One kilogram of air in a piston-cylinder assembly undergoes a thermodynamic cycle consisting of three processes:

- Process 1-2: Constant specific volume
- Process 2-3: Constant-temperature expansion
- Process 3-1: Constant-pressure compression

At state 1 , the temperature is 323 K , and the pressure is 1 bar (abs). At state 2 , the pressure is 2 bar (abs).
Employing the ideal gas equation of state,
a. Sketch the cycle on $p-v$ coordinates.
b. Determine the temperature at state 2, in K.
c. Determine the specific volume at state 2, in $\mathrm{m}^{3} / \mathrm{kg}$.
d. Determine the heat transfer into the air per unit mass of air (i.e., the specific heat transfer) during process 1-2.
e. What is the change in the internal energy of the air over the entire cycle?

SOLUTION:

Use the Ideal Gas Law to determine the temperature at state 2,

$$
\begin{equation*}
p v=R T \Rightarrow T_{2}=T_{1}\left(\frac{p_{2}}{p_{1}}\right) \tag{1}
\end{equation*}
$$

since R is a constant and v is a constant in process 1-2. Using the given values,

$$
T_{1}=323 \mathrm{~K}, p_{2}=2 \text { bar (abs), and } p_{1}=1 \text { bar (abs) } \Rightarrow T_{2}=646 \mathrm{~K} .
$$

The specific volume may be found by applying the Ideal Gas Law,

$$
\begin{equation*}
p v=R T \Rightarrow v_{2}=\frac{R T_{2}}{p_{2}} \tag{2}
\end{equation*}
$$

Using the given values of $R=0.287 \mathrm{~kJ} /(\mathrm{kg} . \mathrm{K}), T_{2}=646 \mathrm{~K}$, and $p_{2}=2 \operatorname{bar}(\mathrm{abs})=200 \mathrm{kPa}(\mathrm{abs})=>v_{2}=0.927 \mathrm{~m}^{3} / \mathrm{kg}$.

The heat transfer into the air per unit mass of air in process 1-2 is found using the First Law applied to the air,

$$
\begin{equation*}
\Delta e_{s y s, 12}=q_{\text {into } s y s, 12}-w_{\text {by sys }, 12}, \tag{3}
\end{equation*}
$$

where,

$$
\begin{equation*}
\left.\Delta e_{s y s, 12}=\Delta u_{s y s, 12}+\Delta k e_{s y s, 12}+\Delta p e_{s y s, 12}=\Delta u_{s y s, 12}=u_{2}-u_{1} \text { (neglecting changes in } k e \text { and } p e\right), \tag{4}
\end{equation*}
$$

$w_{\text {by sys }, 12}=0$ (since the specific volume remains constant in process 1-2).
Thus,
$q_{\text {into sys, } 12}=u_{2}-u_{1}$.
Using the Ideal Gas Table for air (with interpolation),
$u\left(T_{2}=646 \mathrm{~K}\right)=470.12 \mathrm{~kJ} / \mathrm{kg}$,
$u\left(T_{1}=323 \mathrm{~K}\right)=230.56 \mathrm{~kJ} / \mathrm{kg}$,
$\Rightarrow q_{\text {into sys, } 12}=240 \mathrm{~kJ} / \mathrm{kg}$.

			1	Temp. [K]	$\mathrm{h}[\mathrm{kJ} / \mathrm{kg}]$	$\mathrm{u}[\mathrm{kJ} / \mathrm{kg}]$
Temp. [K]	$\mathrm{h}[\mathrm{kJ} / \mathrm{kg}]$	$\mathrm{u}[\mathrm{kJ} / \mathrm{kg}]$	b	310	310.2	221.2
630	638.8	457.8	7	315	315.2	224.8
640	649.4	465.5	8	320	320.2	228.4
650	660.0	473.2	9	325	325.3	232.0

The internal energy of the air over the cycle (1-2-3-1) will be zero since the processes return to the same initial state.

```
Following is a Python code for the calculations.
    # COE_57.py
    import numpy as np
    # Import a class created for reading the Ideal Gas Tables.
    from IdealGasTable import IdealGasTable
    # Import the Ideal Gas Table data for diatomic oxygen.
    IGT = IdealGasTable("./IdealGasTables.xlsx", "Air")
    R_air = 0.287 # kJ/(kg.K), given
    T_1 = 323 # K, initial temperature, given
    P_1 = 1*100 # kPa, initial pressure, given
    p_2 = 2*100 # kPa, final pressure, given
    T_2 = T_1*(p_2/p_1) # calculate final temperature
    print("T_2 = %.2f K" % T_2)
    v_2 = R_air*T_2/p_2 # calculate final specific volume
    print("v_2 = %.4f m^3/kg" % v_2)
    u_1 = IGT.GetTableValue('u', T=T_1) # kJ/kg, initial specific internal energy
    u_2 = IGT.GetTableValue('u', T=T_2) # kJ/kg, final specific internal energy
    print("(u_2, u_1) = (%.2f, %.2f) kJ/kg" % (u_2, u_1))
    q_in = u_2 - u_1 # calculate the specific heat transfer
    print("q_in = %.1f kJ/kg" % q_in)
>> python3 ./COE_57.py
T_2 = 646.00 K
v_2 = 0.9270 m^3/kg
(u_2, u_1) = (470.12, 230.56) kJ/kg
q_in = 239.6 kJ/kg
```

