Two well-insulated, rigid tanks filled with carbon monoxide (CO) gas are connected by a valve. In tank $\mathrm{A}, 1 \mathrm{~kg}$ of gas is stored at 100 kPa (abs) and 300 K . In tank B, 5 kg of gas are stored at 500 kPa (abs) and 870 K . The valve is opened, and the contents of the two tanks are allowed to mix until equilibrium is attained.

Assuming ideal gas behavior for the carbon monoxide, determine:
a. the volume of each tank, in m^{3},
b. the final temperature, in K, and
c. the final pressure, in kPa (abs).

SOLUTION:

The tank volumes may be found using the Ideal Gas Law,

$$
\begin{equation*}
p V=m R T \Rightarrow V=\frac{m R T}{p} . \tag{1}
\end{equation*}
$$

Using the given data along with,

$$
\begin{align*}
& M_{C O}=12.011 \frac{\mathrm{~kg}}{\mathrm{kmol}}+16.00 \frac{\mathrm{~kg}}{\mathrm{kmol}}=28.011 \frac{\mathrm{~kg}}{\mathrm{kmol}}, \tag{2}\\
& R_{C O}=\frac{\bar{R}_{U}}{M_{C O}}=\frac{8.314 \frac{\mathrm{~kJ}}{\mathrm{kmol.K}}}{28.011 \frac{\mathrm{~kg}}{\mathrm{kmol}}}=0.2968 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}, \tag{3}\\
& m_{\mathrm{A}}=1 \mathrm{~kg}, T_{\mathrm{A} 1}=300 \mathrm{~K}, p_{\mathrm{A} 1}=100 \mathrm{kPa}(\mathrm{abs}) \Rightarrow V_{\mathrm{A}}=0.890 \mathrm{~m}^{3}, \\
& m_{\mathrm{B}}=5 \mathrm{~kg}, T_{\mathrm{B} 1}=870 \mathrm{~K}, p_{\mathrm{B} 1}=500 \mathrm{kPa}(\mathrm{abs}) \Rightarrow V_{\mathrm{B}}=2.582 \mathrm{~m}^{3}
\end{align*}
$$

Apply the First Law to the two tanks before (state 1) and after (state 2) the valve is opened,

$$
\begin{equation*}
\Delta E_{s y s, 12}=Q_{\text {into } s y s, 12}-W_{\text {by sys }, 12}, \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta E_{s y s, 12}=\Delta U_{s y s, 12}+\Delta K E_{s y s, 12}+\Delta P E_{s y s, 12}=\Delta U_{s y s, 12}=U_{2}-U_{1} \quad(\text { no changes in } K E \text { or } P E), \tag{3}
\end{equation*}
$$

$Q_{\text {into sys,12 }}=0$ (the tanks are well-insulated),
$W_{\text {by } \text { sys }, 12}=0$ (the tanks are rigid).
Thus,

$$
\begin{equation*}
U_{2}=U_{1}, \tag{5}
\end{equation*}
$$

where,
$U_{1}=m_{A} u_{A 1}+m_{B} u_{B 1}$,
$U_{2}=\left(m_{A}+m_{B}\right) u_{2} \quad$ (the tanks are mixed and in equilibrium at the end of the process).
Using the given data and the Ideal Gas Table for carbon monoxide (Table A-23 in Moran et al., $8^{\text {th }}$ ed., Wiley; refer to the end of this document),

$$
\begin{aligned}
& u_{\mathrm{A} 1}=u_{\mathrm{CO}}\left(T_{\mathrm{A} 1}=300 \mathrm{~K}\right)=6229 \mathrm{~kJ} / \mathrm{kmol}, \\
& \mathrm{u}_{\mathrm{B} 1}=u_{\mathrm{CO}}\left(T_{\mathrm{B} 1}=870 \mathrm{~K}\right)=18858 \mathrm{~kJ} / \mathrm{kmol}, \\
& \Rightarrow u_{2}=16753 \mathrm{~kJ} / \mathrm{kmol}=>T_{2}=781 \mathrm{~K} \text { (interpolating from the Ideal Gas Table). }
\end{aligned}
$$

Use the Ideal Gas Law to determine the final pressure in the tanks,

$$
\begin{equation*}
p V=m R T \Rightarrow p_{2}=\frac{\left(m_{A}+m_{B}\right) R T_{2}}{V_{A}+V_{B}} \tag{9}
\end{equation*}
$$

From the given and calculated data, $p_{2}=401 \mathrm{kPa}(\mathrm{abs})$.

Tables from Moran et al., $8^{\text {th }}$ ed., Wiley.

