Consider an ordinary shower where hot water at $140^{\circ} \mathrm{F}$ is mixed with cold water at $50^{\circ} \mathrm{F}$. If it is desired that a steady stream of warm water at $110^{\circ} \mathrm{F}$ be supplied, determine the ratio of the mass flow rates of the hot to cold water. Assume the heat losses from the mixing chamber to be negligible and the mixing to take place at a pressure of 20 psia .

SOLUTION:

Apply the First Law to the control volume shown below,
where,

$$
\begin{aligned}
& \frac{d}{d t} \int_{\mathrm{CV}} e \rho d V=0 \text { (steady flow) } \\
& \int_{\mathrm{CS}}\left(h+\frac{1}{2} V^{2}+g z\right)\left(\rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}\right)=-\dot{m}_{H} h_{H}-\dot{m}_{C} h_{C}+\dot{m}_{M} h_{M}
\end{aligned}
$$

(Neglect changes in potential and kinetic energies since they won't be significant for flow through a shower head.)
$\dot{Q}_{\substack{\text { into } \\ \mathrm{CV}}}=0$ (negligible heat transfer to the surroundings \Rightarrow assume adiabatic)
$\underset{\text { cV }}{\dot{W}_{\text {on }}}=0$ (no work besides pressure work is being done on the CV)

Substitute,

$$
\begin{equation*}
-\dot{m}_{H} h_{H}-\dot{m}_{C} h_{C}+\dot{m}_{M} h_{M}=0 \tag{2}
\end{equation*}
$$

Apply conservation of mass to the same control volume to find,

$$
\begin{equation*}
\dot{m}_{M}=\dot{m}_{H}+\dot{m}_{C} \tag{3}
\end{equation*}
$$

Combine Eqs. (2) and (3) and simplify,

$$
\begin{align*}
& -\dot{m}_{H} h_{H}-\dot{m}_{C} h_{C}+\left(\dot{m}_{H}+\dot{m}_{C}\right) h_{M}=0 \\
& -\frac{\dot{m}_{H}}{\dot{m}_{C}} h_{H}-h_{C}+\left(\frac{\dot{m}_{H}}{\dot{m}_{C}}+1\right) h_{M}=0 \\
& \frac{\dot{m}_{H}}{\dot{m}_{C}}\left(h_{M}-h_{H}\right)=h_{C}-h_{M} \\
& \therefore \frac{\dot{m}_{H}}{\dot{m}_{C}}=\frac{h_{C}-h_{M}}{h_{M}-h_{H}} \tag{4}
\end{align*}
$$

Look up the specific enthalpies for water in a thermodynamics reference (note that since the water is a pure liquid, the mixing pressure is irrelevant):

$$
h_{C}=h_{50}{ }^{\circ} \mathrm{F}=18.06 \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}
$$

$$
h_{H}=h_{140}{ }^{\circ}=107.96 \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}
$$

$$
h_{M}=h_{110^{\circ} \mathrm{F}}=78.02 \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}
$$

$$
\therefore \frac{\dot{m}_{H}}{\dot{m}_{C}}=2.0
$$

$$
\begin{align*}
& \mathrm{C} \longrightarrow: \begin{array}{c}
\text { mixing } \\
\text { chamber }
\end{array} \rightarrow M \\
& \frac{d}{d t} \int_{\mathrm{CV}} e \rho d V+\int_{\mathrm{CS}}\left(h+\frac{1}{2} V^{2}+g z\right)\left(\rho \mathbf{u}_{\mathrm{rel}} \cdot d \mathbf{A}\right)=\dot{Q}_{\mathrm{into}}+\underset{\mathrm{CV}}{ } \dot{W}_{\mathrm{on}} \tag{1}
\end{align*}
$$

