As shown in the figure, a gas contained within a piston-cylinder assembly, initially at a volume of $0.1 \mathrm{~m}^{3}$, undergoes a constant-pressure expansion at 2 bar (abs) to a final volume of $0.12 \mathrm{~m}^{3}$, while being slowly heated through the base. The change in internal energy of the gas is 0.25 kJ . The piston and cylinder walls are fabricated from heatresistant material, and the piston moves smoothly in the cylinder. The local atmospheric pressure is 1 bar (abs). For the gas as the system, evaluate the work done by the gas and the heat transfer into the gas, each in kJ.

SOLUTION:

Let the system be the gas in the piston, as indicated by the red dashed line. Find the work done by the gas,

$$
\begin{equation*}
W_{\text {by sys }}=\int_{V_{1}}^{V_{2}} p d V=p \int_{V_{1}}^{V_{2}} d V=p\left(V_{2}-V_{1}\right) \tag{1}
\end{equation*}
$$

Note that the pressure remains constant during the process and, thus, can be moved outside the integral. Using the given data,
$p=2$ bar (abs) $=2^{*} 10^{5} \mathrm{~Pa}(\mathrm{abs})$,
$V_{1}=0.1 \mathrm{~m}^{3}$,
$V_{2}=0.12 \mathrm{~m}^{3}$,
$\Rightarrow W_{\text {by sys }}=4000 \mathrm{~J}=4.00 \mathrm{~kJ}$.
The heat transfer into the gas is found by applying the First Law to the control volume,
$\Delta E_{\text {sys }}=Q_{\text {into sys }}-W_{\text {by sys }}$,
where,
$\Delta E_{\text {sys }}=\Delta U+\Delta K E+\Delta P E=\Delta U=U_{2}-U_{1}=0.25 \mathrm{~kJ}$, (given; note that $\triangle K E=\triangle P E=0$),
$W_{\text {by sys }}=4.00 \mathrm{~kJ}$ (calculated previously),
$\Rightarrow Q_{\text {into sys }}=4.25 \mathrm{~kJ}$.

