i. Each line of the following table gives data for a process involving a closed system. Each entry has the same energy units. Determine the missing entries.

Process	$Q_{\text {into sys }}$	$W_{\text {by sys }}$	E_{1}	E_{2}	ΔE
\mathbf{a}	+50		-20		+70
\mathbf{b}		+20		+50	+30
\mathbf{c}		-60	+40	+60	
\mathbf{d}	-40		+50		0
\mathbf{e}	+50	+150		-80	

ii. A gas contained within a piston-cylinder assembly undergoes two processes, A and B , between the same end states, 1 and 2 , where $p_{1}=1$ bar (abs), $V_{1}=1.0 \mathrm{~m}^{3}, U_{1}=400 \mathrm{~kJ}$ and $p_{2}=10 \mathrm{bar}(\mathrm{abs}), V_{2}=0.1 \mathrm{~m}^{3}, U_{2}=450 \mathrm{~kJ}$.

- Process A: Constant-volume process from state 1 to a pressure of 10 bar (abs), followed by a constantpressure process to state 2.
- Process B: Process from 1 to 2 during which the pressure-volume relation is $p V=$ constant.

Kinetic and potential energy effects can be ignored. For each of the processes A and B,
a. Sketch the process on a $p-V$ diagram.
b. Evaluate the work, in kJ.
c. Evaluate the heat transfer, in kJ .

SOLUTION:

i. Apply the First Law to the system for each process.

Process a: $\Delta E_{\text {sys }}=E_{2}-E_{1}=Q_{\text {into sys }}-W_{\text {by sys }}$,
Using the given values,

$$
\begin{aligned}
& \Delta E_{\text {sys }}=+70, E_{1}=-20=>E_{2}=+50, \\
& Q_{\text {into sys }}=+50 \Rightarrow W_{\text {by sys }}=-20
\end{aligned}
$$

Process b: $\Delta E_{\text {sys }}=E_{2}-E_{1}=Q_{\text {into sys }}-W_{\text {by sys }}$,
Using the given values,

$$
\begin{align*}
& \Delta E_{\text {sys }}=+30, E_{2}=+50 \Rightarrow E_{1}=+20, \tag{2}\\
& W_{\text {by sys }}=+20 \Rightarrow Q_{\text {into sys }}=+50 \tag{3}
\end{align*}
$$

Process c: $\Delta E_{s y s}=E_{2}-E_{1}=Q_{\text {into sys }}-W_{\text {by sys }}$,
Using the given values,

$$
\begin{aligned}
& E_{1}=+40, E_{2}=+60=>\Delta E=+20, \\
& W_{\text {by sys }}=-60=>Q_{\text {into sys }}=-40
\end{aligned}
$$

Process d: $\Delta E_{\text {sys }}=E_{2}-E_{1}=Q_{\text {into sys }}-W_{\text {by sys }}$,
Using the given values,

$$
\begin{align*}
& E_{1}=+50, \Delta E_{\text {sys }}=0=>E_{2}=+50, \tag{4}\\
& Q_{\text {into sys }}=-40 \Rightarrow W_{\text {by sys }}=-40 \tag{5}
\end{align*}
$$

Process e: $\Delta E_{s y s}=E_{2}-E_{1}=Q_{\text {into sys }}-W_{\text {by sys }}$,
Using the given values,
$Q_{\text {into sys }}=+50, W_{\text {by sys }}=+150 \Rightarrow \Delta E=-100$,
$E_{2}=-80, \Delta E_{\text {sys }}=-100 \Rightarrow E_{1}=+20$
ii.

The two processes are sketched on the following p - V plot.

First evaluate the (boundary) work for process A,

$$
W_{\text {bysys }, A}=\underbrace{\int_{V_{1}}^{V_{a}} p d V}_{=0 \text { since } V_{a}=V_{1}}+\underbrace{\int_{V_{2}}^{V_{2}} p d V}_{\begin{array}{c}
=_{2}\left(V_{2}-V_{a}\right) \tag{6}\\
\text { since } p=\text { constant }
\end{array}}=p_{2}\left(V_{2}-V_{a}\right) .
$$

Using the given values,

$$
\begin{aligned}
& p_{2}=10 \mathrm{bar}(\mathrm{abs})=10^{*} 10^{5} \mathrm{~Pa}(\mathrm{abs}), \\
& V_{2}=0.1 \mathrm{~m}^{3}, \\
& V_{1}=1.0 \mathrm{~m}^{3}, \\
& \Rightarrow W_{b y s y s, A}=-900 \mathrm{~kJ} .
\end{aligned}
$$

Note that this work is equal to the area under the curve (process A) in the $p-V$ plot. The negative sign occurs because work is done on the system (the gas is getting compressed to a smaller volume).

Similarly, the (boundary) work for process B is,

$$
\begin{equation*}
W_{b y s y s, B}=\int_{V_{1}}^{V_{2}} p d V=\underbrace{\int_{V_{1}}^{V_{2}} \frac{c}{V} d V}_{\text {since } p V=c}=c \ln \left(\frac{V_{2}}{V_{1}}\right) \tag{7}
\end{equation*}
$$

where the constant can be found using one of the states. For example,

$$
\begin{equation*}
p_{1} V_{1}=c=p_{2} V_{2} \tag{8}
\end{equation*}
$$

Substituting Eq. (8) into Eq. (7) and using state 1 to find the constant,

$$
\begin{equation*}
W_{b y s y s, B}=p_{1} V_{1} \ln \left(\frac{V_{2}}{V_{1}}\right) \tag{9}
\end{equation*}
$$

Using the given values,

$$
\begin{aligned}
& p_{1}=1 \mathrm{bar}(\mathrm{abs})=1 * 10^{5} \mathrm{~Pa}(\mathrm{abs}), \\
& V_{2}=0.1 \mathrm{~m}^{3}, \\
& V_{1}=1.0 \mathrm{~m}^{3}, \\
& \Rightarrow c=1 * 10^{5} \mathrm{~J}, \\
& \Rightarrow W_{b y}, \\
& \Rightarrow y s, B=-230 \mathrm{~kJ} .
\end{aligned}
$$

Note that the work for process B is different than the work for process A since a different path is taken.

To determine the energy transferred into the system via heat transfer, apply the First Law to the gas (the system),

$$
\begin{equation*}
\Delta E_{s y s}=Q_{i n t o ~ s y s}-W_{b y ~ s y s}, \tag{10}
\end{equation*}
$$

where,
$\Delta E_{s y s}=\Delta U_{s y s}+\Delta K E_{s y s}+\Delta P E_{s y s} \approx \Delta U_{s y s}$ (since $\Delta K E$ and $\triangle P E$ are negligible).
Substituting and re-arranging,
$Q_{\text {into sys }}=\Delta U_{\text {sys }}+W_{\text {by sys }}$.
Using the given and previously calculated values for process A,
$\Delta U_{s y s}=U_{2}-U_{1}=450 \mathrm{~kJ}-400 \mathrm{~kJ}=50 \mathrm{~kJ}$,
$W_{b y} s$ ss,,$~=-900 \mathrm{~kJ}$,
$\Rightarrow Q_{\text {into sss, } A}=-850 \mathrm{~kJ}$.
For process B,
$\Delta U_{\text {sys }}=U_{2}-U_{1}=450 \mathrm{~kJ}-400 \mathrm{~kJ}=50 \mathrm{~kJ}$,
$W_{b y} s$ ss. $B=-230 \mathrm{~kJ}$,
$\Rightarrow Q_{\text {into sss }, B}=-180 \mathrm{~kJ}$.
Note that the change in internal energy is independent of the process since it is a property, i.e., it only depends on states 1 and 2 , not the path between them. Heat transfer and work are path dependent (and not properties), which is why the work and heat transfer for processes A and B are different.

