A gas within a piston-cylinder assembly undergoes a thermodynamic cycle consisting of three processes in series:

Process 1-2: Compression with constant internal energy ($p V=$ constant)
Process $2-3$: Constant volume cooling to a pressure of 140 kPa (abs) and a volume of $0.028 \mathrm{~m}^{3}$
Process 3-1: Constant pressure expansion with a total work of 10.5 kJ acting on the piston
For the cycle, the net amount of work done by the gas on the piston is -8.3 kJ . There are no changes in kinetic or potential energy.
a. Sketch the processes on a p - V diagram.
b. Determine the volume at state 1 , in m^{3}.
c. Determine the work and heat transfer for process $1-2$, each in kJ .
d. Is this a power cycle or a refrigeration/heat pump cycle? Explain.

SOLUTION:

The volume at state 1 may be found by knowing that the work in going from state 3 to state 1 is 10.5 kJ ,

$$
\begin{align*}
& W_{\substack{\text { by gas } \\
\text { onp piston, } \\
3 \rightarrow 1}}=\int_{3}^{1} p d V=p \int_{V=V_{3}}^{V=V_{1}} d V=p\left(V_{1}-V_{3}\right), \quad(\text { since the pressure is constant from } 3 \text { to } 1) \tag{1}\\
& V_{1}=V_{3}+\frac{\substack{\text { byy gas } \\
\text { onpiston, } \\
\text { anl }}}{p} . \tag{2}
\end{align*}
$$

Using the given parameters,

$$
\begin{align*}
& V_{3} \quad=0.028 \mathrm{~m}^{3} \\
& W_{\substack{\text { by gas } \\
\text { onn piston, } \\
3 \rightarrow 1}}=10.5 \mathrm{~kJ} \\
& p \\
& \Rightarrow V_{1}=0.140 \mathrm{kPa}(\mathrm{abs})
\end{align*}
$$

The work in going from state 1 to state 2 can be found by knowing that the total work done by the gas on the piston over the whole cycle is -8.3 kJ , because the volume remains constant in going from state 2 to state 3 , the corresponding work is zero, and the work on the piston in going from state 3 to state 1 is 10.5 kJ,

$$
\begin{aligned}
& W_{\substack{\text { by gas } \\
\text { on piston, } \\
1 \rightarrow 2}}=-18.8 \mathrm{~kJ} \text {. }
\end{aligned}
$$

The heat transferred in the process from state 1 to state 2 can be found using the $1^{\text {st }}$ Law of Thermodynamics and noting that the energy remains unchanged in going from 1 to 2,

Since $W_{\text {by gas, cycle }}=-8.3 \mathrm{~kJ}<0$, this is a refrigeration (or heat pump) cycle.

