at steady state at 18 kPa (abs), 216 K , and a velocity of $265 \mathrm{~m} / \mathrm{s}$, all data corresponding to high-altitude flight. The air flows adiabatically through the diffuser and achieves a temperature of 250 K at the diffuser exit. Using the ideal gas model for air, determine the velocity of the air at the diffuser exit, in m / s.

SOLUTION:

Apply Conservation of Mass to the control volume shown in the figure,

$$
\begin{equation*}
\frac{d M_{C V}}{d t}=\sum_{i n} \dot{m}-\sum_{o u t} \dot{m} \tag{1}
\end{equation*}
$$

where,

$$
\begin{equation*}
\frac{d M_{C V}}{d t}=0 \quad \text { (assume steady state operation), } \tag{2}
\end{equation*}
$$

$\sum_{\text {in }} \dot{m}-\sum_{\text {out }} \dot{m}=\dot{m}_{1}-\dot{m}_{2}$.
Substituting and simplifying,

$$
\begin{equation*}
\dot{m}_{1}=\dot{m}_{2}=\dot{m} . \tag{3}
\end{equation*}
$$

Now apply the First Law to the same control volume,

$$
\begin{equation*}
\frac{d E_{C V}}{d t}=\dot{Q}_{\text {into }}-\dot{W}_{b y}+\sum_{i n} \dot{m}\left(h+\frac{1}{2} V^{2}+g z\right)-\sum_{o u t} \dot{m}\left(h+\frac{1}{2} V^{2}+g z\right) \tag{5}
\end{equation*}
$$

where,

$$
\begin{align*}
& \frac{d E_{C V}}{d t}=0 \text { (assume steady state operation), } \tag{6}\\
& \dot{Q}_{i n t o}=0 \text { (assume an adiabatic diffuser), } \tag{7}\\
& \dot{W}_{b y}=0 \text { (a diffuser is a passive device), } \tag{8}\\
& \sum_{\text {in }} \dot{m}\left(h+\frac{1}{2} V^{2}+g z\right)-\sum_{\text {out }} \dot{m}\left(h+\frac{1}{2} V^{2}+g z\right)=\dot{m}\left[\left(h+\frac{1}{2} V^{2}\right)_{1}-\left(h+\frac{1}{2} V^{2}\right)_{2}\right] \tag{9}
\end{align*}
$$

(neglecting the pe contribution since we're dealing with a gas over small elevation difference).
Substitute and simplify,

$$
\begin{align*}
& 0=\dot{m}\left[\left(h+\frac{1}{2} V^{2}\right)_{1}-\left(h+\frac{1}{2} V^{2}\right)_{2}\right] \tag{10}\\
& \frac{1}{2} V_{2}^{2}=\frac{1}{2} V_{1}^{2}+\left(h_{1}-h_{2}\right) . \tag{11}
\end{align*}
$$

Using the given parameters,

$$
\begin{align*}
& V_{1}=265 \mathrm{~m} / \mathrm{s}, \\
& T_{1}=216 \mathrm{~K} \Rightarrow h_{1}=216.0 \mathrm{~kJ} / \mathrm{kg} \text { (using the Ideal Gas Table for air), } \tag{12}\\
& T_{2}=250 \mathrm{~K} \Rightarrow h_{2}=250.0 \mathrm{~kJ} / \mathrm{kg} \text { (using the Ideal Gas Table for air), } \tag{13}\\
& \Rightarrow V_{2}=47.2 \mathrm{~m} / \mathrm{s} \text {. (Note that } 1000 \mathrm{~m}^{2} / \mathrm{s}^{2}=1 \mathrm{~kJ} / \mathrm{kg} \text {.) }
\end{align*}
$$

