A gas in a piston assembly undergoes a polytropic expansion from an initial volume, $V_{\mathrm{i}}=0.1 \mathrm{~m}^{3}$, and initial pressure, $p_{\mathrm{i}}=2 \operatorname{bar}(\mathrm{abs})\left(1 \mathrm{bar}=1 * 10^{5} \mathrm{~Pa}\right)$, to a final volume of $V_{\mathrm{f}}=0.5 \mathrm{~m}^{3}$. Determine the work the gas does on the piston for $n=1.5$ and $n=1$ (where $p V^{\mathrm{n}}=$ constant).

SOLUTION:

The work the gas performs on the piston is given by:

$$
\begin{equation*}
W_{i \rightarrow f}=\int_{V=0.1 \mathrm{~m}^{3}}^{V=0.5 \mathrm{~m}^{3}} p d V \tag{1}
\end{equation*}
$$

where, for a polytropic expansion,

$$
\begin{equation*}
p V^{n}=\text { constant }=c \tag{2}
\end{equation*}
$$

where n is a constant. Substitute Eq. (2) into Eq. (1).

$$
W_{i \rightarrow f}=\int_{V=0.1 \mathrm{~m}^{3}}^{V=0.5 \mathrm{~m}^{3}} c V^{-n} d V=\left\{\begin{array}{cc}
\left.\frac{c}{1-n} V^{1-n}\right|_{0.1 \mathrm{~m}^{3}} ^{0.5 \mathrm{~m}^{3}} & n \neq 1 \tag{3}\\
\left.c \ln V\right|_{0.1 \mathrm{~m}^{3}} ^{0.5 \mathrm{~m}^{3}} & n=1
\end{array}\right.
$$

When $n=1.5$, the constant is

$$
\begin{equation*}
c=(\underbrace{2 * 10^{5} \mathrm{~Pa}}_{=p_{i}})(\underbrace{0.1 \mathrm{~m}^{3}}_{=V_{i}})^{1.5}=6.32 * 10^{3} \mathrm{~N} \cdot \mathrm{~m}^{2.5} \tag{4}
\end{equation*}
$$

and the work performed by the gas, using Eq. (3), is:

$$
\begin{align*}
& W_{i \rightarrow f}=\frac{6.32 * 10^{3} \mathrm{~N} \cdot \mathrm{~m}^{2.5}}{-0.5}\left[\left(0.5 \mathrm{~m}^{3}\right)^{-0.5}-\left(0.1 \mathrm{~m}^{3}\right)^{-0.5}\right] \tag{5}\\
& W_{i \rightarrow f}=2.2 * 10^{4} \mathrm{~N} \cdot \mathrm{~m} \tag{6}
\end{align*}
$$

When $n=1$, the constant is:

$$
\begin{equation*}
c=(\underbrace{2 * 10^{5} \mathrm{~Pa}}_{=p_{i}})(\underbrace{0.1 \mathrm{~m}^{3}}_{=V_{i}})=2 * 10^{4} \mathrm{~N} \cdot \mathrm{~m} \tag{7}
\end{equation*}
$$

and the work performed by the gas, using Eq. (3), is:

$$
\begin{align*}
& W_{i \rightarrow f}=\left(2 * 10^{4} \mathrm{~N} \cdot \mathrm{~m}\right) \ln \left(\frac{0.5 \mathrm{~m}^{3}}{0.1 \mathrm{~m}^{3}}\right) \tag{8}\\
& W_{i \rightarrow f}=3.2 * 10^{4} \mathrm{~N} \cdot \mathrm{~m} \tag{9}
\end{align*}
$$

