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A piston-cylinder assembly contains carbon monoxide modeled as an ideal gas with a constant specific heat 
ratio of k = 1.4.  The carbon monoxide undergoes a polytropic expansion with n = k from an initial state, 
where the temperature is 200 °F and pressure of 40 psia, to a final state where the volume is twice the 
initial volume.  Determine: 
a. the final temperature, in °F, and final pressure, in psia, and 
b. the work done by the gas and heat transfer into the gas, each in Btu/lbm. 
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SOLUTION: 
Treat the CO as an ideal gas.  Hence, 

 or  .   (1) 
 

Since the process is polytropic, 

 or   Þ  , (2) 

where n = k = 1.4, for this case, and c is a constant, which can be determined from the initial state.  Note 
that the mass of CO remains constant, so combining Eqs. (1) and (2) gives, 
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. (3) 
Using the given parameters and Eqs. (2) and (3), 

p1 = 40 psia 
T1 = 200 °F = 660 °R 
n = k = 1.4 
V2 = 2V1 
Þ  p2 = 15.16 psia, T2 = 500.2 °R = 40.19 °F 
 
 

 The work done by the gas may be found using, 

     (𝑛 ≠ 1), (4) 

, (5) 

. (6) 

where the initial conditions have been used to determine the constant c.  The specific volume v2 may be 
found using Eq. (1), 

. (7)  

Using the given data, 
MCO = 28.01 lbm/lbmmol = 12.011 lbm/lbmmol + 15.999 lbm/lbmmol, 
𝑅)' = 1.986 Btu/(lbmmol.°R)   (universal gas constant), 
p1 = 40 psia = 5760 lbm/(ft.s2), 
T1 = 660 °R, 
v2 = 2v1, 
n = k = 1.4, 
Þ  RCO = 0.07090 Btu/(lbm.°R) = 𝑅)'/𝑀(),  v1 = 8.124*10-3 ft3/lbm,  v2 = 1.625*10-2 ft3/lbm, 
Þ  Wby gas/m = 28.33 Btu/lbm. 
 

The heat added to the gas may be found using the 1st Law applied to the gas, 

  Þ    Þ  , (8)  

where kinetic and potential energies have been neglected.  The change in specific internal energy of the 
gas, assuming ideal gas behavior, may be found either through ideal gas tables at the appropriate 
temperatures (e.g., Table A-23E of Moran et al., 7th ed.), 

  = 3275.8 Btu/lbmmol (at T1 = 660 °R)  Þ  u1 = 117.0 Btu/lbm 
  = 2479.2 Btu/lbmmol (at T2 = 500 °R)  Þ  u2 = 88.51 Btu/lbm 

Note that  where MCO = 28.01 lbm/lbmmol.  Hence, from Eq. (8) and the previously calculated 
value for specific work, 
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Qinto gas/m = -0.16 Btu/lbm. 
 

If we instead assume that the CO behaves as a perfect gas (an ideal gas with constant specific heats), 
, (9) 

where cv = 0.178 Btu/(lbm.°R)  (from Table A-20E in Moran et al., 7th ed., at a temperature of 100 °F).  
Thus,  

Qinto gas/m = -0.11 Btu/lbm. 
We get approximately the same result using either method.   
 
It can be shown that the heat transfer is, in fact, identically zero for a polytropic expansion of an ideal gas 
when n = k, as is the case here.  Combining Eqs. (6) and (7) gives, 

, (10) 

, (11) 

where Eq. (2) has been used in the last step.  Continuing to simplify, 

 . (12) 

Since we’re told that n = k for this polytropic process, 

, (13) 

where the relationship between the specific heat at constant volume, the gas constant, and the specific heat 
ratio has been used for an ideal gas.  Note that the right-hand side of this expression is the change in the 
specific internal energy, assuming a perfect gas (ideal gas with constant specific heats),  

. (14) 

Thus, from the 1st Law, we must have Q = 0.  Our previous answers were close to zero, but there is some 
numerical error.  Plus, the Q = 0 result assumes constant specific heats, which isn’t exactly true.  
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