Determine the work done by the gas on the piston shown below as it expands quasi-statically from a volume of $0.02 \mathrm{~m}^{3}$ to $0.04 \mathrm{~m}^{3}$ given that the piston area is $0.01 \mathrm{~m}^{2}$ and the mass resting on the piston is 100 kg (neglect the weight of the piston). Assume that atmospheric pressure is 101 kPa (abs).

SOLUTION: \quad mass $p_{\text {atm }}$

The work done by the gas on the surroundings is,

$$
W_{\mathrm{by} \mathrm{gas}}=\int_{V_{1}}^{V_{2}} p d V,
$$

where,

$$
\begin{equation*}
p=p_{\mathrm{atm}}+m g / A=101 \mathrm{kPa}(\mathrm{abs})+(100 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) /\left(0.01 \mathrm{~m}^{2}\right)=1.99 * 10^{5} \mathrm{~Pa} \tag{2}
\end{equation*}
$$

The pressure in the gas balances the atmospheric pressure plus the weight of the mass divided by the piston area. Note that this pressure is a constant throughout the process since we're always balancing the same mass and atmospheric pressure.

$$
\begin{aligned}
& V_{1}=0.02 \mathrm{~m}^{3} \\
& V_{2}=0.04 \mathrm{~m}^{3}
\end{aligned}
$$

Since the pressure remains constant throughout the process, Eq. (1) may be written as,

$$
\begin{equation*}
W_{\mathrm{by}} \text { gas }=\int_{V_{1}}^{V / 2} p d V=p \int_{V_{1}}^{V / 2} d V=p\left(V_{2}-V_{1}\right) . \tag{3}
\end{equation*}
$$

Substituting the numbers given above,

$$
W_{\text {by gas }}=3.9 \mathrm{~kJ} \text {. }
$$

