A piston-cylinder assembly contains air modeled as an ideal gas. The air undergoes a power cycle consisting of four processes in series:

- Process $1-2$: Constant-temperature expansion at 600 K from $p_{1}=0.5 \mathrm{MPa}$ (abs) to $p_{2}=0.4 \mathrm{MPa}$ (abs).
- Process 2-3: Polytropic expansion with $n=1.3$ to $p_{3}=0.3 \mathrm{MPa}$ (abs).
- Process 3-4: Constant-pressure compression to $v_{4}=v_{1}$.
- Process 4-1: Constant-volume heating.

1. Sketch the cycle on a $p-v$ diagram.
2. Calculate the work and heat transfer for each process, in $\mathrm{kJ} / \mathrm{kg}$.

SOLUTION:

First, sketch the cycle on a $p-v$ diagram.

To find the work and heat transfer, apply the $1^{\text {st }}$ Law to every process and make use of the ideal gas relations.
Process 1-2:

$$
\begin{equation*}
\Delta E_{\text {sys }}=Q_{\text {into sys }}-W_{\text {by sys }} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta E_{s y s}=\Delta U_{s y s}+\Delta K E_{s y s}+\Delta P E_{s y s}=\Delta U_{s y s}=m \Delta u_{s y s}=m\left(u_{2}-u_{1}\right) \tag{2}
\end{equation*}
$$

(Neglecting changes in KE and PE.)
Since for an ideal gas, $u=u(T)$, and in Process $1-2$ the temperature remains constant, we must have $u_{2}=u_{1}$. Thus,

$$
\begin{equation*}
Q_{\text {into sys }}=W_{\text {by sys }} \tag{3}
\end{equation*}
$$

The work done by the system is boundary (or pressure) work,

$$
\begin{equation*}
W_{\text {by sys }}=\int_{V_{1}}^{V_{2}} p d V=m \int_{v_{1}}^{v_{2}} p d v \Rightarrow \frac{W_{\text {bysys }}}{m}=\int_{v_{1}}^{v_{2}} p d v \tag{4}
\end{equation*}
$$

Since the air is treated as an ideal gas, we can use the ideal gas law to relate pressure and specific volume, $p v=R T$,
where, for air, $R_{\text {air }}=0.287 \mathrm{~kJ} /(\mathrm{kg} . \mathrm{K})$. For process $1-2, T_{1}=T_{2}=600 \mathrm{~K}$, so that Eq. (5) becomes,

$$
\begin{equation*}
p=\frac{R T}{v} \tag{6}
\end{equation*}
$$

where $T=600 \mathrm{~K}$. Substituting Eq. (6) into Eq. (4) and evaluating gives,

$$
\begin{equation*}
\frac{W_{\text {by sys }}}{m}=\int_{v_{1}}^{v_{2}} \frac{R T}{v} d v=R T \int_{v_{1}}^{v_{2}} \frac{d v}{v}=R T \ln \left(\frac{v_{2}}{v_{1}}\right) \tag{7}
\end{equation*}
$$

Using the given values,

$$
\begin{aligned}
& p_{1}=0.5 \mathrm{MPa}(\mathrm{abs}), \\
& p_{2}=0.4 \mathrm{MPa}(\mathrm{abs}), \\
& T=600 \mathrm{~K}, \\
& R_{\text {air }}=0.287 \mathrm{~kJ} /(\mathrm{kg} . \mathrm{K}), \\
& \Rightarrow R T=172.2 \mathrm{~kJ} / \mathrm{kg}, \\
& \Rightarrow \frac{v_{1}=0.3444 \mathrm{~m}^{3} / \mathrm{kg}, v_{2}=0.4310 \mathrm{~m}^{3} / \mathrm{kg} \text { (using Eq. (5)), }}{\Rightarrow \frac{W_{\text {by sys }}}{m}=38.6 \mathrm{~kJ} / \mathrm{kg} \text { (using Eq. (7)), }} \begin{array}{l}
Q_{\text {into sys }} \\
\Rightarrow \\
m
\end{array} 38.6 \mathrm{~kJ} / \mathrm{kg} \text { (using Eq. (3)), }
\end{aligned}
$$

Process 2-3:
A similar approach can be used to determine the work and heat for this process.

$$
\begin{equation*}
m\left(u_{3}-u_{2}\right)=Q_{\text {into sys }}-W_{\text {by sys }} \Rightarrow u_{3}-u_{2}=\frac{Q_{\text {intosys }}}{m}-\frac{W_{\text {by sys }}}{m} \tag{8}
\end{equation*}
$$

We're given that this process is polytropic,

$$
\begin{equation*}
p v^{n}=c \tag{9}
\end{equation*}
$$

where the constant c may be found from state 2 , i.e., $c=p_{2} v_{2}{ }^{n}$. Using the given pressure at state $3, p_{3}=0.3 \mathrm{MPa}$ (abs), the specific volume at state 3 is,

$$
\begin{equation*}
p_{3} v_{3}^{n}=p_{2} v_{2}^{n}=>v_{3}=v_{2}\left(\frac{p_{2}}{p_{3}}\right)^{1 / n}=>v_{3}=0.5378 \mathrm{~m}^{3} / \mathrm{kg} \tag{10}
\end{equation*}
$$

where $v_{2}=0.4310 \mathrm{~m}^{3} / \mathrm{kg}$ (found previously), $p_{2}=0.4 \mathrm{MPa}(\mathrm{abs}), p_{3}=0.3 \mathrm{MPa}$ (abs), and $n=1.3$. The temperature at state 3 may be found using the ideal gas law,

$$
\begin{equation*}
p v=R T \Rightarrow T=\frac{p v}{R} \tag{11}
\end{equation*}
$$

Using the values for state 3 and $R=0.287 \mathrm{~kJ} /(\mathrm{kg} . \mathrm{K}), \underline{T_{3}}=562.1 \mathrm{~K}$.
The boundary (pressure) work for this case is,

$$
\begin{equation*}
\frac{W_{\text {by sys }}}{m}=\int_{v_{2}}^{v_{3}} p d v=\int_{v_{2}}^{v_{3}} \frac{p_{2} v_{2}^{n}}{v^{n}} d v=p_{2} v_{2}^{n} \int_{v_{2}}^{v_{3}} \frac{d v}{v^{n}}=\frac{p_{2} v_{2}^{n}}{1-n}\left(v_{3}^{1-n}-v_{2}^{1-n}\right) \tag{12}
\end{equation*}
$$

Using the given values,

$$
\begin{aligned}
& p_{2}=0.4 \mathrm{MPa}(\mathrm{abs}), \\
& v_{2}=0.4310 \mathrm{~m}^{3} / \mathrm{kg} \text { (found previously), } \\
& n=1.3, \\
& v_{3}=0.5378 \mathrm{~m}^{3} / \mathrm{kg} \text { (found previously), } \\
& \Rightarrow \frac{W_{\text {bysys }}}{m}=36.9 \mathrm{~kJ} / \mathrm{kg} .
\end{aligned}
$$

To find the heat transfer per unit mass, re-arrange the $1^{\text {st }}$ Law expression given in Eq. (8),

$$
\begin{equation*}
\frac{Q_{\text {into sys }}}{m}=u_{3}-u_{2}+\frac{W_{\text {by sys }}}{m} . \tag{13}
\end{equation*}
$$

The change in specific internal energy may be found using the ideal gas table for air with $T_{2}=600 \mathrm{~K}$ (given) and T_{3} $=562.1 \mathrm{~K}$ (found previously),
$u_{2}=434.8 \mathrm{~kJ} / \mathrm{kg}$,
$u_{3}=406.0 \mathrm{~kJ} / \mathrm{kg}$ (using linear interpolation).
Thus, the heat transfer per unit mass is,

$$
\Rightarrow \quad \frac{Q_{\text {into sys }}}{m}=8.10 \mathrm{~kJ} / \mathrm{kg} \text {. }
$$

Process 3-4:
The $1^{\text {st }}$ Law for this process, after simplification and re-arranging, will look similar to Eq. (13),

$$
\begin{equation*}
\frac{Q_{\text {into sys }}}{m}=u_{4}-u_{3}+\frac{W_{\text {bysys }}}{m} . \tag{14}
\end{equation*}
$$

The boundary work for this case is,

$$
\begin{equation*}
\frac{W_{\text {by } s y s}}{m}=\int_{v_{3}}^{v_{4}} p d v=p_{3} \int_{v_{3}}^{v_{4}} d v=p_{3}\left(v_{4}-v_{3}\right) \quad\left(\text { since } p_{3}=p_{4}\right) \tag{15}
\end{equation*}
$$

Using the given and previously calculated values,

$$
\begin{aligned}
& p_{3}=0.3 \mathrm{MPa}(\mathrm{abs}), \\
& v_{3}=0.5378 \mathrm{~m}^{3} / \mathrm{kg}, \\
& v_{4}=v_{1}=0.3444 \mathrm{~m}^{3} / \mathrm{kg}, \\
& \Rightarrow \frac{W_{\text {by sys }}}{m}=-58.0 \mathrm{~kJ} / \mathrm{kg} . \text { (This is a compression process so work is done on the air.) }
\end{aligned}
$$

 state 4 is found using the ideal gas table for air: $u_{4}=257.2 \mathrm{~kJ} / \mathrm{kg}$. Thus, from Eq. (14),

$$
\frac{Q_{\text {into sys }}}{m}=-207 \mathrm{~kJ} / \mathrm{kg}
$$

Process 4-1:
Again, the $1^{\text {st }}$ Law will simplify to,
$\frac{Q_{\text {into sys }}}{m}=u_{1}-u_{4}+\frac{W_{\text {by sys }}}{m}$.
For this case, since the specific volume remains constant,

$$
\frac{W_{\text {by }} y \mathrm{~s}}{m}=0 \text {. }
$$

The specific internal energy at state $1\left(T_{1}=600 \mathrm{~K}\right)$ is $u_{1}=434.8 \mathrm{~kJ} / \mathrm{kg}$ (from the ideal gas table for air). Using this value and the previously determine value for u_{4},
$\frac{Q_{\text {into sys }}}{m}=178 \mathrm{~kJ} / \mathrm{kg}$
Summarizing,

Process	$\left(\boldsymbol{W}_{\text {by sys }} / \boldsymbol{m}\right)[\mathbf{k J} / \mathbf{k g}]$	$\left(\boldsymbol{Q}_{\text {into sys }} / \boldsymbol{m}\right)[\mathbf{k J} / \mathbf{k g}]$
$1-2$	38.63	38.63
$2-3$	36.91	8.096
$3-4$	-58.01	-206.8
$4-1$	0	177.6
Over whole cycle	17.53	17.53

The work and heat transfer over the whole cycle should be equal (and they are, to within numerical error) using the $1^{\text {st }}$ Law since the beginning and end states are the same over a cycle and, thus, the change in internal energy should be zero, i.e.,

$$
\Delta U_{s y s, c y c l e}=0=Q_{\text {into sys,cycle }}-W_{b y s y s, c y c l e} \Rightarrow Q_{i n t o s y s, c y c l e}=W_{b y s y s, c y c l e}
$$

