A gallon of milk at $68^{\circ} \mathrm{F}$ is placed in a refrigerator. If energy is removed from the milk by heat transfer at a total rate of $0.08 \mathrm{Btu} / \mathrm{s}$, how long would it take, in minutes, for the milk to cool to $40^{\circ} \mathrm{F}$? The specific heat and density of the milk are 0.94 $\mathrm{Btu} /\left(\mathrm{lb}_{\mathrm{m}} .{ }^{\circ} \mathrm{R}\right)$ and $64 \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}$, respectively.

SOLUTION:
The system consists of the milk as shown in the following figure.

Applying the rate form of the $1^{\text {st }}$ Law to the system,
where,

$$
\begin{equation*}
\frac{d E_{\mathrm{sys}}}{d t}=\frac{d U_{\mathrm{sys}}}{d t}=\frac{d(m u)_{\mathrm{sys}}}{d t}=m c \frac{d T}{d t} \tag{2}
\end{equation*}
$$

(Assuming KE, PE, m, and c remain constant. The milk is assumed to be an incompressible substance. The subscript "sys" is dropped for convenience.)
$\dot{Q}_{\substack{\text { into } \\ \text { sys }}}=-0.08 \mathrm{Btu} / \mathrm{s}$ (energy is being removed via heat transfer at a constant rate)
$\dot{W}_{\text {on sys }}=0$ (there is no work being done on the milk)
Substitute and simplify,

$$
\begin{align*}
& m c \frac{d T}{d t}=\dot{Q}_{\substack{\text { into } \\
\text { sys }}}^{\dot{Q}_{\text {into }}} \Rightarrow \frac{d T}{d t}=\frac{\dot{Q}_{\text {into }}}{m c} \Rightarrow \int_{T_{0}}^{T} d T=\frac{\dot{Q}_{\text {into }}}{m c} \int_{0}^{t} d t \tag{5}\\
& T=T_{0}+\frac{\substack{\text { sys } \\
\text { sys }}}{m c} t \tag{6}\\
& t=\frac{m c\left(T-T_{0}\right)}{\dot{Q}_{\text {into }}} . \tag{7}
\end{align*}
$$

Using the given data,

$$
\begin{align*}
& \rho=64 \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3} \\
& V=(1 \mathrm{gal})\left(0.134 \mathrm{ft}^{3} / \mathrm{gal}\right)=0.134 \mathrm{ft}^{3} \\
& \Rightarrow>m=\rho V=\left(64 \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right)\left(0.134 \mathrm{ft}^{3}\right)=8.58 \mathrm{lb}_{\mathrm{m}} \\
& c=0.94 \mathrm{Btu} /\left(\mathrm{lbm}_{\mathrm{m} .}{ }^{\circ} \mathrm{R}\right) \\
& T_{0}=68^{\circ} \mathrm{F}=528^{\circ} \mathrm{R} \\
& T=40^{\circ} \mathrm{F}=500^{\circ} \mathrm{R} \\
& \dot{Q}_{\substack{\text { into } \\
\text { sys }}}=-0.08 \mathrm{Btu} / \mathrm{s} \\
& t=\frac{\left(8.58 \mathrm{lb}_{\mathrm{m}}\right)\left(0.94 \mathrm{Btu} /\left(\mathrm{lb}_{\mathrm{m}} \cdot{ }^{\circ} \mathrm{R}\right)\right)\left(500{ }^{\circ} \mathrm{R}-528^{\circ} \mathrm{R}\right)}{(-0.08 \mathrm{Btu} / \mathrm{s})}, \tag{8}\\
& \Rightarrow t=(2822 \mathrm{~s})(\mathrm{min} / 60 \mathrm{~s})=47 \mathrm{~min}
\end{align*}
$$

