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CHAPTER 1

Introduction

Welcome to this introduction to powder storage and flow! These notes are meant to introduce someone
with little exposure to particulate systems to the main issues involved in powder storage and flow. These
notes should be accessible to students with a junior-level university engineering background or above. Most
chapters involve some content from calculus, ordinary differential equations, and mechanics of materials.
However, these notes are not meant to be an advanced or comprehensive text on powder storage and flow.
It’s simply meant to be an introduction to help the next generation of engineers and scientists learn the
basics. I encourage the reader to make use of the many references throughout the notes, especially the books
by Nedderman [1] and Schulze [2], which I’ve used extensively to improve my own understanding of the topic.
Lastly, these notes are a work-in-progress. I’ve provided them online as a freely-available PDF file and plan
to update them frequently with corrections and additions. I’m open to constructive comments. If you wish
to show your appreciation for these notes, then I encourage you to help the next generation by donating your
time or money to your favorite educational institution.

This first chapter is focused on motivation for the topic. Most people have had little exposure to the study
of particulate materials and I’ve found it helpful to compile statistics and background on the topic. The
technical content of the notes starts in Chapter 2.

Two additional notes before getting started: (1) I’ve included hypertext links within these notes to reference
web sites and videos. These links were active when the notes were prepared, but with the internet being
ephemeral, unfortunately some of these links may not work for you. (2) In case you have an interest, I
also have notes available for thermodynamics, fluid mechanics, and gas dynamics, entitled appropriately as
Notes on Thermodynamics, Fluid Mechanics, and Gas Dynamics. I have supporting course-related web sites
(Thermodynamics I and Introductory Fluid Mechanics) with lecture and example videos. Enjoy!

1.1. Why do we care about Particle Science, Engineering, and Technology (PSET)?

Particle Science, Engineering, and Technology is defined by the Particle Technology Forum as “...that branch
of science and engineering dealing with the production, handling, modification, and use of a wide variety of
particulate materials, both wet or dry, in sizes ranging from nanometers to centimeters. Its scope spans a range
of industries to include chemical, petrochemical, agricultural, food, pharmaceuticals, mineral processing,
advanced materials, energy, and the environment.” Without a strong PSET background, the design and
manufacture of many materials and products would not be economically viable or even possible (Figure 1.1).

To illustrate the importance of PSET, the following collection of miscellaneous statistics has been compiled:

• “Some 75% of chemical manufacturing processes involve small solid particles (fine particles) at some
point.” [3].

• Approximately one-half of the products and at least three-quarters of the raw materials in the
chemical industry are in granular form [1].

• In 1992, DuPont found that 62% of its 3,000 products involved particulate materials [4].
• A minimum of 40% or $61B of the value added by the chemical industry is linked to particle
technology (Chemical Economics Handbook, cited in [4]).

• Figure 1.2 plots the average start-up time of facilities processing fluids, i.e., gases and liquids, which
was approximately five times shorter than the average start up time for facilities handling particulate
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Figure 1.1. Photographs of various particle-based materials and products.

Figure 1.2. The planned and actual start-up times for facilities processing fluids and those
processing particulate materials. Figure from [5].

materials, i.e., solids. Furthermore, the planned and actual start-up time for fluids facilities was
nearly the same while the planned start-up time for particulate material processing facilities was
much shorter than the actual start-up time. The large difference between planned and actual start-
up times reflects the challenges in designing and operating particulate material unit operations.

• Figure 1.3 plots the year-end design performance of facilities handling fluids, refined solid feed
material, i.e., particulate material that has been pre-processed, and raw solid feed material. Facilities
handling fluids operated between 60% and 110% of their design rate, with 90% at the median
performance level. In contrast, facilities processing refined solid materials ranged between 0% and
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Figure 1.3. Influence of feed material on the performance of new facilities. Figure from
[6].

90% of the design rate with a median performance of 50%. Facilities handling raw solid feeds
performed even worse, with a range between 0% and 80% with a median of 38%.

• Grinding of particles consumes 1.3% of U.S. electrical power production, with more than 50%
devoted to minerals (National Materials Advisory Board Report, cited in [4]).

• Approximately 50% of the world’s energy resources come from granular materials, such as soils and
rocks. [7].

• Sand and gravel account for 68% to 85% of all materials mined from the earth [8].
• Each year over 1,000 silos, bins, and hoppers fail in North America [9].
• In 2020, the world produced nearly 181 million metric tons of urea in particulate form, which is
widely used in agricultural fertilizers [10].

• In North America and the Oceania region, approximately 500 million metric tons of cereal grains,
which are in granular form, are lost during distribution, processing, and other stages of handling
[11].

• In 2017, 1134 million tonnes of corn was produced globally. According to the U.S. Corn Harvest
Quality Report, 8.8% of the corn kernels were chipped or had cracks, decreasing the useful grain
yield. This damage was due in part to mechanical loads occurring during grain harvesting and
handling [12].

• Approximately 50% of the world’s energy resources are derived from granular systems such as soils,
grains, and biomass [7].

• The pharmaceutical industry relies extensively on particulate materials, with approximately 90% of
drug products consisting of solid dosage forms [13], meaning that they are produced from particulate
materials.

• From a study of the pharmaceutical industry,“...two [economic] models effectively bound the range
of potential future benefits from greater manufacturing efficiency and estimate that, for example, a
30% reduction in manufacturing costs will generate between $1.0 and $12.3 trillion in social value
to the United States.” [14].

• Approximately 30% of pharmaceutical materials are lost due to powder segregation, which is the
unintentional de-mixing of powder components [15].

Clearly, there is incentive from a range of industries to improve our knowledge for how to design products
and processes involving particulate materials.

1.2. Why do we need academic programs focused on PSET?

Most engineers and scientists have experience with fluids and solids, but not particulate materials. The lack
of proper training can result in products and operations designed using improper assumptions for material
behavior. As a result, significant trial and error and scale-up testing are required.
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Figure 1.4. The IFPRI-compiled
list of training topics, in order of
decreasing priority. Powder flow is
considered to be the most important
topic across all audiences.

Unfortunately, few U.S. undergraduate academic programs focus on PSET topics. Other countries, such as
Germany, England, Australia, and Japan, include aspects of PSET in their undergraduate engineering curric-
ula. Although some U.S. universities now have graduate research programs in PSET, they are not widespread
and courses supporting the fundamentals of PSET are still uncommon. Presumably, with improved PSET
education, we can expect more effective and novel particle-based products and manufacturing methods.

1.3. What PSET topics are of most interest?

The International Fine Particle Research Institute (IFPRI), a consortium consisting of dozens of companies
that process particulate materials, surveyed their members and found that powder flow is the most relevant
PSET topic across all audiences (Figure 1.4). Hence, the focus of the remainder of these notes is on powder
storage and flow.

1.4. What methods are used to predict powder flow behavior?

The most common method for predicting powder flow is to perform empirical testing. This approach generally
involves performing a design of experiments study and fitting the resulting data. The results from these
types of studies are usually not generalizable, i.e., they can only be used for the tested material in the tested
system. However, if those conditions are satisfied, then the resulting empirical fits can provide rapid, accurate
predictions as long as extrapolation is not required.

Analytical models demonstrate good understanding of the system physics and explicitly show how various
parameters are related. In addition, calculations using analytical models are often quick to perform. However,
usually analytical modeling requires significant simplifying assumptions regarding material behavior and
operating conditions which can reduce the model’s accuracy and generalizability.
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(a) Schematic (b) Experimental data

Figure 1.5. Typical wall normal stress distributions in a hopper.

Computational modeling also demonstrates a good understanding of the system physics, but the relationship
between parameters may not be as clear as in analytical models. Computational models also require sim-
plifying material and system assumptions, but these assumptions are usually less restrictive than the ones
required for analytical models. The downsides of computational models are that they can be time-consuming
to perform and usually require some familiarity with numerical methods. The remainder of these notes focus
on analytical models for powder storage and flow with some supporting empirical correlations.

1.5. Examples of Unusual Powder Behavior

Before presenting powder storage and flow models, it is helpful to introduce some of the unusual characteristics
found with particulate materials. Several of these unusual behaviors are presented in this section.

When a particulate material discharges from a hopper (a device for temporarily storing particulate material,
typically consisting of a converging section located below a vertical section; Figure 1.5), the normal stresses
at the wall increase with depth in the vertical section, but approach an asymptotic value for a sufficiently
deep bed of material. This behavior is quite different than what would occur for an incompressible liquid
such as water where the stresses increase linearly with depth. At the transition between the vertical and
converging sections, the wall stress increases abruptly, a phenomenon known as a switch stress. Again, this
behavior is significantly different than what occurs for a liquid. Approaching the converging section apex,
the wall stress decreases to zero.

Depending on the material and system characteristics, particulate materials discharging from a hopper can
display several flow patterns. Two of these patterns are shown in Figure 1.6. If the walls are sufficiently
steep, then mass flow occurs. In mass flow, all of the material is in motion, although the velocity profile is
not necessarily uniform across a lateral section. In contrast, in funnel flow (aka core flow) stagnant regions
of material exist adjacent to the wall and flow only occurs in an inner core region. Funnel flows occur
when the hopper walls are too shallow. A nice video showing the two different flow patterns is available
at https://youtu.be/qneDHMWeZ70. Mass flow is usually preferable to funnel flow since it offers many
advantages, which is discussed further in Chapter 7.

Designing hoppers to produce mass flow is not as trivial as it may seem. L. ter Borg [16] performed a series
of hopper discharge tests on 500 different particulate materials and tabulated the percentage of hoppers that
produced mass flow for different hopper wall half angles (measured from the vertical; Figure 1.7). He found
that a 45◦ angle hopper, a typical angle many people would guess for a reasonable design, had zero mass
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(a) Mass flow. (b) Funnel (aka core) flow.

Figure 1.6. Two common flow patterns in a hopper.

Figure 1.7. Illustration showing the hopper wall half angle measured from the vertical.

Angle from the vertical (◦) % of hoppers in mass flow
45 0
30 25
20 50
15 70

Table 1.1. The percentage of materials that resulted in mass flow for different hopper
wall half angles from the vertical (Figure 1.7). The data was collected by L. ter Borg and
presented in the lecture notes by Jacob [16].

flow cases (Table 1.1). Even a hopper wall angle of 15◦ from the vertical resulted in only 70% of the hoppers
producing mass flow. Designing for mass flow is discussed in Chapter 9.

An extreme case of funnel flow, known as a rathole (aka a pipe), is shown in Figure 1.8. When a rathole
occurs, the material only flows through a narrow flow channel while most of the material remains stagnant.
Ratholes are particularly problematic since a collapsing rathole can cause structural damage to the hopper.
Furthermore, the falling material may become fluidized by entraining air between the particles and flow
uncontrollably from the exit (known as flooding).
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(a) Schematic. (b) Photograph from above.

Figure 1.8. Examples of ratholes. Both images are courtesy of B. Hancock.

Figure 1.9. A photograph showing a cohesive bridge in a hopper.

If the hopper outlet size is too narrow, then a cohesive bridge may form (Figure 1.9) which prevents the
material above the bridge from discharging. A design method for avoiding cohesive bridging is presented in
Chapter 9.

Vibration is often used to induce flow in hoppers. The vibration can be applied by attaching an unbalanced
motor or other device to the hopper wall or, more inelegantly, by pounding on the walls with a sledgehammer
(Figure 1.10). The hammer marks on hopper walls are called hopper rash.

The following videos show how various particulate-based products are manufactured. Note that these links
may become inactive over time.

• Detergents: https://www.youtube.com/watch?v=EPNpgTmjA2I
• “Pills”: https://www.youtube.com/watch?v=XMkYEFwadG0
• Flour: https://www.youtube.com/watch?v=kFP-KBPwn3E
• Gypsum board: https://www.youtube.com/watch?v=46OwU7zGMlw
• Grain harvesting: https://www.youtube.com/watch?v=RMU0goBWRjY
• Chocolate: https://www.youtube.com/watch?v=ZtMfiWDQHT8
• 3D metal printing: https://www.youtube.com/watch?v=aSjjrEni_sY
• Batteries: https://www.youtube.com/watch?v=q8laRePW618

The examples given in this section demonstrate that particulate materials are not only common, but behave
significantly differently than fluids.
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(A) Source: [17] (B) Source: [18] (C) Source: [19]

(D) Source: [19] (E) Source: [20]

Figure 1.10. Various photos showing people pounding on hopper walls in an attempt to
promote promote flow.

1.5.1. Summary

Summarizing the main points from this chapter:

• Particle science, engineering, and technology (PSET) is a broad topic found in many industries.
• Most engineers, particularly in the U.S., have little background on how to design for particulate
systems.

• Powder flow is a particularly important topic in PSET.
• Particulate system behavior can be significantly different from fluid system behavior.
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CHAPTER 2

Powder Flow Indices

2.1. What is powder “flowability”?

Flowability is a term used to describe how well a powder flows. One hears the term in the context of hopper
flow, die filling, screw feeding, and other powder handling behavior. There is no single standard for measuring
a powder’s flowability and many methods are qualitative or comparative, as shown in Figure 2.1. Indeed,
how well a powder flows depends on the powder’s properties and the local stress conditions. Thus, we can’t
say how well a powder will flow without considering both material properties and system conditions.

The following sections review common methods that have been proposed for quantifying a powder’s flowabil-
ity. One important method, shear cell testing, is not described in this chapter and instead an entire chapter
(Chapter 8) is devoted to the topic.

2.2. Indices vs. Properties

Before discussing methods for evaluating flowability, it is important to first clarify the difference between
indices and properties. Let’s say you’re unfamiliar with fluid mechanics and need to determine how a fluid
will flow in a variety of situations. One approach would be to develop a series of physical “simulations”
to assess fluid flow behavior in commonly encountered systems. For example, Figure 2.2 shows three flow
systems: liquid discharging from a vessel, liquid flowing through a pipe, and an impeller stirring a liquid
in a container. These tests provide quantitative information, e.g., the time required to discharge the vessel,
the flow rate through the pipe, and the torque required to rotate the impeller, and can be used to compare

Figure 2.1. The traditional assessment of powder flowability consists of an experienced
worker tumbling a jar of powder and, based on that person’s experience, assessing the pow-
der’s “flowability”. This photograph is courtesy of B. Hancock.
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Figure 2.2. Examples of common systems that might be used to create liquid flow indices.

the “flowability” of different liquids, but they don’t provide fundamental properties and can’t be used to
quantitatively design new systems. Such non-fundamental measurements are often termed “indices”, e.g.,
the Vessel Discharge Index, the Pipe Flow Index, and the Stirring Index.

To know what quantities are fundamental to a material and how to devise methods for measuring these
quantities, we must first have a modeling framework. For an incompressible, Newtonian fluid, that framework
is the Navier-Stokes equations,

ρ

[
∂u

∂t
+ (u · ∇)u

]
= −∇p+ µ∇2u+ ρg, (2.1)

where u is the fluid velocity, t is time, p is the fluid pressure, and g is the gravitational acceleration. Here we
see there are two fundamental material-related quantities in the model: density (ρ) and dynamic viscosity
(µ). These fundamental material parameters in the model are called “properties”. Using the model, we can
devise simple experiments that an be used to measure each of the properties, e.g., using a hydrometer to
obtain the density or a viscometer to obtain the viscosity. With the fundamental properties and the model,
we can, in principle, predict flow behavior in any system.

Unfortunately, the modeling framework for particulate materials isn’t as developed as it is for fluid mechanics.
We do have soil mechanics models available for quasi-static particulate material systems at high pressures,
but the models are often simplified, difficult to implement, or require many, sometimes difficult-to-measure
properties. Powder flow indices tend to be defined for systems at low pressures, consistent with powders
flowing at free surfaces. There are also kinetic theory models for dilute, energetic flows, but again, these
are often highly simplified and require particle-level properties, which can be difficult to obtain. Thus, we
must frequently rely on index-style measurements and then either use them in a comparative manner, e.g.,
Powder A has an index value less than Powder B’s value, or experimentally correlate the indices to processes
of interest, e.g., performance in manufacturing pharmaceutical tablets. This chapter describes some of the
index-style properties that have been proposed. Subsequent chapters focus more on fundamentals.

2.2.1. A Side-note on Property Values

Although these notes do not focus on characterization measurements, two measurement-related items are
worth noting:

(1) Proper material sampling is essential for obtaining reliable characterization measurements. The
Golden Rules of Sampling [1] should always be followed.

(2) Be wary of using published property data for particulate materials. The properties of particulate
materials depend not only on chemical composition, but also on the surrounding environmental
conditions, e.g., temperature and humidity, and the loading history of the material, e.g., how it
was produced, whether or not it has been subject to attrition or previous compression, etc. It is
a best practice to measure the properties of the material you’re handling under the conditions the
material will be subject to, e.g., temperature, humidity, and storage time. Values reported in the
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Figure 2.3. (left) A well-defined angle of repose for a cohesionless material. (right) A
cohesive powder’s angle of repose is not well defined. For this powder, the angle of repose is
larger near the peak and smaller near the base.

literature can be useful for first-cut design estimates, but detailed design should use measurements
on the actual material.

2.3. Angles of Repose

An angle of repose is the largest, stable angle of a powder’s free surface with respect to the horizontal. A
smaller angle of repose generally implies better flow characteristics. Free flowing materials generally have
a well-defined angle of repose; however, cohesive powders do not, which makes the angle of repose value
questionable (Figure 2.3).

Although angles of repose are often reported, their use for assessing flowability is questionable. Hiestand [2]
states that “for pharmaceutical materials the angle of repose [as a flowability measure] is satisfactory only
with powders whose flow characteristics are so good that one seldom needs the measurement.” Similarly,
Jenike [3] states, “... In fact, it [the angle of repose] is only useful in the determination of the contour of
a pile, and its popularity among engineers and investigators is due not to its usefulness but to the ease
with which it is measured.” Despite the criticisms, since it has been used by some to assess flowability, the
following list is provided to describe a few of the many different methods used for measuring the angle of
repose:

• Poured Angle of Repose: The poured angle of repose is found by pouring a powder from some
elevation onto a flat plate and measuring the angle that the powder’s slope makes with respect to
the horizontal (Figure 2.4a).

• Angle of Fall: The angle of fall is the angle of repose for a powder mound that has been poured
onto a surface and then impacted (Figure 2.4b). The powder will slump somewhat in response to
the impact.

• Angle of Spatula: The angle of spatula is the angle of repose for a powder that has been formed
by slowly lifting a spatula out of a powder bed (Figure 2.4c).

• Drained Angle of Repose: The drained angle of repose is the angle of repose formed by the
powder retained in a flat-bottomed bin after discharge (Figure 2.4d).

• Dynamic Angle of Repose: The dynamic angle of repose is the angle of repose for a continuously
avalanching powder, such as what one might find in a rotating drum (Figure 2.4e).

Note that the schematics in Figure 2.4 are idealizations. As stated previously, cohesive powders do not
generally have a well defined angle of repose. Furthermore, in a dynamic angle of repose experiment, a
cohesive powder will not avalanche continuously and instead will build-up to a large angle then collapse in a
large avalanche event, then repeat the cycle, often in an erratic manner. These avalanche events are used in
another flowability index and are discussed further in Section 2.6.
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(a) Poured angle of repose

(b) Angle of fall

(c) Angle of spatula

(d) Drained angle of repose

(e) Dynamic angle of repose

Figure 2.4. Schematics for various methods for measuring angles of repose.
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Material Angle of Repose (deg)
sodium chloride 34± 1

sucrose 35± 1
lactose 100 38± 2
lactose 325 41± 1

Table 2.1. Typical values for the poured angle of repose [4].

Notes:

(1) Commercial testers are available for measuring angles of repose such as the Micron Powder Char-
acteristics Tester PT-X, the GranuHeap, the GranuDrum, and the PowderPro A1. Note that these
notes are not endorsing any particular device nor claim to list all possible commercial devices, but
only mention a few here so the reader can conveniently examine what these commercial devices look
like and how they operate.

(2) Crude estimates of the angle of repose can be made using a protractor or calculated from the
measured locations of the powder heap peak and base. More precise measurements can be made
from processing a digital image of a powder heap. Digital processing has the added advantage of
being able to examine the local slope fluctuations in addition to the average slope.

(3) For a cohesionless material, the angle of repose is equal to the material’s angle of internal friction,
a topic discussed in Chapter 4.

(4) Example values for the poured angle of repose are given in Table 2.1.

2.4. Carr’s Flowability and Floodability Indices

Carr indices are empirical formulas proposed by Carr [5] for describing a powder’s flowability and floodability.
A powder’s floodability is the powder’s tendency to fluidize in air and produce liquid-like flow. Carr based
his formulas on the behavior of more than 2800 dry materials. The full Carr index analysis approach is rarely
used nowadays, although the Carr compressibility is still used frequently. Despite not being widely used, a
description of the methods for determining the flowability and floodability indices is presented in this section
for completeness.

2.4.1. Carr’s Flowability Index

Carr’s flowability index is an empirically-derived score between 0 and 100, with 100 indicating excellent flow
qualities, that combines measurements of a powder’s:

• poured angle of repose,
• angle of spatula,
• compressibility, and
• either cohesion or coefficient of uniformity.

The poured angle of repose and angle of spatula are presented in the previous section and, thus, won’t
be discussed here. Instead, the powder’s compressibility, cohesion (as defined by Carr), and coefficient of
uniformity are described.

Compressibility is the change in a powder’s bulk density between tapped and aerated states relative to the
powder’s tapped bulk density,

compressibility =
ρb,T − ρb,A

ρb,T
≈ ρb,T − ρb,P

ρb,T
(2.2)

where ρb,T and ρb,A are the tapped and aerated bulk densities, respectively. Note that the compressibility
is often reported as a percentage. The aerated bulk density is the bulk density of the powder at incipient
fluidization while the tapped bulk density is the powder’s bulk density after being subject to a large number
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Figure 2.5. (left) Powders gently poured into a container can support large void spaces
if the particles are frictional or cohesive, resulting in a small bulk density. (right) After
tapping, these voids collapse and the bulk density increases.

Flowability compressibility (%) Hausner ratio
excellent 5 - 10 1.05 - 1.11
good 11 - 15 1.12 - 1.18
fair 16 - 20 1.19 - 1.25

passable 21 - 25 1.27 - 1.33
poor 26 - 31 1.35 - 1.45

very poor 32 - 37 1.47 - 1.59
exceedingly poor 38 - 45 1.61 - 1.82

Table 2.2. Qualitative flow descriptions for different ranges of compressibility and Hausner
ratio. The Hausner ratio is described in Section 2.5. This table is adapted from [2].

of small taps in a containing vessel. Because measuring a powder’s aerated bulk density is not simple, the
loosely packed poured bulk density, ρb,P , is often used instead. The loosely poured bulk density corresponds
to the bulk density just after gently pouring the powder into a containing vessel. It’s the initial powder bulk
density at the start of the tapping sequence used to find the tapped bulk density.

Powders with significant frictional and cohesive interactions, which tend to decrease flowability, have a larger
difference in their tapped and poured bulk densities. When the powder is gently poured into a vessel,
the packing configuration can contain large pores if the particles are frictional or cohesive, resulting in a
smaller bulk density (Figure 2.5). When tapped, these large pores collapse and increase the bulk density.
Thus, a large compressibility implies poor flow behavior. Qualitative flow descriptions for different ranges of
compressibility values are presented in Table 2.2. Compressibility values for various materials are presented
in Table 2.3.

Carr quantified a powder’s cohesion using the powder masses retained on three vibrating, stacked sieves
subject to vibration,

cohesion := 5·(mass on top sieve)(0.1 g) + 3 · (mass on middle sieve)/(0.1 g)

+ (mass on bottom sieve)/(0.1 g).
(2.3)

The choice of sieve sizes depends on the powder’s tapped and aerated bulk densities and powder compress-
ibility (Table 2.4). A more cohesive material, which would result in worse flowability, will have more material
retained on the upper and middle sieves and, thus, result in a larger value for cohesion.

For larger sized (aka coarse) particles, a uniformity coefficient is used in place of cohesion in Carr’s algorithm.
Uniformity is defined as the ratio of the width of sieve opening that passes 60% of the material (by mass)
to the width of sieve opening that passes 10% of the material. Increasing uniformity results in increasing
flowability.

To calculate the Carr Flowability Index, one sums the appropriate scores in Table 2.5. For example, if
experiments gave the values in Table 2.6, then the Carr Flowability Index is 96, indicating excellent flowability:
aid will not be needed for the material to flow, and the material is not expected to arch.
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Material Ref. Comp. (%) HR Flow behavior
glass beads [4] 4 1.04 excellent
sucrose [4] 10 1.11 excellent
povidone [6] 12 1.13 good

sodium chloride [4] 15 1.18 good
microcrystalline cellulose (Avicel PH103) [4] 19 1.23 fair

lactose (Pharmatose 100M) [4] 20 1.25 fair
microcrystalline cellulose (Avicel PH102) [7] 21 1.26 passable
microcrystalline cellulose (Avicel PH105) [4] 22 1.28 passable

lactose (Pharmatose 325M) [4] 23 1.30 passable
starch 1500 [7] 23 1.29 passable

maltodextrin (Maltrin M150) [4] 24 1.32 passable
paracetamol [6] 28 1.39 poor

microcrystalline cellulose (Avicel PH102) [8] 29 1.41 poor
microcrystalline cellulose (Avicel PH101) [8] 28-29 1.39-1.41 poor

lactose (Pharmatose 200M) [4] 41 1.69 exceedingly poor

Table 2.3. Example compressibility (Comp.) and Hausner ratio (HR) values for various
materials, including flow descriptions. The Hausner ratio is described in Section 2.5. Refer-
ences for the data are given in the second column.

Working bulk density (kg/m3) Sieve sizes (mesh)
160 - 400 40, 60 ,100
400 - 960 60, 100, 200
960 - 1440 100, 200, 325

Table 2.4. Sieve sizes used to determine the Carr cohesion value. The working bulk density
is ρb,W = ρb,A + (ρb,T − ρb,A) ∗ (compressibility). The mesh size is the number of openings
per linear inch for the sieve. For example, a 200 mesh indicates 200 openings per linear inch.
Accounting for the sieve wire diameter, 200 mesh corresponds to a 74 µm opening in the US
standard. It’s a measure of particle size. To perform the test, one places 2 g of -200 mesh
material (i.e., < 74 µm particle size) on the top-most sieve then vibrates the powder for a
period of time.

2.4.2. Carr’s Floodability Index

The Carr Floodability Index rates a powder’s tendency to fluidize in air and flow like a liquid. Powders that
are prone to flooding can be difficult to control since the flow behavior can rapidly transition from solid-like
to liquid-like if air gets entrained into the powder. Like the Flowability Index, the Floodability Index ranges
from 0 to 100. A score of 100 indicates the powder is very floodable.

The Floodability Index is based on the following measurements:

• Flowability Index,
• angle of fall,
• angle of difference, and
• dispersibility.

The angle of fall and Flowability Index have been previously discussed. The angle of difference is the difference
between the poured angle of repose and the angle of fall, i.e.,

(angle of difference) = (angle of repose)− (angle of fall). (2.4)
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Table 2.5. The Carr Flowability Index score table [5].

Measurement Value Score from Table 2.5
angle of repose 25◦ 25
compressibility 8% 23
angle of spatula 25◦ 25

uniformity coefficient 2 23
Sum 96

Table 2.6. Measurement values for sand used in the example for calculating the Carr
Flowability Index [5].

A floodable material typically has a small angle of fall since air trapped within the heap of powder causes
the material to fluidize when the base is impacted. The larger the angle of difference, the more likely the
material will be floodable.

The dispersibility is a measure of the scattering and dusting characteristics of a powder. The more dispersible
a material is, the more floodable it is. Dispersibility is measured by dropping a 10 g sample of material en
masse through a 4 in. diameter, 13 in. long cylinder from a height of 24 in. above a watch glass, which in
turn is located 4 in. from the bottom of the cylinder (Figure 2.6). The material remaining on the watch glass
is weighed and the dispersibility is found using,

(dispersibility) = 10 ∗ [10− (mass remaining, in grams)]. (2.5)

The algorithm for calculating the Floodability Index is similar to the one used to find the Flowability. The
table for determining the scores and evaluating the floodability is given in Table 2.7.

Notes:
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Figure 2.6. A schematic illustrating the test used to evaluate a powder’s dispersibility in
the Carr Floodability Index.

Table 2.7. The Carr Floodability Index score table [5].

(1) A device that can measure all of the parameters required for evaluating the Carr Flowability and
Floodability Indices is the Hosokawa Micron Powder Characteristics Tester.

(2) As stated previously, the full Carr Indices are not frequently used; however, the compressibility is
a commonly reported quantity when evaluating powder flow behavior.

2.5. The Hausner Ratio

Perhaps the most commonly-used, easy-to-measure quantity used to evaluate flowability, at least in the
pharmaceutical industry, is the Hausner ratio [9]. The Hausner ratio is defined as the ratio of the powder’s
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tapped bulk density (ρb,T ) to the powder’s aerated bulk density (ρb,A),

(Hausner ratio) :=
ρb,T
ρb,A

≈ ρb,T
ρb,P

. (2.6)

As with the compressibility, it’s much easier to measure the loosely poured bulk density and use that value
in place of the aerated bulk density. The Hausner ratio is directly rated to the compressibility (Eq. (2.2)),

(Hausner ratio) =
ρb,T
ρb,A

=
1

1− ρb,T−ρb,A

ρb,T

=
1

1− (compressibility)
. (2.7)

Notes:

(1) Table 2.2 lists qualitative flow behavior descriptions for various ranges of the Hausner ratio.
(2) Hausner ratio values for various materials are listed in Table 2.3.
(3) A variety of testers are available for measuring a powder’s loosely poured and tapped bulk densities,

e.g., Agilent 350 Tapped Density Tester, Autotap, SOTAX, and the GranuPack.
(4) The Hausner ratio can also be used to distinguish between Geldart Group A (aeratable, easy-to-

fluidize, Hausner ratio < 1.25) and Group C (cohesive, difficult-to-fluidize, Hausner ratio > 1.4)
powders. Powders with 1.25 < Hausner ratio < 1.4 are Group AC (transitional) powders [10].

(5) The Hausner ratio (and the compressibility) has been known to sometimes give erroneous flowability
results.
(a) If the cohesion strength between particles is greater than the separation forces generated by

tapping, then the initial packing arrangement may not change leading to a small Hausner ratio
and a prediction of good flowability when in fact the flowability is poor [4], [6]. An example
material displaying this behavior is microcrystalline cellulose (Avicel PH103) [4].

(b) If the cohesion between particles is significant, then the initial packing may already have a large
initial bulk density so tapping won’t decrease it significantly. The resulting small Hausner ratio
is misleading since the flowability would be poor due to the large cohesion [6].

(c) Non-cohesive, angular particles may pack loosely initially, but small perturbations could result
in significant re-packing leading to a large Hausner ratio, indicating poor flowability. The
flowability may still be good however [6]. An example of this type of material is pre-gelatinized
starch [6].

The bulk density of a powder increases with the number of taps. In addition to the loosely poured and
asymptotic tapped densities, it has been proposed that the rate at which densification occurs can provide
additional information on flow behavior. Consider Figure 2.7 in which two compaction curves are shown.
Both start and end at the same packing fractions, but the red curve approaches the asymptotic value faster
than the green curve, presumably because the cohesion and frictional properties of the red curve material are
less significant. Thus, the red curve material will likely have better flow behavior even though both materials
have the same Hausner ratio. The authors [11] of this figure suggest that the function,

ηn = η∞ − η∞ − η0

1 + ln
(
1 + n

τ

) , (2.8)

fits experimental data well while also having a physical underpinning [12], with η being the material’s packing
fraction (aka solid fraction, relative density), and n the number of taps. The relation has three fitting
parameters: η0, η∞, and τ . The number of taps required to reach the average packing fraction may be found
from Eq. (2.8),

1

2
(η0 + η∞) = η∞ − η∞ − η0

1 + ln
(
1 +

n1/2

τ

) , (2.9)

1

2
(η0 − η∞) =

η0 − η∞

1 + ln
(
1 +

n1/2

τ

) , (2.10)

1

2

[
1 + ln

(
1 +

n1/2

τ

)]
= 1, (2.11)
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Figure 2.7. Example plots of a powder’s packing fraction as a function of the number of
taps. Both powders start and end at the same packing fraction and, thus, have the same
Hausner ratio. The rate at which the asymptotic packing fraction is reached is different,
however. This figure is from [11], but with the average packing fraction expression on the
vertical axis modified.

ln
(
1 +

n1/2

τ

)
= 1, (2.12)

1 +
n1/2

τ
= e, (2.13)

n1/2 = (e− 1)τ. (2.14)

Thus, smaller values for τ imply improved flow behavior for the same Hausner ratio since smaller values of
τ result in a faster approach to the asymptotic value.

A different fit to the compaction curve is based on the work of Kawakita and Lüdde [13] who originally
developed their relation for the uniaxial compaction of powders. This fit expresses the instantaneous com-
pressibility of a powder,

Cn =
ηn − η0

ηn
, (2.15)

where ηn is the packing fraction of the powder after n taps, in the following form,

n

Cn
=

n

a
+

1

ab
. (2.16)

The parameter a = C∞ is the Carr compressibility (Eq. (2.2)), which is the compressibility after a large
number of taps. This relation, like the previous one, has three fitting parameters: η0, a, and b. Smaller values
of a (compressibility) and 1/b imply better flowability. Note that when plotted in the form of Eq. (2.16), the
slope of the data is equal to 1/a and the intercept on the vertical axis is 1/(ab) (Figure 2.8). Typical values
for a and 1/b are listed in Table 2.8. Equation (2.16) may be re-arranged to evaluate the packing fraction
explicitly,

n
ηn−η0

ηn

=
n

η∞−η0

η∞

+
1(

η∞−η0

η∞

)
b
, (2.17)

1

1− η0

ηn

=
1

1− η0

η∞

+
1

nb
(
1− η0

η∞

) , (2.18)

1− η0
ηn

=
nb
(
1− η0

η∞

)
nb+ 1

, (2.19)
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Figure 2.8. Plots of the instantaneous compressibility Cn (C in the figure), in the form of
Eq. (2.16), as a function of the number of taps n for different materials. This plot is from
[14].

Table 2.8. Values of the Kawakita constants for different materials [14].

ηn = η0

1− nb
(
1− η0

η∞

)
nb+ 1

−1

. (2.20)

Yet a third proposed fit for tapped density comes from Philippe and Bideau [15]. They suggest the use of a
stretched exponential function often used to study the relaxation of glasses,

ηn = η∞ − (η∞ − η0) exp
[
−
( n

n∗

)m]
, (2.21)
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which has four fitting parameters: η0, η∞, n∗, and m. Having four fitting parameters can improve the fit
accuracy compared to the previously discussed fits, which have three parameters each, but at the expense of
having an additional parameter to consider.

Notes:

(1) To obtain a more accurate fit to tapped density data, more data should be included at the initial
stages of tapping since that is when the bulk density changes most rapidly.

(2) The asymptotic packing fraction in the previously presented curve fits is never reached since an
infinite number of taps would be required. However, we can calculate the number of taps required
to reach 99% of the asymptotic packing fraction. For example, for Eq. (2.8),

0.99η∞ = η∞ − η∞ − η0

1 + ln
(
1 + n0.99

τ

) , (2.22)

0.01η∞ =
η∞ − η0

1 + ln
(
1 + n0.99

τ

) , (2.23)

1 + ln
(
1 +

n0.99

τ

)
=

η∞ − η0
0.01η∞

= 100

(
1− η0

η∞

)
, (2.24)(

1 +
n0.99

τ

)
= exp

[
100

(
1− η0

η∞

)
− 1

]
= exp

(
99− 100

η0
η∞

)
, (2.25)

n0.99 = τ

[
exp

(
99− 100

η0
η∞

)
− 1

]
. (2.26)

For Eq. (2.16), the number of taps required to reach 0.99η∞ is,

n0.99

C0.99
=

n0.99

a
+

1

ab
, (2.27)

n0.99

(
1

C0.99
− 1

a

)
=

1

ab
, (2.28)

n0.99 =
1

ab

(
aC0.99

a− C0.99

)
=

1

b

(
C0.99

C∞ − C0.99

)
, (2.29)

n0.99 =
1

b

(
0.99η∞−η0

0.99η∞
η∞−η0

η∞
− 0.99η∞−η0

0.99η∞

)
, (2.30)

n0.99 =
1

b

(
η∞ − η0

0.99

η∞ − η0 − η∞ + η0

0.99

)
, (2.31)

n0.99 =
1

b

(
η∞ − η0

0.99
0.01
0.99η0

)
, (2.32)

n0.99 =
1

b

(
0.99η∞

η0
− 1

0.01

)
, (2.33)

n0.99 =
100

b

(
0.99

η∞
η0

− 1

)
. (2.34)

Finally, for Eq. (2.21),

0.99η∞ = η∞ − (η∞ − η0) exp
[
−
(n0.99

n∗

)m]
, (2.35)

0.01η∞ = (η∞ − η0) exp
[
−
(n0.99

n∗

)m]
, (2.36)

0.01η∞
η∞ − η0

= exp
[
−
(n0.99

n∗

)m]
, (2.37)
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ln

(
0.01η∞
η∞ − η0

)
= −

(n0.99

n∗

)m
, (2.38)[

ln

(
η∞ − η0
0.01η∞

)]1/m
=

n0.99

n∗ , (2.39)

n0.99 = n∗
{
ln

[
100

(
1− η0

η∞

)]}1/m

. (2.40)

The number of taps required to reach 0.99η∞ may vary significantly depending on the choice of
curve fit. Note that the n99 values can be used to compare approach rates to the asymptotic value,
at least when the same fitting expression is used.

(3) When determining the fitting parameters numerically, initial estimates of the parameter values
may be needed for convergence of the fitting algorithm, especially for more complex functions with
multiple parameters. The initial estimate for η0 can simply be the poured packing fraction, i.e., the
first data point in the measurements. The fit for η∞ can be approximated by assuming a Hausner
ratio of 1.3, corresponding to passible flow behavior, which gives η∞ = 1.3η0. Estimates for other
fitting parameters depend on the choice of fitting expression. An estimate for τ in Eq. (2.8) can be
found by noting that,

dηn
dn

=
η∞ − η0[

1 + ln
(
1 + n

τ

)]2 ( 1

1 + n
τ

)(
1

τ

)
=

η∞ − η0[
1 + ln

(
1 + n

τ

)]2 ( 1

τ + n

)
, (2.41)

so that at n = 0,

dηn
dn

∣∣∣∣
n=0

=
η∞ − η0

τ
, (2.42)

τ =
η∞ − η0

dηn/dn
∣∣
n=0

. (2.43)

Thus, calculating the initial slope from the measurement data along with the previously discussed
approximations for η0 and η∞ provides a method for estimating τ .
For Eq. (2.16), initial estimates may be determined by first plotting the data using Eq. (2.16) as
shown in Figure 2.8. A simple line fit can be used to estimate a and b. The parameter a is the
inverse slope of the fitting line (a = 1/(slope)) and b is related to the intercept, 1/(ab) = (intercept).
These values along with the previously discussed η0 estimate can be used as the seed for a fitting
algorithm.
Equation (2.21) can also be re-arranged to produce a linear fit for estimation purposes,

ηn − η∞
η∞ − η0

= − exp
[
−
( n

n∗

)m]
, (2.44)

ln

(
η∞ − ηn
η∞ − η0

)
= −

( n

n∗

)m
, (2.45)

ln

(
η∞ − η0
η∞ − ηn

)
=
( n

n∗

)m
, (2.46)

ln

[
ln

(
η∞ − η0
η∞ − ηn

)]
= m ln

( n

n∗

)
, (2.47)

ln

[
ln

(
η∞ − η0
η∞ − ηn

)]
= m lnn−m lnn∗. (2.48)

Thus, when plotting the packing fraction in the form of the previous equation along with the
estimates for η0 and η∞, the data should fall on a line with a slope of m and an intercept on the
vertical axis of −m lnn∗. These values can then be used as an initial guess for a fitting algorithm.

(4) In general, the stretched exponential function of Philippe and Bideau (Eq. (2.21)) works well at
fitting tapped bulk density data and is the fit recommended by this author.
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Figure 2.9. A schematic of a typical avalanche tester geometry [16]. Powder is contained
within a rotating drum. In this particular device, the free surface of the powder is found
from its shadow projected onto an imaging sensor.

2.6. Avalanche Testing

The previous methods of evaluating powder flow mostly use static or nearly static conditions. Avalanche
testing has the powder in a flowing state when measurements are made. The test reproduces common
handling conditions such as blending or granulating in a rotating drum and flow down a free surface.

A typical avalanche tester geometry is shown in Figure 2.9. Powder is contained within a drum that rotates
at a prescribed speed such that powder circulates within the drum. The drum front and back walls are
usually transparent so the powder movement can be monitored visually. In this particular device, a light on
one side of the drum produces a shadow of the powder free surface on an imaging sensor. By monitoring the
light intensity on the sensor, one can infer the dynamics of the free surface. A sudden change in the light
intensity implies that an avalanche has occurred (Figure 2.10). An example of the light detector output as a
function of time is shown in Figure 2.11a. A histogram of the time between avalanches in a 15 minute time
period is shown for a particular powder in Figure 2.11b. The smaller the time between avalanches and the
narrower the distribution of avalanche times (i.e., the smaller the standard deviation of avalanche times),
the better the flowability. Figure 2.12 shows the mean and standard deviation of avalanche times for various
materials.

Notes:

(1) Figure 2.13 provides an example for how avalanche time correlates with tablet weight variability in
a pharmaceutical tableting operation. The larger the mean avalanche time, the greater the tablet
weight variability, which is undesirable.

(2) Lavoie et al. [4] proposed testing at multiple drum speeds and define the following indices:

Flowability Index :=
1

n

n∑
i=1

σi, (2.49)

Cohesion Index :=
1

n

n∑
i=1

mi. (2.50)
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Figure 2.10. An illustration of how a powder avalanche is detected. This figure is taken
from [16].

(a) An example of the light detector output as a func-
tion of time. Avalanche events are noted on the fig-
ure. This figure is from [16].

(b) A histogram for the avalanche time of lactose
anhydrous over a 15 minute period. The smaller
the mean avalanche time and the narrower the dis-
tribution, the better the flowability. This figure is
from [16].

Figure 2.11. Typical avalanche time data [16].

where n is the number of different speeds tested, σi is the standard deviation of the time between
avalanches at speed test i, and mi is the mean time between avalanches at speed test i. Note
that the time between avalanches is proportional to the drum speed [4] so the proposed indices
are artificially weighted toward the slower speed values. The indices would be more useful if the
time between avalanches is normalized by the drum rotation period before calculating standard
deviations and means.

(3) Fill level can also make a difference in the avalanche times.
(4) The loading conditions on the powder are not well controlled. For example, the stress acting on

any given region near the free surface, especially for cohesive powders, may vary in time as material
collapses on top of it.

C. Wassgren 31 2024-06-12



Powder Storage and Flow

Figure 2.12. (left) The mean avalanche times for various pharmaceutical materials. The
different bars correspond to measurements at different testing sites. (right) The correspond-
ing standard deviations of the avalanche times. These figures are taken from [16].

Figure 2.13. Tablet weight variation in a pharmaceutical tableting operation as a function
of the material’s mean avalanche time. This figure is taken from [17].

(5) Wall interactions can play a role in the avalanche behavior. For example, if the drum was frictionless,
then the material in the drum wouldn’t avalanche. A roughened boundary surface, e.g., using
sandpaper or a mesh, is recommended to prevent slipping at the drum walls [18].

(6) If using a light-based avalanche detection method, the drum walls should remain free from sticking
particles. Wiping the front and rear drum walls with an anti-static cloth can help reduce sticking
due to electrostatic forces [18].

(7) Examples of avalanche testers include the TSI Aero-Flow (discontinued), Mercury Revolution, and
the GranuDrum. There is also an avalanche tester that uses a load cell to detect avalanches rather
than using an optical method.

Another approach to analyzing rotating drum avalanche data is to monitor the dynamic angle of repose
and the variations in this angle. For example, when using the GranuDrum device, the free surface profile is
analyzed in the following manner [19]:
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Figure 2.14. (left) A photograph from the GranuDrum device showing the crop diameter
(red) and the diameter used to determine the average slope (green). (right) The green region
is the range of all y locations of the free surface at each x location over many different images.
The solid line in the figure is the mean of the y positions at the x locations. Images from [20].

(1) The region of the powder’s free surface to be analyzed is identified using a “crop” diameter, Dcrop

(shown in red in Figure 2.14), in order to reduce boundary effects.
(2) The average surface slope, mi, for image i is based on the positions of the left-most and right-most

points intersecting a small circle near the middle of the drum (shown in green in Figure 2.14). Using

a (forward difference) vector to connect two neighboring surface points, vn = (xn+1−xn)î+(yn+1−
yn)ĵ, the average vector for all of the surface points in image i is,

vi =
1

N − 1

N−1∑
n=1

vn =
1

N − 1

N−1∑
n=1

[(xn+1 − xn)î+ (yn+1 − yn)ĵ], (2.51)

where N is the total number of surface points. Expanding the summation, one will find that all of
the terms will cancel except for the end points, i.e., (x, y)N and (x, y)1. Thus,

vi =
1

N − 1
[(xN − x1)î+ (yN − y1)ĵ]. (2.52)

The slope of this average surface vector is,

mi =
yN − y1
xN − x1

=
yR − yL
xR − xL

. (2.53)

(3) Once many surface images have been collected, the mean and standard deviation of free surface y
positions at each x location can be determined (Figure 2.14). The mean y position and standard
deviation of the free surface at a particular x location are, respectively,

y(x) =
1

I

I∑
i=0

yi(x), (2.54)

σ(x) =

√√√√1

I

I∑
i=0

[yi(x)− y(x)]
2
, (2.55)

where I is the total number of images.
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Figure 2.15. A photograph of a Flodex flow through an orifice device [21].

(4) The GranuDrum cohesion index (CI) is defined as,

CI :=
1

Dcrop

∑
∀x

σ(x). (2.56)

As the cohesion index decreases, the powder free surface is more consistent. Smaller average angles
of repose and smaller cohesion index values correspond to better flow behavior.

2.7. Flow Through an Orifice

A flow through an orifice testing device consists of a small, flat-bottom cylindrical bin with a circular hole
in the base (Figure 2.15). Flowability is quantified by the smallest diameter hole through which powder falls
freely. Smaller diameters indicate better flow behavior.

Notes:

(1) In the traditional flow through orifice testing methodology, the critical hole diameter corresponds
to when the material first flows through the hole in three consecutive tests. An alternate approach
is to test the material multiple times and then plot the fraction of times that flow occurs, as shown
in Figure 2.16. The index can be reported as the aperture opening corresponding to a particular
fraction, e.g., 0.5 or 1.

(2) The device does not represent powder behavior under dynamic conditions [4].
(3) A flowing powder could become non-flowing when forced through small openings [4].
(4) Examples of commercial testers include the Flodex, Sotax, Gardco BEP2, and Hall flow meter.
(5) Example values from Flodex measurements are given in Table 2.9.
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Figure 2.16. Flow through an orifice data for various pharmaceutical materials. The hor-
izontal axis is the aperture diameter and the vertical axis is the percentage of times there
was flow through the orifice. This plot is from [22].

Material
Min diameter
for flow (mm)

Ref.

sucrose < 4 [4]
commercial granulated sugar 4 [22]

sodium chloride 5 [4]
granulated active pharma blends 14-18 [22]

lactose (Pharmatose 100) 17 [4]
lactose (Pharmatose 325) 19 [4]

un-granulated active pharma blends 28-30 [22]
lactose (Pharmatose 200) 29 [4]

microcrystalline cellulose (Avicel PH105) > 34 [4]

Table 2.9. The minimum orifice diameters to produce flow three consecutive times in a
Flodex device. The last column lists the reference for the data.

2.8. Powder Rheometers

A powder rheometer is a device that measures powder flow behavior, often in a dynamic state. These devices
are typically automated, which decreases the likelihood of operator bias. In addition, many commercial
rheometers have the ability to test the powder in consolidated (i.e., densified) or aerated states as well as at
various shear strain rates.

A typical powder rheometer device is shown in Figure 2.17. Here the powder is contained in a cylindrical
vessel while a rotating blade is moved down and up through the bed. The force and torque required to move
the blade through the bed and the blade displacement are monitored. These quantities are used to obtain
the energy required to move the blade through the powder bed. The energy required to move the blade
downward through the bed, which is in a confined state due to the presence of the container bottom and the
blade pushing the powder downward, is called the “Basic Flowability Energy (BFE)”. In general, powders
with better flow behavior have a smaller BFE. Unfortunately, the BFE is not a fundamental property of the
powder, but it can still be used as a comparative measure as well as in empirical correlations.

Notes:

(1) Examples of powder rheometers include the Freeman FT4 powder rheometer, the Anton Paar
Rheometer with a powder cell, and the Stable Microsystems Powder Flow Analyser. These devices
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Figure 2.17. An example of a powder rheometer. This particular device is a Freeman FT4
powder rheometer [23].

also have the capability to perform shear cell testing (discussed in Chapter 8) as well as making
compressibility and permeability measurements.

(2) Often the rotating blade is passed through the bed a couple of times to condition the bed prior
to making energy measurements. This feature puts the powder in a more consistent state prior
to making measurements, which is important for obtaining repeatable results. Other flowability
measurement methods, such as the loosely poured bulk density or flow through an orifice, do not
start with the powder in a well controlled, repeatable state.

(3) Powder rheometers can measure the powder behavior under various conditions. For example, the
following indices have been proposed for testing the powder in various states of packing and at
various speeds:
(a) Compaction Index (CI) := (the BFE for a consolidated sample)/BFE. The CI can range from

nearly 1 to > 40, but 2 < CI < 6 is more typical.
(b) Aeration Ratio (AR) := BFE/(the BFE for an aerated sample). The Aeration Ratio can vary

widely, with values in the range 1.5 < AR < 1000. An example of the BFE for various states
of aeration and consolidation are shown in Figure 2.18.

(c) Specific Energy (SE) := the BFE per unit mass, but for the blade moving upward through
the bed rather than downward. When moving upward through the bed, the powder is in an
unconfined state since the blade acts to lift the powder and the free surface is unconfined.

(d) Flow Rate Index (FRI) := (the BFE at a blade speed 10 times smaller than the typical BFE test
/ the BFE at the normal blade speed. For an ideal powder: FRI = 1, indicating insensitivity
to the strain rate induced by the blade. Some free flowing, coarse particles have FRI < 1.
Most powders, and all cohesive powders, have FRI > 1 with typical values of 3 < FRI < 4. At
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.

Figure 2.18. Measurements of the Basic Flowability Energy of flour and a flavoring powder
in various states of aeration and consolidation [24]

slower speeds, the powder bed tends to be more consolidated and, thus, the resistance to the
blade is greater. Figure 2.19 shows the strain rate sensitivity of glass beads of different size
classes.

(e) Stability Index (SI) := the BFE after multiple transits through the bed / the BFE for the first
transit. The stability index can examine if the powder properties change when being worked
by the blade.

Note that other types of indices have also been proposed.

2.9. Summary

The following bullet points summarize the main points from this chapter.

• Powder flow indices are not fundamental properties of a powder. They don’t fit into a modeling
framework, but they are still useful in practice for ranking of flow behavior of materials and in
empirical correlations. It is important to use/define an index with flow conditions similar to what
occurs in practice.

• Common systems used in defining and measuring indices are typically defined at low pressures,
consistent with free surface flow. Examples include:

– various angles of repose,
– the bulk density of poured and tapped powders,
– the avalanching behavior in rotating drums,
– flow through orifices, and
– the energy required to rotate and move a stirring blade through the poweder.

• Another common system for quantifying powder flow behavior, the shear cell, is described in Chap-
ter 8. Shear cells can measure properties that fit within a modeling framework, but the properties
tend to be at pressures larger than those at a free surface.
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Figure 2.19. Measurements of the Basic Flowability Energy (downward blade movement)
of glass beads of different size ranges [25].

2.10. Relevant Standards

• ASAE D274.1: Flow of Grain and Seeds Through Orifices
• ASTM D6393-14: Standard Test Method for Bulk Solids Characterization by Carr Indices
• ASTM D7481-18: Standard test methods for determining loose and tapped bulk densities of powders
using a graduated cylinder.

• ASTM B0213-20: Standard test methods for flow rate of metal powders using the Hall flowmeter
funnel

• USP 24 / NF 19: <616>Bulk and Tapped Density
• USP <1174>Powder flow.
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Given the following experimental tapped bulk density data for Ti64 Grade 23 particles: 
a. Fit the data using a curve of the form (Lumay et al., 2012), 

𝜌!,# = 𝜌!,$ −
𝜌!,$ − 𝜌!,%

1 + ln(1 + 𝑛 𝜏⁄ ) 

Report the values for 𝜌!,%, 𝜌!,$, and 𝜏. 
b. Fit the data using a curve of the form (Kawakita and Lüdde, 1971, re-arranged expression), 

𝜌!,# = 𝜌!,% -1 −
𝑛𝑏/1 − 𝜌!,% 𝜌!,$⁄ 0

𝑛𝑏 + 1 1
&'

 

Report the values for 𝜌!,%, 𝜌!,$,	and 𝑏. 
c. Fit the data using a curve of the form (Philippe and Bideau, 2002), 

𝜌!,# = 𝜌!,$ − /𝜌!,$ − 𝜌!,%0 exp 7−8
𝑛
𝑛∗9

)
: 

Report the values for 𝜌!,%, 𝜌!,$, 𝑛∗, and 𝑚. 
 

d. On the same figure, plot the experimental data, each of the curve fits, and their asymptotic values. 
e. Calculate the number of taps required to reach 99% of the asymptotic bulk density value. 
f. Calculate the Hausner ratio  and compressibility using each fit and provide a qualitative description of the 

expected flow behavior. 
Note that it may help your fitting algorithm converge if estimates of the parameter values are provided as a 
starting point. 
 

number of 
taps, n [-] 

bulk density, 
𝝆𝒃 [g/cm3] 

0 2.4038 
5 2.4988 
10 2.5259 
15 2.5423 
20 2.5530 
25 2.5625 
50 2.5915 
100 2.6275 
150 2.6499 
200 2.6683 
250 2.6827 
300 2.6959 
350 2.7056 
400 2.7149 
450 2.7215 
500 2.7296 
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SOLUTION: 
Using the Python code provided at the end of this solution, for the Lumay et al. (2012) fit, 

/𝜌!,%, 𝜌!,$, 𝜏0 = 82.427 +
,-! , 2.810

+
,-! , 32.6279. (1) 

𝑛.. = 10099491. (2) 
Using these data, the Hausner ratio and compressibility values are, 

𝐻𝑅 = /",$
/",%

  =>  𝐻𝑅 = 1.16, (3) 

comp = 100% ∗ M/",$&/",%
/",$

N  =>  comp = 13.6% . (4) 

For these Hausner ratio and compressibility values, the qualitative flow behavior is expected to be good. 
 
For the Kawakita and Lüdde (1971) fit,  

/𝜌!,%, 𝜌!,$, 𝑏0 = 82.439 +
,-! , 2.725

+
,-! , 0.0339. (1) 

𝑛.. = 317. (2) 
Using these data, the Hausner ratio and compressibility values are, 

𝐻𝑅 = /",$
/",%

  =>  𝐻𝑅 = 1.12, (3) 

comp = 100% ∗ M/",$&/",%
/",$

N  =>  comp = 10.5% . (4) 

For these Hausner ratio and compressibility values, the qualitative flow behavior is expected to be good. 
 
For the Philippe and Bideau (2002) fit,  

/𝜌!,%, 𝜌!,$, 𝑛∗, 𝑚0 = 82.403 +
,-! , 3.014

+
,-! , 1179.2, 0.3159. (1) 

𝑛.. = 38973. (2) 
Using these data, the Hausner ratio and compressibility values are, 

𝐻𝑅 = /",$
/",%

  =>  𝐻𝑅 = 1.25, (3) 

comp = 100% ∗ M/",$&/",%
/",$

N  =>  comp =20.2% . (4) 

For these Hausner ratio and compressibility values, the qualitative flow behavior is expected to be passible. 
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The Lumay (2012) and Kawakita and Lüdde (1971) fits give similar predictions over the data range, but don’t fit the 
data very well.  The Lumay asymptotic value is approximately 3% larger than the Kawakita and Lüdde value and, 
thus, the Hausner ratio and compressibility values are similar (both predict good flow behavior).  The number of 
taps required to reach 99% of the asymptotic bulk density is vastly different, however.  The Lumay fit requires over 
10 million taps to reach this value while the  Kawakita and Lüdde fit requires less than 400 taps.   
 
The Philippe and Bideau (2002) fit is much better than the other two fits.  The asymptotic bulk density is the largest 
of the three values and predicts passible flow behavior (consistent with the larger change in bulk density).  The 
number of taps required to reach 99% of the asymptotic bulk density is approximately 39000. 
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The following plot is used to estimate the parameters for the Kawakita and Lüdde curve fit. When the data are 
plotted in the following form, 

𝑛
𝐶#
=
𝑛
𝑎 +

1
𝑎𝑏 

where, 

𝐶# =
𝜌!,# − 𝜌!,%

𝜌!,#
		and		𝑎 =

𝜌!,$ − 𝜌!,%
𝜌!,$

		 

a straight line is expected with a slope of 1/𝑎 and intercept of 1/(𝑎𝑏).  These values are used in the initial 
estimates in the fitting algorithm.  

 

 
 
The following plot is used to estimate the parameters for the Philippe and Bideau curve fit.  When the Philippe and 
Bideau fit is re-arranged in the following form 

ln -lnU
𝜌!,$ − 𝜌!,%
𝜌!,$ − 𝜌!,#

V1 = 𝑚 ln𝑛 −𝑚 ln𝑛∗ 

the data are expected to fall on a straight line with a slope of 𝑚 and an intercept of −𝑚 ln𝑛∗.  These values are 
used as initial estimates in the fitting algorithm. 
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The following Python code was used to perform the fitting, calculations, and making the plots. 
# PowderFlowIndices_01.py 
 
import matplotlib.pyplot as plt 
import numpy as np 
from scipy.optimize import curve_fit 
 
def LineFit(n, m, b): 
    # A fit to a line with slope m and intercept b. 
    return(m*n + b) 
 
def Lumay_etal(n, rhob_0, rhob_inf, tau): 
    # Curve fit of Lumay et al. (2012). 
    # Returns rhob_n. 
    return(rhob_inf - (rhob_inf - rhob_0)/(1 + np.log(1 + n/tau))) 
 
def Kawakita_and_Ludde(n, rhob_0, rhob_inf, b): 
    # Curve fit of Kawakita and Ludde (1971), re-arranged form. 
    # Returns rhob_n. 
    return(rhob_0/(1-(n*b*(1-rhob_0/rhob_inf))/(n*b+1))) 
 
def Philippe_and_Bideau(n, rhob_0, rhob_inf, nstar, m): 
    # Curve fit of Philippe and Bideau (2002). 
    # Returns rhob_n. 
    return(rhob_inf - (rhob_inf - rhob_0)*np.exp(-(n/nstar)**m)) 
 
def HR_FlowBehavior(HR): 
    # A function to determine the qualitative flow behavior from the 
    # Hausner ratio. 
    if (HR <= 1.11): 
        return('excellent') 
    elif (HR <= 1.18): 
        return('good') 
    elif (HR <= 1.25): 
        return('fair') 
    elif (HR <= 1.33): 
        return('passable') 
    elif (HR <= 1.45): 
        return('poor') 
    elif (HR <= 1.59): 
        return('very poor') 
    else: 
        return('exceedingly poor') 
     
# The bulk density vs. number of taps data: [tap number, bulk 
# density]. Units of bulk density are g/cm^3. 
data = np.array([[0, 2.4038], 
                 [5, 2.4988], 
                 [10, 2.5259], 
                 [15, 2.5423], 
                 [20, 2.5530], 
                 [25, 2.5625], 
                 [50, 2.5915], 
                 [100, 2.6275], 
                 [150, 2.6499], 
                 [200, 2.6683], 
                 [250, 2.6827], 
                 [300, 2.6959], 
                 [350, 2.7056], 
                 [400, 2.7149], 
                 [450, 2.7215],                  
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                 [500, 2.7296]]) 
n = data[:,0]  # number of taps 
rhob = data[:,1]  # bulk density [kg/m^3] 
n_fit = np.linspace(0, max(n), 1000) # used for the fits 
 
# Plot the data. 
plt.figure(1) 
plt.plot(n, rhob, 'ko')  # plot the provided data. 
 
# Fit the data using the Lumay et al. (2012) curve fit.  Provide 
# initial estimates of the parameters to the fitting algorithm. 
rhob_0_est = rhob[0]  # Using the first data point. 
rhob_inf_est = 1.3*rhob[0]  # Assuming HR = 1.3. 
tau_est = (rhob_inf_est - rhob_0_est)/((rhob[1]-rhob[0])/(n[1]-n[0])) 
popt, pcov = curve_fit(Lumay_etal, n, rhob, p0=(rhob_0_est, rhob_inf_est, tau_est)) 
rhob_0, rhob_inf, tau = popt  # actual fitting parameters 
 
print('Lumay et al. (2012):') 
print('Estimated:  (rhob_0, rhob_inf, tau) = (%.3f g/cm^3, %.3f g/cm^3, %.3f)' % 
(rhob_0_est, rhob_inf_est, tau_est)) 
print('Actual:  (rhob_0, rhob_inf, tau) = (%.3f g/cm^3, %.3f g/cm^3, %.3f)' % (rhob_0, 
rhob_inf, tau)) 
 
# Calculate the number of taps required to reach 0.99 of the asymptotic value. 
n_99 = tau*(np.exp(99-100*rhob_0/rhob_inf)-1)  
print('n_0.99 = %d' % n_99) 
 
# Print the Hausner ratio and compressibility. 
HR = rhob_inf/rhob_0 
comp = 100*((rhob_inf - rhob_0)/rhob_inf) 
print('(HR, comp) = (%.3f, %.3f perc)' % (HR, comp)) 
print('Flow behavior is %s.' % HR_FlowBehavior(HR)) 
print('\n') 
 
# Plot the fit. 
plt.figure(1) 
plt.plot(n_fit, Lumay_etal(n_fit, rhob_0, rhob_inf, tau), 'b-', label='Lumay et al. 
(2012)') 
plt.axhline(y=rhob_inf, color='blue', linestyle='--')  # asymptotic value 
 
##### 
 
# Fit the data using the re-arranged Kawakita and Ludde (1971) curve 
# fit.  First, determine estimates for the parameters using the 
# original form of the Kawakita and Ludde fit. 
rhob_0_est = rhob[0]  # estimated initial bulk density 
#  Calculate C_n. Note that the first data point is removed to avoid a NAN value. 
C_n = np.divide((rhob[1:] - rhob_0_est), rhob[1:]) 
LHS = np.divide(n[1:], C_n)  # evaluate n/C_n 
popt, pcov = curve_fit(LineFit, n[1:], LHS)  # fit the data 
slope, intercept = popt 
a = 1/slope 
b_est = 1/(a*intercept) 
rhob_inf_est = rhob_0_est/(1-a) 
 
# Plot the intermediate figure used in estimating the parameters. 
plt.figure(2) 
plt.plot(n[1:], LHS, 'ko') 
plt.plot(n[1:], LineFit(n[1:], slope, intercept), 'k-') 
plt.xlabel('number of taps, $n$ [-]') 
plt.ylabel('$n/C_n$ [-]') 
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# Now fit the data using the re-arranged Kawakita fit. 
popt, pcov = curve_fit(Kawakita_and_Ludde, n, rhob, p0=(rhob_0_est, rhob_inf_est, b_est)) 
rhob_0, rhob_inf, b = popt  # actual fitting parameters 
print('Kawakita and Ludde (1971) [re-arranged fit]:') 
print('Estimated:  (rhob_0, rhob_inf, b) = (%.3f g/cm^3, %.3f g/cm^3, %.3f)' % 
(rhob_0_est, rhob_inf_est, b_est)) 
print('Actual:  (rhob_0, rhob_inf, b) = (%.3f g/cm^3, %.3f g/cm^3, %.3f)' % (rhob_0, 
rhob_inf, b)) 
 
# Calculate the number of taps required to reach 0.99 of the asymptotic value. 
n_99 = 100/b*(0.99*rhob_inf/rhob_0-1) 
print('n_0.99 = %d' % n_99) 
 
# Print the Hausner ratio and compressibility. 
HR = rhob_inf/rhob_0 
comp = 100*((rhob_inf - rhob_0)/rhob_inf) 
print('(HR, comp) = (%.3f, %.3f perc)' % (HR, comp)) 
print('Flow behavior is %s.' % HR_FlowBehavior(HR)) 
print('\n') 
 
# Plot the fit. 
plt.figure(1) 
plt.plot(n_fit, Kawakita_and_Ludde(n_fit, rhob_0, rhob_inf, b), 'r-', label='Kawakita and 
Ludde (1971) (re-arranged fit)') 
plt.axhline(y=rhob_inf, color='red', linestyle='--')  # asymptotic value 
 
##### 
 
# Fit the data using the Philippe and Bideau (2002) curve fit. 
# First find estimates for the fit parameters. 
rhob_0_est = rhob[0] 
rhob_inf_est = 1.3*rhob_0_est 
LHS = np.log(np.log((rhob_inf_est - rhob_0_est)/(rhob_inf_est-rhob[1:])))  # avoid the 
first point to avoid a NAN value 
popt, pcov = curve_fit(LineFit, np.log(n[1:]), LHS)  # avoid the first point for n to 
avoid a NAN value 
slope, intercept = popt 
m_est = slope 
nstar_est = np.exp(-intercept/m_est) 
# Plot the intermediate figure used in estimating the parameters. 
plt.figure(3) 
plt.plot(np.log(n[1:]), LHS, 'ko') 
plt.plot(np.log(n[1:]), LineFit(np.log(n[1:]), slope, intercept), 'k-') 
plt.xlabel(r'ln(number of taps), $\ln(n)$ [-]') 
plt.ylabel(r'$\ln\left(\ln\left(\frac{\rho_{b,\infty}-\rho_{b,0}}{\rho_{b,\infty}-
\rho_{b,n}}\right)\right)$ [-]') 

 
# Now fit the actual curve. 
popt, pcov = curve_fit(Philippe_and_Bideau, n, rhob, p0=(rhob_0_est, rhob_inf_est, 
nstar_est, m_est)) 
rhob_0, rhob_inf, nstar, m = popt  # actual fitting parameters 
 
print('Philippe and Bideau (2002):') 
print('Estimated:  (rhob_0, rhob_inf, nstar, m) = (%.3f g/cm^3, %.3f g/cm^3, %.3f, %.3f)' 
% (rhob_0_est, rhob_inf_est, nstar_est, m_est)) 
print('Actual:  (rhob_0, rhob_inf, nstar, m) = (%.3f g/cm^3, %.3f g/cm^3, %.3f, %.3f)' % 
(rhob_0, rhob_inf, nstar, m)) 
 
n_99 = nstar*(np.log(100*(1-rhob_0/rhob_inf)))**(1/m) 
print('n_0.99 = %d' % n_99) 
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# Print the Hausner ratio and compressibility. 
HR = rhob_inf/rhob_0 
comp = 100*((rhob_inf - rhob_0)/rhob_inf) 
print('(HR, comp) = (%.3f, %.3f perc)' % (HR, comp)) 
print('Flow behavior is %s.' % HR_FlowBehavior(HR)) 
print('\n') 
 
# Plot the fit. 
plt.figure(1) 
plt.plot(n_fit, Philippe_and_Bideau(n_fit, rhob_0, rhob_inf, nstar, m), 'g-', 
label='Philippe and Bideau (2002)') 
plt.axhline(y=rhob_inf, color='g', linestyle='--')  # asymptotic value 
 
# Add features to the plot. 
plt.figure(1) 
plt.xlabel(r'number of taps, $n$ [-]') 
plt.ylabel(r'bulk density, $\rho_b$ [g/cm$^3$]') 
plt.legend()  # show a legend 
 
plt.show()  # show the plots 

 
 
Running the code gives the following output: 

>> python3 ./PowderFlowIndices_01.py 
Lumay et al. (2012): 
Estimated:  (rhob_0, rhob_inf, tau) = (2.404 g/cm^3, 3.125 g/cm^3, 37.955) 
Actual:  (rhob_0, rhob_inf, tau) = (2.427 g/cm^3, 2.810 g/cm^3, 32.627) 
n_0.99 = 10099491 
(HR, comp) = (1.158, 13.643 perc) 
Flow behavior is good. 
 
 
Kawakita and Ludde (1971) [re-arranged fit]: 
Estimated:  (rhob_0, rhob_inf, b) = (2.404 g/cm^3, 2.737 g/cm^3, 0.035) 
Actual:  (rhob_0, rhob_inf, b) = (2.439 g/cm^3, 2.725 g/cm^3, 0.033) 
n_0.99 = 317 
(HR, comp) = (1.117, 10.494 perc) 
Flow behavior is good. 
 
 
Philippe and Bideau (2002): 
Estimated:  (rhob_0, rhob_inf, nstar, m) = (2.404 g/cm^3, 3.125 g/cm^3, 2604.848, 0.304) 
Actual:  (rhob_0, rhob_inf, nstar, m) = (2.403 g/cm^3, 3.014 g/cm^3, 1179.250, 0.315) 
n_0.99 = 38974 
(HR, comp) = (1.254, 20.246 perc) 
Flow behavior is passable. 
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CHAPTER 3

A Review of Stress and Mohr’s Circles

The analysis of powder storage and flow involves the calculation of stresses, typically in two dimensional
(planar and axi-symmetric) geometries. In preparation for these analyses, we’ll review the following topics
in this chapter:

• review of stress basics,
• two-dimensional Mohr’s circles,
• principal stresses and principal planes, and
• plane stress and plane strain.

3.1. Review of Stress Basics

The reader is assumed to already have had some exposure to the concept of stress so only a brief review of
some basic items is presented here. Any introductory text on strength of materials or solid mechanics will
have further information on stresses, strains, and Mohr’s circle analysis.

(1) A stress is a force magnitude per unit area and, thus, has example units of Pa, psi, psf, or bar.
(2) Stresses act on a surface and can be categorized as being either a normal stress or a tangential

(aka shear) stress. Stresses are often written using the Greek symbol σ, although shear stresses are
frequently written using a τ .

(3) The value of a stress at a point depends on the orientation of the (infinitesimally small) surface on
which it acts. The directions are specified using the three ortho-normal components of the coordinate
system, e.g., (x, y, z), (r, θ, z), or, more generally, (1, 2, 3). The sign convention for stresses consists
of two subscripts, e.g., σij . The first subscript (i) identifies the direction of the unit normal for the
surface on which the stress acts while the second subscript (j) identifies the direction of the stress
acting on the surface. For example, the stress σyz is a stress acting on a surface with a normal
vector pointing in the y direction with the stress pointing in the z direction. Normal stresses have
repeated subscripts, e.g., σzz acts on a surface with a z unit normal with the stress pointing in the
z direction, while shear stresses have different indices, e.g., τ23 acts on a surface with a normal in
the 2 direction and points in the 3 direction. Examples of normal and shear stresses on a small
cube of material are shown in Figure 3.1.

(4) In these notes, the sign convention for the stresses is as follows: (1) Positive normal stresses cause
compression of the material element, i.e., act inward on the material element. (2) Positive shear
stresses on a plane cause counter-clockwise rotation of the element about the plane’s normal vector,
e.g., positive shear stresses in the 1-2 plane cause counter-clockwise rotation about the 3 coordinate
direction. Positive stresses on “positive” and “negative” cube faces are shown in Figure 3.1. This
sign convention is often used in the soil mechanics literature.

(5) It can be shown from rotational equilibrium that the shear stresses using the sign convention stated
in the previous note are anti-symmetric, i.e., τij = −τij (i ̸= j).
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Figure 3.1. Left: Positively-oriented normal and shear stresses on cube faces with
positively-oriented unit normals. Right: Positively-oriented normal and shear stresses on
cube faces with negatively-oriented unit normals. The red arrows are the coordinate direc-
tions.
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Figure 3.2. The wedge element used in the derivation of the two-dimensional Mohr’s circle.
A positive normal (σ) and shear (τ) stress are shown on the inclined surface.

3.2. The Mohr’s Circle for a Two-dimensional Stress State

A Mohr’s Circle is a graphical method for showing all of the normal and shear stress combinations at a
point, depending on the orientation of the surface on which the stresses act. Although Mohr’s circles can
be generated for three-dimensional stress states, in these notes we’ll only consider Mohr’s circles for two-
dimensional stress states.

Consider a force balance on the small wedge of material as shown in Figure 3.2. We wish to determine the
normal and tangential stresses, σ and τ , acting on the surface area, A, which is inclined from the horizontal
by an angle θ. Balancing forces on the element in the 1 and 2 directions, respectively,∑

F1 = 0 = (σ11) (A cos θ)− (σ21) (A sin θ)− (σ cos θ)(A) + (τ sin θ)(A), (3.1)∑
F2 = 0 = −(σ22) (A sin θ)− (σ12) (A cos θ) + (σ sin θ)(A) + (τ cos θ)(A). (3.2)

Now solve for σ and τ . First, multiply the first equation by − cos θ and add it to the second equation
multiplied by sin θ. Also divide through by the area A and note that σ21 = −σ12,

0 = −σ11 cos
2 θ−σ22 sin

2 θ − σ12 sin θ cos θ − σ12 cos θ sin θ

+ σ cos2 θ + σ sin2 θ − τ sin θ cos θ + τ cos θ sin θ.
(3.3)

Now make use of trigonometric identities and simplify,

σ = σ11 cos
2 θ + σ22 sin

2 θ + σ12(2 sin θ cos θ), (3.4)

= σ11

[
1

2
(1 + cos(2θ))

]
+ σ22

[
1

2
(1− cos(2θ)

]
+ σ12 sin(2θ), (3.5)

σ =

(
σ11 + σ22

2

)
+

(
σ11 − σ22

2

)
cos(2θ)) + σ12 sin(2θ). (3.6)

Similarly, multiply the first equation by sin θ and add it to the second equation multiplied by cos θ. Also
divide through by the area A, use σ21 = −σ12, and make use of trigonometric identities,

τ = −σ11 cos θ sin θ + σ22 sin θ cos θ + σ12(cos
2 θ − sin2 θ), (3.7)

τ = −
(
σ11 − σ22

2

)
sin(2θ) + σ12 cos(2θ). (3.8)

Combine the expressions for the normal and tangential stresses in the following manner,[
σ − 1

2
(σ11 + σ22)

]2

+ τ2 =
1

4
(σ11 − σ22)

2 cos2(2θ) + σ12 (σ11 − σ22) sin(2θ) cos(2θ) + σ2
12 sin

2(2θ)

+
1

4
(σ11 − σ22)

2 sin2(2θ)− σ12 (σ11 − σ22) sin(2θ) cos(2θ) + σ2
12 cos

2(2θ).

(3.9)
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Figure 3.3. The Mohr’s circle (left) for the two-dimensional stress state shown at the
bottom right.

Simplifying gives, [
σ −

(
σ11 + σ22

2

)]2
+ τ2 =

(
σ11 − σ22

2

)2

+ σ2
12. (3.10)

This relation is the equation of a circle and is referred to as a Mohr’s circle (Figure 3.3). The center and
radius of the circle on a (σ, τ) plot are,

center = (p, 0) =

(
σ11 + σ22

2
, 0

)
, (3.11)

radius = R =

√(
σ11 − σ22

2

)2

+ σ2
12. (3.12)

It’s important to recognize that the Mohr’s circle shows all of the normal and shear stress combinations
corresponding to different angles θ on the material element.

Notes:

(1) Mohr’s circles are used extensively in the analysis of two-dimensional stress states. It’s important
for you to understand how to determine normal and shear stresses and relative orientations from a
Mohr’s circle.
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Figure 3.4. A Mohr’s circle showing the location of the major and minor principal stresses.

(2) Angles in the Mohr’s circle are oriented in the same relative direction as angles in the “real world”,
but are twice the magnitude. For example, in Figure 3.3 (bottom right) the plane on which (σ, τ)
acts is rotated an angle θ (in the “real world”) in the clockwise direction from the plane on which
(σ11, σ12) acts. Thus, in the Mohr’s circle, the stress state (σ, τ) is rotated an angle 2θ in the
clockwise direction from the stress state (σ11, σ12). Note that since the stress states (σ11, σ12) and
(σ22, σ21) are at right angles in the real world, they are located 180◦ apart in the Mohr’s circle (and
σ21 = −σ12).

(3) The hydrostatic pressure, p, is defined as the average of the normal stresses,

p :=
σ11 + σ22

2
, (3.13)

and (p, 0) is the center of the Mohr’s circle.
(4) Using the Mohr’s circle, the magnitude of the maximum shear stress, τmax, is equal to the Mohr’s

circle radius,

|τmax| = R, (3.14)

where R is given in Eq. (3.12).

It can be much easier to evaluate stresses and surface orientations using the geometry of a Mohr’s circle
rather than manipulating Eqs. (3.6) and (3.8).

3.3. Principal Stresses and Principal Planes

A principal plane is a plane on which there is only a normal stress, i.e., the tangential stress is zero on a
principal plane. The normal stress on a principal plane is called a principal stress.

Notes:
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(1) From the Mohr’s circle (Figure 3.4) we observe that the maximum and minimum normal stresses
are principal stresses. The values of the two principal stresses are,

σ1 = p+R, (3.15)

σ2 = p−R, (3.16)

where σ1 is the larger of the two values, known as the major principal stress, and σ2 is the smaller
and is known as the minor principal stress.

(2) To find the orientation of the plane on which σ1 acts relative to the plane on which (σ11, σ12) acts,
we can use the Mohr’s circle (Figure 3.4) to get the angle,

tan(2λ) =
σ12

σ11 − p
. (3.17)

Thus, in the real world the major principal stress acts on a plane rotated an angle λ in the clockwise
direction from the plane on which (σ11, σ12) acts. Similarly, the plane on which the minor principal
stress acts is also at an angle λ (real world; 2λ on the Mohr’s circle) in the clockwise direction from
the plane on which the stress state (σ22, σ21) acts.

(3) The major and minor principal stresses are located 180◦ apart in the Mohr’s circle and, thus, are
90◦ apart in the real world.

(4) Since the angle between the maximum shear stress and a principal stress is 90◦ in the Mohr’s circle,
it means that the maximum shear stress occurs on a plane that’s oriented 45◦ from a principal plane
in the real world.
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A material element adjacent to a wall, inclined at an angle of 𝛼 = 30° with respect to the vertical, is subject to the 
2D stress state (𝜎!!, 𝜎"", 𝜎!") = (10, 6, −1)	kPa. 
a. Draw the 2D Mohr’s circle corresponding to this stress state and identify the hydrostatic pressure and the 

stress states (𝜎!!, 𝜎!") and (𝜎"", 𝜎"!). 
b. Determine the normal and shear stresses (𝜎, 𝜏) the wall exerts on the element using the Mohr’s circle. 
c. Determine the major and minor principal stresses. 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
The hydrostatic pressure acting on the element (and the center of the Mohr’s circle) is, 

𝑝 = !
"(𝜎!! + 𝜎"")  =>  𝑝 = 8	kPa, (1) 

where 𝜎!! = 10	kPa and 𝜎"" = 6	kPa. 
 
The radius of the Mohr’s circle is, 

𝑅 = 6!
#(𝜎!! − 𝜎"")" + 𝜎!"

"   =>  𝑅 = 2.24	kPa, (2) 

where 𝜎!" = −1	kPa. 
 
The acute angle between the stress state (𝜎"", 𝜎"!) and the horizontal axis is (refer to the Mohr’s circle), 

tan(2𝜆) = #"!
$%#""

  =>  2𝜆 = 26.6°. (3) 

 
The angle between stress state (𝜎"", 𝜎"!) and stress state (𝜎, 𝜏) is, 

2𝛼 = 60°  (in the clockwise direction). (4) 
 

From the Mohr’s circle geometry, 
𝜎 = 𝑝 − 𝑅 cos(2𝜆 − 2𝛼)  =>  𝜎 = 6.13	kPa, (3) 
𝜏 = 𝑅 sin(2𝜆 − 2𝛼)  =>  𝜏 = −1.23	kPa. (4) 

 
The major and minor principal stresses are, 

𝜎! = 𝑝 + 𝑅  =>  𝜎! = 10.2	kPa, (5) 
𝜎" = 𝑝 − 𝑅  =>  𝜎" = 5.76	kPa. (6) 

 
Note that the angle from the plane on which (𝜎!!, 𝜎!") acts and the major principal stress plane is, 

2𝜆 = 26.6°. (7) 
 

 
  

𝜎!!	

𝜎""	

𝜎!"	

𝜎"! = −𝜎!"	

𝜎	
𝜏	

𝛼	
1	

2	
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A plot of the Mohr’s circle follows. 

 
 
The following Python code was used to generate the Mohr’s circle and perform the calculations. 

# stress_03.py 
 
import matplotlib.pyplot as plt 
import matplotlib.patches as patches 
import numpy as np 
 
# The given stress state. 
sigma_11 = 10  # kPa 
sigma_22 = 6  # kPa 
sigma_12 = -1  # kPa 
alpha_deg = 30  # deg, real world wall angle from the vertical 
sigma_21 = -sigma_12  # the other shear stress 
alpha_rad = np.radians(alpha_deg)  # convert to radians 
 
# Set up the plot. 
figure, axes = plt.subplots() 
 
# Determine the hydrostatic pressure and Mohr's circle radius. 
p = 0.5*(sigma_11 + sigma_22) 
R = np.sqrt(0.25*(sigma_11 - sigma_22)**2 + sigma_12**2) 
print('p = %.3f kPa' % p) 
print('R = %.3f kPa' % R) 
 
# Find the real-world angle lambda between (sigma_22, sigma_21) and the horizontal axis. 
lambda_rad = 0.5*np.arctan(sigma_21/(p - sigma_22)) 
lambda_deg = np.degrees(lambda_rad) 
print('2*lambda = %.3f deg' % (2*lambda_deg)) 
 
# Determine the normal and shear stresses exerted by the wall. 
sigma = p - R*np.cos(2*lambda_rad - 2*alpha_rad) 
tau = R*np.sin(2*lambda_rad - 2*alpha_rad) 
print('(sigma, tau) = (%.3f, %.3f) kPa' % (sigma, tau)) 
 
# Determine the major and minor principal stresses. 
sigma_1 = p + R 
sigma_2 = p - R 
print('(sigma_1, sigma_2) = (%.3f, %.3f) kPa' % (sigma_1, sigma_2)) 
 
# Draw the Mohr's circle centered at (p, 0) with radius R. 
MohrsCircle = patches.Circle((p, 0), R, fill=False, linewidth=2) 
axes.set_aspect(1)  # Set the aspect ratio to one. 
axes.add_patch(MohrsCircle)  # Add the Mohr's circle to the plot. 
 
# Plot the location of the hydrostatic pressure. 
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plt.plot(p, 0, color='k', marker='o') 
plt.annotate(r'$(p, 0)$', (p, 0), textcoords='offset points', xytext=(0,10), ha='center')  # Label the 
location. 
 
# Plot the location of (sigma_11, sigma_12). 
plt.plot(sigma_11, sigma_12, color='k', marker='o') 
plt.annotate(r'$(\sigma_{11}, \sigma_{12})$', (sigma_11, sigma_12), textcoords='offset points', 
xytext=(15,-15), ha='center')  # Label the location. 
 
# Plot the location of (sigma_22, sigma_21). 
plt.plot(sigma_22, sigma_21, color='k', marker='o') 
plt.annotate(r'$(\sigma_{22}, \sigma_{21})$', (sigma_22, sigma_21), textcoords='offset points', 
xytext=(-15,10), ha='center')  # Label the location. 
 
# Plot the locations of sigma_1 and sigma_2. 
plt.plot(sigma_1, 0, color='k', marker='o') 
plt.plot(sigma_2, 0, color='k', marker='o') 
plt.annotate(r'$(\sigma_1, 0)$', (sigma_1, 0), textcoords='offset points', xytext=(15,10), 
ha='center')  # Label the location. 
plt.annotate(r'$(\sigma_2, 0)$', (sigma_2, 0), textcoords='offset points', xytext=(-15,10), 
ha='center')  # Label the location. 
 
# Draw a line between the two given stress states. 
plt.plot([sigma_11, sigma_22], [sigma_12, sigma_21], color='k', linestyle='--') 
 
# Draw the angle 2*lambda from (sigma_22, sigma_21) and the minor principal stress. 
two_lambda_arc = patches.Arc([p, 0], 0.8*R, 0.8*R, angle=180-2*lambda_deg, theta1=0, 
theta2=2*lambda_deg, color='b', linestyle='-') 
axes.add_patch(two_lambda_arc) 
plt.annotate(r'$2\lambda$', (6.8, 0.2), textcoords='offset points', xytext=(0,0), ha='center', 
color='b') 
 
# Draw the angle 2*lambda from (sigma_11, sigma_12) and the major principal stres. 
two_lambda_arc = patches.Arc([p, 0], 0.8*R, 0.8*R, angle=-2*lambda_deg, theta1=0, theta2=2*lambda_deg, 
color='b', linestyle='-') 
axes.add_patch(two_lambda_arc) 
plt.annotate(r'$2\lambda$', (9.1, -0.4), textcoords='offset points', xytext=(0,0), ha='center', 
color='b') 
 
# Plot the location of (sigma, tau) 
plt.plot(sigma, tau, color='k', marker='o') 
plt.annotate(r'$(\sigma, \tau)$', (sigma, tau), textcoords='offset points', xytext=(-20,0), 
ha='center')  # Label the location. 
 
# Draw a radius from the Mohr's circle origin to (sigma, tau). 
plt.plot([p, sigma], [0, tau], color='k', linestyle='--') 
 
# Draw the angle from (sigma_22, sigma_21) to (sigma, tau). 
two_alpha_arc = patches.Arc([p, 0], 0.5*R, 0.5*R, angle=180-2*lambda_deg, theta1=0, 
theta2=2*alpha_deg, color='r', linestyle='-') 
axes.add_patch(two_alpha_arc) 
plt.annotate(r'$2\alpha$', (7.2, -0.3), textcoords='offset points', xytext=(0,0), ha='center', 
color='r') 
 
# Miscellaneous plot items. 
plt.xlabel('normal stress, $\\sigma$ (kPa)')  # Add the x-axis title. 
plt.ylabel('shear stress, $\\tau$ (kPa)')  # Add the y-axis title. 
plt.axhline(y=0, color='k', linewidth=1)  # Draw a horz line at y=0. 
plt.xlim([0, 1.1*(p+R)])  # Set the plot y-range. 
plt.show()  # Show the plot. 

 
The output from the Python code is as follows: 

>> python3 ./stress_03.py 
p = 8.000 kPa 
R = 2.236 kPa 
2*lambda = 26.565 deg 
(sigma, tau) = (6.134, -1.232) kPa 
(sigma_1, sigma_2) = (10.236, 5.764) kPa 
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Sketch the Mohr's circle for the stress state in a material that is compressed by frictionless platens applying a 
normal stress 𝜎.  The sides of the material are unconfined.  Identify the principal stresses and planes.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
The Mohr's circle passes through the origin since no stresses are applied on the unconfined sides.  The top/bottom 
and side surfaces are principal planes since no shear stresses are applied there. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

𝜎	

unconfined at the sides 

𝜎	

𝜎	

𝜎	
𝜏 

𝜎 𝜎 
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Figure 3.5. Sketches showing examples of plane stress (left) and plane strain (right).

3.4. Plane Stress and Plane Strain

Arbitrary stress states can be three-dimensional; however, there are two common geometries that result in
two-dimensional stress states for which two-dimensional Mohr’s circles can be used. When one dimension
of an object is much thinner than the other two and the loading is uniform and in the plane of the object
(Figure 3.5, left), then the object’s stress state is two-dimensional since σ33 = σ31 = σ32 = 0. This two-
dimensional stress state is called a plane stress state. The other common two-dimensional stress state occurs
when the strain (i.e., relative deformation) in one direction of an object is constant (it could be zero) and
loading is along the other two dimensions and uniform in the constant strain dimension (Figure 3.5, right).
For this case, the normal stress in the constant strain dimension can be shown to be a function of the other two
normal stresses, i.e., σ33 = f(σ11, σ22). In addition, σ31 = σ32 = 0. Thus, this state is also two-dimensional
and is called a plane strain stress state. Many geometries of interest in powder handling can be approximated
as being in plane strain and, thus, two-dimensional Mohr’s circle can be be used in their analysis.
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A wedge-shaped hopper and cylindrical bin are filled with material as shown in the following figures.  Is the 
material in these geometries in a plane stress state, plane strain state, or neither? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
Wedge-shaped hopper:  Because the geometry is planar, the material in the hopper is in a 2D plane strain 
condition.  The following strain and stresses can be reasonably assumed:  𝜖!! = 0, 𝜎!" = 𝜎!# = 0. 
 
Cylindrical bin:  Because the geometry is axi-symmetric, the material in the hopper is in a 2D plane strain condition.  
The following strain and stresses can be reasonably assumed:  𝜖$$ = 0, 𝜎$% = 𝜎$& = 0. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

g 

z 

r 
q 

1 

2 

3 
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3.5. Summary

The main points from this chapter are as follows:

(1) A stress is a force magnitude per unit area. On a given surface, normal and tangential stresses can
be specified.

(2) The conventions used for stresses in these notes are:
(a) The first subscript on the stress is the plane on which the stress acts and the second subscript

is the orientation of the stress vector.
(b) Positive normal stresses cause compression of the material element.
(c) Positive shear stresses in a plane cause counter-clockwise rotation of the material element

about the plane’s normal vector, e.g., positive shear stresses acting in the 1-2 plane cause
counter-clockwise rotation about the 3 coordinate direction.

(3) A Mohr’s circle is a graphical representation of all of the normal and shear stress combinations on
planes with different orientations. We’ll only consider two-dimensional Mohr’s circles in these notes
since the geometries we’ll consider can be modeled as two-dimensional. Angles in a Mohr’s circle
are twice their value in the real world but are in the same relative orientation. The advantage of
using a Mohr’s circle is that the Mohr’s circle geometry and trigonometry can be easily used to find
stresses and relative orientations rather than memorizing and manipulating more formulas.

(4) The tangential stress on a principal plane is zero. The corresponding normal stress is known as a
principal stress. For a two-dimensional stress state, the larger of the two principal stresses is the
major principal stress (σ1) and the smaller is the minor principal stress (σ2).

(5) Two frequently-assumed two-dimensional stress states are plane stress and plane strain. Plane stress
typically occurs for thin objects with loading occurring in the plane. Plane strain occurs when one
dimension of the object is much larger than the other two and loading occurs along the object’s
sides and is uniform in the long dimension.
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CHAPTER 4

The Ideal Coulomb Material Model

The ideal Coulomb material model is a simple model for describing the yielding behavior of granular materials.
Although it doesn’t capture all of the complexities of real materials, it is still a good enough approximation
to give useful predictions.

4.1. Features of the Ideal Coulomb Material Model

In an ideal Coulomb material, prior to yielding the material deforms elastically, for example, as a linearly
elastic, isotropic solid. When the stress state acting on a material element (σ, τ) reaches a critical value, the
material yields (aka fails or flows) plastically. For an ideal Coulomb material in two dimensions, yielding
occurs when,

|τ | = |µσ + c|, (4.1)

where µ is the internal friction coefficient and c is the (bulk) cohesion of the material. An example of this
yield locus in the σ − τ plane is shown in Figure 4.1.

Notes:

(1) The name “Mohr-Coulomb” model is often used interchangeably with the “ideal Coulomb” model.

Figure 4.1. (left) A schematic showing a material subject to a two-dimensional, uniform
stress state and the surfaces on which yielding occurs. (right) The corresponding Mohr’s cir-
cle with the internal yield locus (IYL), internal friction coefficient (µ), cohesion (c), internal
friction angle (ϕ), and tensile strength (T ).
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(2) Yielding in a real material typically occurs within a shear band, which is approximately 10 particle
diameters thick. We model this shear band as being infinitesimally thin.

(3) In the ideal Coulomb material model, the shear stress is independent of the strain rate (speed) and
shear strain (displacement) when yielding.

(4) Yielding occurs on two planes within the material; however, the extent of yielding need not be the
same on both.

(5) The Mohr’s circle for the material’s stress state can only exist within the yield lines (no yielding,
elastic deformation) or can be tangent to the yield lines (yielding at the intersection point). The
Mohr’s circle cannot go beyond the yield lines.

(6) A cohesionless material is one for which c = 0.
(7) The internal friction angle ϕ is related to the internal friction coefficient via,

µ = tanϕ. (4.2)

(8) The tensile strength of the material, T (refer to Figure 4.1) is the maximum normal stress in tension
that the material can withstand before yielding. Note that,

T =
c

tanϕ
. (4.3)

.
(9) In real materials, the internal yield locus is seldom a straight line and can show significant curvature

as σ → 0. Many IYL data are fit well using the Warren-Spring Equation (Figure 4.2),(τ
c

)n
=
( σ
T

)
+ 1, (4.4)

where c is the cohesion, T is the tensile strength, and n ≥ 1 is a fitting parameter for the yield locus
curvature. This expression simplifies to the ideal Coulomb material yield locus when n = 1. Note
that the slope at τ = 0 is infinite when n > 1 as shown by differentiating the previous equation,

nτn−1dτ

cn
=

dσ

T
, (4.5)

dτ

dσ
=

(
cn

nT

)
1

τn−1
, (4.6)

lim
τ→0,n>1

(
dτ

dσ

)
→ ∞. (4.7)

A linear yield locus is still frequently used in analytical work because of its simplicity and because
many problems of interest, such as the stresses in large bins, are at normal stresses much greater
than zero where the IYL curvature is negligible. However, if one is modeling free surface flows which
have small normal stresses, then one should be mindful of the IYL curvature.

(10) Define the effective angle of internal friction, δ, as the angle of the Mohr’s circle tangent line passing
through the origin (Figure 4.3). This line is called the Effective Yield Locus (EYL). The effective
angle of internal friction can be related to the major and minor principal stresses,

p =
1

2
(σ1 + σ2) , (4.8)

R =
1

2
(σ1 − σ2) , (4.9)

sin δ =
R

p
, (4.10)

sin δ =
σ1 − σ2

σ1 + σ2
. (4.11)

Alternately, the previous equation may be re-arranged to give,

σ1

σ2
=

1 + sin δ

1− sin δ
. (4.12)

C. Wassgren 63 2024-06-12



Powder Storage and Flow

Figure 4.2. Internal yield loci following the Warren-Spring Equation (Eq. (4.4)). For this
plot, n = 1.6, c = 0.768 kPa, and T = 0.860 kPa.

Figure 4.3. A Mohr’s circle showing the effective yield locus (EYL) compared to the in-
ternal yield locus (IYL).

(a) For a cohesionless material, the internal friction angle and effective angle of internal friction
are identical, i.e., ϕ = δ. For cohesive materials, δ > ϕ since, from the geometry shown in
Figure 4.3,

sinϕ =
R

p+ T
and sin δ =

R

p
, (4.13)
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Material ϕ (deg)
wheat 15 - 30

wheat flour 28 - 42
granulated sugar 30 - 40

quartz sand 33 - 40
alumina 27 - 44
fly ash 25 - 35

Table 4.1. Typical values for the internal friction angle (ϕ). Data from McGlinchey [1].

Table 4.2. Typical values for the effective angle of internal friction (δ), standard deviation
of δ measurements (σsd), minimum value of δ (δmin), maximum value of δ (δmax), internal
friction angle (ϕ), standard deviation of ϕ measurements (σsd), minimum value of ϕ (ϕmin),
and maximum value of ϕ (ϕmax). Data are for a variety of metal powders. Table from
Zegzulka et al. [2].

Table 4.3. Typical values for the effective angle of internal friction (δ) for different types
of pharmaceutical material. Table from Hancock [3].

sin δ =

(
1 +

T

p

)
sinϕ. (4.14)

Note that for a cohesive material, δ has a large value when the hydrostatic pressure is small,
but asymptotes to the internal friction angle for large pressures.

(11) Typical values for the internal friction angle (ϕ) and effective angle of internal friction (δ) are shown
in Tables 4.1 – 4.3. McGlinchey [1] states, ”Angles of internal friction typically range from about
20◦ for rounded objects to about 50◦ for angular products...and cohesion varies between extremely
small values for coarse granular products to values of about 50 kPa for a stiff clay.”

4.2. The Wall Yield Locus

In addition to yielding internally, a particulate material may also yield against a wall. For an ideal Coulomb
material, the wall yield locus (WYL) can be written as,

|τ | = |µwσ + cw|, (4.15)
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Figure 4.4. An example wall yield locus (WYL). The quantity µw is the wall friction
coefficient, ϕw is the wall friction angle, cw is the wall adhesion, and Tw is the wall tensile
strength.

where µw is the material-wall friction coefficient and cw is the adhesion between the material and wall.
Figure 4.4 shows an example wall yield locus.

Notes:

(1) The wall friction coefficient is related to the wall friction angle, ϕw, via,

µw = tanϕw (4.16)

(2) A common, alternate approach to quantifying the wall yield locus is to measure the wall friction
angle, ϕw, from the origin of the σ − τ plot (Figure 4.5), similar to how the effective angle of
internal friction is defined. Using this approach, the wall friction angle decreases as the normal
stress increases, as shown in Figure 4.6.

(3) The internal yield locus (IYL) and wall yield locus (WYL) are not the same. The IYL sets the
yield limit on any plane within the material, i.e., the Mohr’s circle for any material element cannot
extend beyond the IYL. The WYL sets the yield limit only on the wall plane for a material element
adjacent to the wall. The Mohr’s circle can extend beyond the WYL for planes not aligned with
the wall.

(4) For a material element next to a wall (Figure 4.7), if the wall plane is aligned with points A, A’,
B, or B’, then yield will occur at the wall. Wall planes oriented between AA’ and BB’ won’t yield
since they lie within the WYL (green arcs in the figure). It’s not possible for the wall plane to have
an orientation between AB or A’B’ (red arcs) for a material element in static equilibrium.

(5) Since the Mohr’s circle cannot extend beyond the IYL, a WYL outside of the IYL envelope can
be interpreted as yielding in the material against a very thin layer of material stuck to the wall
(Figure 4.8). Thus, effectively the WYL cannot extend beyond the IYL. We call a wall for which
the WYL and IYL are the same a fully rough wall and ϕw = ϕ and cw = c.
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Figure 4.5. A common, alternate approach to presenting the wall yield locus is to measure
the wall friction angle from the origin.

Figure 4.6. Measured wall friction angles (ϕw) as a function of wall normal stress (σ) for a
typical active pharmaceutical powder blend. The vertical dashed line is a normal stress of 622
Pa, for which the wall friction angle is 19.1◦. Wall friction angles for pharmaceutical powders
against stainless steel 2B surfaces at 622 Pa are typically in the range 10◦ < ϕw < 30◦ [3].

4.3. Active and Passive Stress States

Consider a block on a frictional inclined plane as shown in Figure 4.9. A force P is applied to the block and
acts in the uphill direction. The block will remain static as long as,∑

Fon plane = 0 = P −mg sin θ − µ(mg cos θ) (block about to slip uphill), (4.17)∑
Fon plane = 0 = P −mg sin θ + µ(mg cos θ) (block about to slip downhill), (4.18)
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Figure 4.7. A Mohr’s circle for a material element adjacent to the wall. For this element,
the material does not yield internally since the Mohr’s circle doesn’t touch the IYL. If the
wall plane has an angle coinciding with points A, B, A’, or B’, then the element will yield
against the wall. If the wall plane has an angle between AA’ or BB’ (green arcs), then the
element will not yield against the wall. Wall angles in the range AB or A’B’ (red arcs) are
not possible.

Figure 4.8. (left) An illustration of a fully rough wall where a thin layer of material is
stuck to the wall and the material fails internally adjacent to the wall. (right) A Mohr’s
circle for a fully rough wall.
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Figure 4.9. A static block on a frictional inclined plane.

Figure 4.10. Powder contained between two frictionless containing walls. In the left system
the powder is in active case since the powder is about to move in the opposite direction to
the lateral force. The right system is in a passive state since the powder is about to move in
the same direction as the applied force.

∴ mg(sin θ − µ cos θ) ≤ P ≤ mg(sin θ + µ cos θ). (4.19)

The lower limit corresponds to when the block is just about to slide downward on the incline. This case is
called the active state since the block is moving in the direction opposite to the applied force. The upper limit
corresponds to when the block is just about to move upward on the incline. This case is called the passive
state since the block is moving in the same direction as the applied force. Without knowing the mechanical
behavior of the block and surface, we can only determine the force P for these limiting cases.

Similar to the block, powder can also be static over a range between active and passive states. Consider a two-
dimensional system with powder contained between two frictionless confining walls as shown in Figure 4.10.
Since the walls are frictionless, the applied normal stresses are principal stresses. For this example, let σvert,
which applies the driving force, remain constant, similar to how the block’s weight in the previous example
remains constant. In the case shown on the left-hand side of Figure 4.10, the powder is in an active state
since the force required to hold the powder static is applied in the direction opposite to the powder’s incipient
movement. For this case, σhorz < σvert. Now consider the right-hand system. For this case the powder is
in a passive state since the lateral force acts in the same direction as the powder just prior to yielding. For
this case, σhorz > σvert. Between these two values for σhorz the powder remains static. The Mohr’s circles
corresponding to the active and passive states are shown in Figure 4.11. For the given σvert, the powder is
static for horizontal stresses between σhorz and σ′

horz. It’s also not possible to have horizontal stresses smaller
than σhorz or larger than σ′

horz for the given σvert since those would create Mohr’s circles that extend beyond
the internal yield locus.
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Figure 4.11. The Mohr’s circles corresponding to the active and passive states shown in
Figure 4.10.

4.4. Janssen’s Constant

Now let’s define a quantity known as Janssen’s Constant, K, (named after H. Janssen [4], who investigated
powder stresses in bins), which is the ratio of the lateral to vertical stress,

K :=
σlat

σvert
. (4.20)

In a particulate material, vertical stresses can be converted into lateral stresses via particle-particle contacts.
For example, Figure 4.12 shows a photograph of photo-elastic disks compressed vertically. The polarization
of light passing through a photo-elastic disk changes in response to stresses applied to the disk. In this
image, disks are brighter when the internal stresses are larger and, thus, force chains, i.e., the paths along
which forces are transmitted, can be observed. The image shows that some of the vertically applied force
gets converted into a lateral force. The sketch in the figure illustrates how a vertical force on a particle can
eventually become a lateral stress on a boundary due to the geometry of the contacts.

Notes:

(1) When the lateral and vertical stresses are principal stresses as in the previous section’s example,

KA =
σhorz

σvert
=

σ2

σ1
< 1, (4.21)

KP =
σ′
horz

σvert
=

σ1

σ2
> 1, (4.22)

where σ1 and σ2 are, respectively, the major and minor principal stresses. Making use of Eq. (4.12),

KA =
1− sin δA
1 + sin δA

< 1, (4.23)

KP =
1 + sin δP
1− sin δP

> 1, (4.24)

where δA and δP are the effective angles of internal friction for the active and passive cases. It’s
important to note that these expressions are specifically for the case when the vertical and lateral
stresses are principal stresses. In general, that will not be the case, as is discussed in a following
note.

(2) Active values for Janssen’s constant are typically between 0.4 and 0.6. If no other information is
given, it’s reasonable to assume a value of KA = 0.4 as a rough estimate.
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Figure 4.12. An image showing the internal stresses within photo-elastic disks as they are
compressed. The larger the internal stress, the brighter the disk. The photo shows the force
paths in the bulk material and demonstrates how loads applied in the vertical direction can
result in loads in the lateral direction. The illustration at the bottom right also demonstrates
how a vertical force on a particle can result in a lateral force against a vertical wall.

Figure 4.13. A Mohr’s circle for a material element in the active state adjacent to a
frictional, vertical wall. Recall that for the active state, σzz,w > σrr,w. The element is
assumed to be yielding internally and at the wall.

(3) The recommendation by Eurocode 1 [5] for estimating the active Janssen’s constant is to use the
empirical relation,

KA = 1.1(1− sinϕ), (4.25)

where ϕ is the internal friction angle. The recommendation by the German Institute for Standard-
ization [6], also based on empirical data is,

KA = 1.2(1− sinϕ). (4.26)

(4) Janssen’s constant adjacent to a frictional wall (the radial and vertical normal stresses are not
principal stresses) can be estimated using a Mohr’s circle. For example, consider the Mohr’s circle
for a material element in the active state against the frictional, vertical wall (σzz,w > σrr,w) shown
in Figure 4.13. The angle ω in the Mohr’s circle can be found by applying the Law of Sines to the
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triangle ∆OWAp,

sinϕw

R
=

sin(π − ω)

p
=

sinω

p
, (4.27)

sinω =
p

R
sinϕw. (4.28)

From right triangle ∆OIp,

sin δ =
R

p
. (4.29)

Substituting Eq. (4.29) into Eq. (4.28),

sinω =
sinϕw

sin δ
. (4.30)

The angle between line segments pWA and pO is found by noting that the sum of the interior angles
of a triangle is π radians,

∠WApO = π − ϕw − (π − ω) = ω − ϕw. (4.31)

Now find the lateral normal stress at the wall (σrr,w) using the Mohr’s circle geometry,

σrr,w = p−R cos(ω − ϕw), (4.32)

= p− p sin δ cos(ω − ϕw) (using Eq. (4.29)) , (4.33)

σrr,w = p [1− sin δ cos(ω − ϕw)] . (4.34)

Similarly, the vertical normal stress at the wall (σzz,w) is,

σzz,w = p+R cos(ω − ϕw), (4.35)

= p+ p sin δ cos(ω − ϕw) (using Eq. (4.29)) , (4.36)

σzz,w = p [1 + sin δ cos(ω − ϕw)] . (4.37)

Taking the ratio of Eq. (4.34) to Eq. (4.37) to form Janssen’s constant at the wall,

KA,w =
σrr,w

σzz,w
=

p [1− sin δ cos(ω − ϕw)]

p [1 + sin δ cos(ω − ϕw)]
, (4.38)

KA,w =
1− sin δ cos(ω − ϕw)

1 + sin δ cos(ω − ϕw)
. (4.39)

A similar approach can be used to determine the Janssen constant for the passive case at the wall
(σrr,w > σzz,w). The corresponding Mohr’s circle is shown in Figure 4.14. For this case, the angle
∠OWP p is ω since triangle ∆WP pWA is isosceles. Furthermore, since the interior angles of the
triangle add to π radians,

∠WP pWA = π − 2ω. (4.40)

Since the angle along a line is also π radians, the angle from Wppσrr,w is,

∠Wppσrr,w = π − (ω − ϕw)− (π − 2ω) = ω + ϕw. (4.41)

Applying the Law of Sines to triangle ∆OWpp,

sinϕw

R
=

sinω

p
=⇒ sinω =

p

R
sinϕw, (4.42)

which is the same as Eq. (4.28). Equations (4.29) and (4.30) are also true for the passive case.
The lateral normal stress at the wall using the Mohr’s circle geometry,

σrr,w = p+R cos(ω + ϕw), (4.43)

= p+ p sin δ cos(ω + ϕw) (using Eq. (4.29)) , (4.44)

σrr,w = p [1 + sin δ cos(ω + ϕw)] . (4.45)
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Figure 4.14. A Mohr’s circle for a material element in the passive state adjacent to a
frictional, vertical wall. Recall that for the passive state, σrr,w > σzz,w. The element is
assumed to be yielding internally and at the wall.

The vertical normal stress at the wall is,

σzz,w = p−R cos(ω + ϕw), (4.46)

= p− p sin δ cos(ω + ϕw) (using Eq. (4.29)) , (4.47)

σzz,w = p [1− sin δ cos(ω + ϕw)] . (4.48)

Taking the ratio of Eq. (4.45) to Eq. (4.48) to form Janssen’s constant at the wall,

KP,w =
σrr,w

σzz,w
=

p [1 + sin δ cos(ω + ϕw)]

p [1− sin δ cos(ω + ϕw)]
, (4.49)

KP,w =
1 + sin δ cos(ω + ϕw)

1− sin δ cos(ω + ϕw)
. (4.50)

Equations (4.39) and (4.50) may be combined to give a single expression for Janssen’s constant
adjacent to a vertical wall,

Kw =
1− κ sin δ cos(ω − κϕw)

1 + κ sin δ cos(ω − κϕw)
, (4.51)

where κ = +1 for the active state and κ = −1 for the passive state. A plot of Eq. (4.51) is shown
in Figure 4.15 for various values of the effective angle of internal friction and the wall friction angle.
Note that for the passive case when the wall friction angle is sufficiently large, i.e., when,

tanϕw >
R

p
= sin δ, (4.52)

which puts the point WP to the left of the hydrostatic pressure p (Figure 4.14), then Kw,P < 1.
The value of Kw,P is still larger than Kw,A, however. Note that Eq. (4.51) reduces to Eqs. (4.23)
and (4.24) when ϕw = 0, i.e., when the walls are frictionless and the vertical and radial stresses at
the wall are principal stresses. For a fully rough wall where ϕw = δ, Eq. (4.51) becomes,

Kw,fully rough =
1− κ sin2 δ

1 + κ sin2 δ
. (4.53)
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Figure 4.15. Janssen’s constant at the wall using Eq. (4.51) plotted as a function of the
effective angle of internal friction for different wall friction angles. Active and passive cases
are shown.

(5) Experimental values for the active Janssen’s constant along with internal friction angles are given in
Table 4.4 for various agricultural grains. The experimental values range between approximately 0.3
and 0.5. Also included in the table are estimates using the Eurocode recommendation (Eq. (4.25)),
which tends to over-predict the experimental values. The experimental values for Janssen’s constant
are plotted in Figure 4.16 as a function of the internal friction angle along with various predictions
for KA, assuming the grain materials are cohesionless. The wall friction angle was not specified in
the work so different values are assumed. The predictions from Eq. (4.51) provide good estimates for
the experimental values and are more accurate than the predictions from the Eurocode (Eq. (4.25))
and German code (Eq. (4.26)) recommendations.
Table 4.5 presents active Janssen’s constant values for various materials using different methods
for filling the testing apparatus. The authors [8] observed that Janssen’s constant decreases as the
vertical stress approaches zero and asymptotes for large values of the vertical stress. The reported
Janssen’s constants in the table are measured at a vertical normal stress of 35 kPa. Note that the
measured Janssen’s constants range between approximately 0.3 and 0.6. The experiments showed
that the filling method affects the measured Janssen’s constant, which they attribute to the presence
of shear planes in the sample when filling.
Table 4.6 provides additional active Janssen constant measurements for a wide variety of materials,
specifically at a vertical normal stress of 35 kPa. The reported values of KA are generally between
0.4 – 0.6. Figure 4.17 plots the measured Janssen’s constants as a function of the material’s effective
angle of internal friction (δ, or ϕe in the authors’ work). The plot also includes various methods for
estimating Janssen’s constant, which are based on the effective angle of internal friction as opposed
to the internal friction angle. Equation (4.26) does the best job of predicting the measurements,
although the predictions tend to underestimate the experimental values. Figure 4.18 plots the
predicted values against the measured values using the Mohr’s circle analysis (Eq. (4.51)), the
Eurocode recommendation (Eq. (4.25)), and the German DIN recommendation (Eq. (4.26)). The
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Table 4.4. Experimental values (mean ± standard deviation) for Janssen’s constant (ks)
and internal friction angle (ϕ) for various agricultural grains. Calculated values for Janssen’s
constant (kϕ) using the Eurocode expression (Eq. (4.25)) are also included. This table is
from Horabik and Rusinek[7].

Table 4.5. Janssen constants for various materials using different experimental apparatus
filling methods. The measurements are made at a vertical normal stress of 35 kPa. This
table is from Kwade et al. [8].

models generally under-predict the measurements with the Mohr’s circle analysis giving the worst
predictions. The authors state that the model assumption that the material is yielding internally
is a likely reason for the deviation.
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Table 4.6. Measurements for different bulk solids of the bulk density (ρb), effective angle
of internal friction (ϕe), wall friction angle against aluminum (ϕx), and three measures of
Janssen’s constant (λ35, λcorr, and λ0). All values are measured at an applied vertical
normal stress of 35 kPa. In the table λ35 is Janssen’s constant based on the applied vertical
normal stress of 35 kPa, λcorr is Janssen’s constant where the vertical stress is estimated at
the location of the horizontal stress measurement, and λ0 is Janssen’s constant for uniaxial
compaction that doesn’t involve yielding. The compression angle ϕc is the angle through the
origin tangent to the non-yielding Mohr’s circles. This table is from Kwade et al. [9].
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Figure 4.16. Measured Janssen’s constants plotted as a function of the internal friction
angle for various agricultural grain materials. These data are from Table 4.4. The curve fits
are from Eqs. (4.51) (assuming cohesionless materials), (4.25), and (4.26).

4.5. Summary

Following is a summary of the significant points in this chapter:

(1) The Ideal Coulomb Material Model is often used in analyses for powder storage and flow.
(2) In the Ideal Coulomb model, yielding occurs within the material when |τ | = |σ tanϕ + c| and at a

wall when |τ | = |σ tanϕw + cw|.
(3) The effective angle of internal friction δ is related to the ratio of the principal stresses when the

material yields internally.
(4) Janssen’s constant is the ratio of the lateral to vertical stresses. The active Janssen’s constant

typically has a value between 0.4 – 0.6. There are various methods for estimating Janssen’s constant.
The effect of wall friction should be considered for improved prediction accuracy.

(5) A static powder stress state is bounded by active and passive stress states.
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Figure 4.17. Measured Janssen’s constants (λ), using a vertical normal stress estimated
at the location of the measured lateral stress, plotted as a function of the effective angle of
internal friction. This plot is from Kwade etal. [9].
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Figure 4.18. Predicted Janssen’s constants plotted against measured Janssen’s constants
for the materials listed in Table 4.6. The predicted values come from the Mohr’s circle
analysis formula (Eq. (4.51)), the Eurocode recommendation (Eq. (4.25)), and the German
DIN recommendation (Eq. (4.26)). The models generally under-predict the measured values.
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The major principal stress at a point within an internally-yielding cohesionless material with an internal friction 
angle of 25o is 1.5 kPa.   
1. Evaluate the minor principal stress and the angles between the minor principal plane and the slip planes (in 

the real world).  
2. Draw the corresponding Mohr’s circle. 
 
 
SOLUTION: 

 
 
The radius of the Mohr’s circle is, 

𝑅 = !
"
(𝜎! − 𝜎"), (1) 

and the hydrostatic pressure is, 
𝑝 = !

"
(𝜎! + 𝜎"). (2) 

The internal friction angle is related to the radius and pressure, assuming no cohesion, via, 

sin𝜙 = #
$
=

!
"(&!'&")
!
"
(&!)&")

= &!'&"
&!)&"

  =>  &!
&"
= !'*+,-

!)*+,-
  =>  𝜎" = 𝜎! -

!)*+,-
!'*+,-

.. (3) 

Using the given values of ϕ = 25o and σ1 = 1.5 kPa, σ2 = 0.61 kPa, p = 1.05 kPa, and R = 0.45 kPa. 
 
The angle from the internal yield points (I) to the minor principal plane in the Mohr’s circle is, 

2𝜆 = ±-.
"
− 𝜙.   (The sum of the internal angles of a triangle is 180o.) (4) 

and, thus, the angles in the real world are, 
𝜆 = ± !

"
-.
"
− 𝜙.. (5) 

Using the given value for ϕ, 2λ = 65o  =>  λ = ± 32.5o. 
 
The stress state at the internal yield point (I = (Iσ, Iτ )) is, 

𝐼& = 𝑝 − 𝑅 cos(2𝜆), (6) 
𝐼/ = ±𝑅 sin(2𝜆), (7) 
=> 		𝐼 = (0.87,±0.40)	kPa. 

  

ϕ  2λ   

R 

σ1 

σ2 Iσ 

Iτ  

λ  

σ2 λ  

σ1 

Iσ 

-Iτ  
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The following Python code was used to perform the calculations and draw the Mohr’s circle: 
# IdealCoulomb_01.py 
 
import matplotlib.pyplot as plt 
import numpy as np 
 
sigma_1 = 1.5  # kPa, major principal stress 
phi = np.radians(25)  # deg/rad, internal friction angle 
 
sigma_2 = sigma_1*(1 - np.sin(phi))/(1 + np.sin(phi)) 
print('sigma_2 = %.3f kPa' % sigma_2) 
 
R = 0.5*(sigma_1 - sigma_2) 
p = 0.5*(sigma_1 + sigma_2) 
print('(p, R) = (%.3f, %.3f) kPa' % (p, R)) 
 
 
# Draw the Mohr's circle. 
figure, axes = plt.subplots() 
MohrsCircle = plt.Circle((p, 0), R, fill=False)  # make the Mohr's circle 
axes.set_aspect(1)  # set the aspect ratio to one 
axes.add_artist(MohrsCircle)  # add the Mohr's circle to the plot 
 
# Draw Internal Yield Locus (IYL) 
plt.plot([0, sigma_1], [0, sigma_1*np.tan(phi)], 'k-') 
plt.plot([0, sigma_1], [0, -sigma_1*np.tan(phi)], 'k-') 
I_sigma = p-R*np.cos(np.pi/2 - phi) 
I_tau = R*np.sin(np.pi/2 - phi) 
print('(I_sigma, I_tau) = (%.3f, %.3f) kPa' % (I_sigma, I_tau)) 
plt.plot(I_sigma, I_tau, 'ko') 
plt.plot(I_sigma, -I_tau, 'ko') 
plt.annotate('$+I$', (I_sigma, I_tau), textcoords='offset points', xytext=(0,10), 
ha='center') 
plt.annotate('$-I$', (I_sigma, -I_tau), textcoords='offset points', xytext=(0,10), 
ha='center') 
 
# Calculate the angle in the Mohr's circle from the +I to sigma_2. 
two_lambda = np.pi/2 - phi 
print('2*lambda = +/- %.3f deg' % (np.degrees(two_lambda))) 
print('lambda = +/- %.3f deg' % (0.5*np.degrees(two_lambda))) 
 
# Draw lines from the center of the Mohr's circle to the yield points. 
plt.plot([p, I_sigma], [0, I_tau], 'k--') 
plt.plot([p, I_sigma], [0, -I_tau], 'k--') 
 
# Plot the major principal stress state and a label to the plot. 
plt.plot(sigma_1, 0, 'ko')  
plt.annotate('$(\sigma_{1}, 0)$', (sigma_1, 0), textcoords='offset points', 
xytext=(0,10), ha='center') 
 
# Plot the minor principal stress state and a label to the plot. 
plt.plot(sigma_2, 0, 'ko') 
plt.annotate('$(\sigma_{2}, 0)$', (sigma_2, 0), textcoords='offset points', 
xytext=(0,10), ha='center') 
 
# Plot the hydrostatic pressure state and a label to the plot. 
plt.plot(p, 0, 'ko') 
plt.annotate('$(p, 0)$', (p, 0), textcoords='offset points', xytext=(0,10), 
ha='center') 
 
axes.axhline(y=0, color='k')  # draw a horz line at y=0 
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plt.xlim([0, 1.1*(p+R)])  # set the plot x-range 
plt.ylim([-1.1*R, 1.1*R])  # set the plot y-range 
plt.xlabel('normal stress, $\sigma$ [kPa]') # add the x-axis label 
plt.ylabel('shear stress, $\\tau$ [kPa]')  # add the y-axis label 
plt.show()  # show the plot 

 
Running the Python code gives the following output: 

>>python3 ./IdealCoulomb_01.py 
sigma_2 = 0.609 kPa 
(p, R) = (1.054, 0.446) kPa 
(I_sigma, I_tau) = (0.866, 0.404) kPa 
2*lambda = +/- 65.000 deg 
lambda = +/- 32.500 deg 
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A cohesionless material has an internal friction angle of 40o and a wall friction angle of 20o (no adhesion).  The 
hydrostatic pressure acting on the element is 50 kPa.  Assume the material is yielding both internally and at the 
wall.  For a material element adjacent to the wall: 
1. Draw a Mohr’s circle for the element (only the top half is needed), including the internal yield locus and wall 

yield locus.  Label significant points and angles. 
2. Calculate the normal and shear stress values on the plane on which internal yield occurs. 
3. Calculate the normal and shear stress values on the wall plane for the active stress state.  Call this stress state 

WA.  Hints:  Let 𝛾 be the angle from the origin to WA to the hydrostatic pressure.  Apply the Law of Sines on 
triangle origin:WA:hydrostatic pressure to find 𝛾.  Keep in mind that sin 𝛾 = sin(𝜋 − 𝛾).  Lastly, make use of 
the geometry in the Mohrs circle to find the wall normal and shear stresses, i.e., you needn’t memorize 
formulas for this calculation and instead can use the Mohrs circle geometry to get the appropriate formulas. 

 
 
SOLUTION: 

  
 
The radius of the Mohr’s circle is, 

𝑅 = 𝑝 sin𝜙  =>  𝑅 = 32.1	kPa. (1) 
 
Internal yielding occurs at, 

𝜎! = 𝑝 − 𝑅 cos 8"
#
− 𝜙9  =>  𝜎! = 29.3	kPa, (2) 

𝜏! = 𝑅 sin 8"
#
− 𝜙9  =>  𝜏! = 24.6	kPa. (3) 

 
The angle 𝛾 between the WYL and the line from (p, 0) to the point WA is found using the Law of Sines, 

$%&'!
(

= $%& )
*

  =>  𝛾 = sin+, 8*
(
sin𝜙-9  =>  𝛾 = 147.9°. (4) 

Note that the obtuse angle value from the arcsine function is needed for the active stress state (the acute angle is 
used for the passive case). 
 
The stress state at the wall for active yielding is, 

𝜎./ = 𝑝 − 𝑅 cos(𝜋 − 𝛾 − 𝜙-)  =>  𝜎./ = 18.6	kPa, (5) 
𝜏./ = 𝑅 sin(𝜋 − 𝛾 − 𝜙-)  =>  𝜏./ = 6.76	kPa. (6) 
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The following Python code was used to perform the calculations and draw the figure. 
# IdealCoulomb_02.py 
 
import matplotlib.patches as patches 
import matplotlib.pyplot as plt 
import numpy as np 
 
p = 50  # kPa, hydrostatic stress 
phi_deg = 40  # deg, internal friction angle 
phiw_deg = 20  # deg, wall friction angle 
phi_rad = np.radians(phi_deg)  # rad, internal friction angle 
phiw_rad = np.radians(phiw_deg)  # rad, wall friction angle 
 
# Find the Mohr's circle radius. 
R = p*np.sin(phi_rad) 
print('(p, R) = (%.1f, %.1f) kPa' % (p, R)) 
 
# Draw the Mohr's circle. 
figure, axes = plt.subplots() 
MohrsCircle = patches.Circle((p, 0), R, fill=False)  # make the Mohr's circle 
axes.set_aspect(1)  # set the aspect ratio to one 
axes.add_patch(MohrsCircle)  # add the Mohr's circle to the plot 
 
# Plot the hydrostatic pressure state and a label. 
plt.plot(p, 0, 'ko') 
plt.annotate(r'$(p, 0)$', (p, 0), textcoords='offset points', xytext=(0,6), ha='center') 
 
# Find and plot the major and minor principal stresses. 
sigma_1 = p + R 
sigma_2 = p - R 
plt.plot(sigma_1, 0, 'ko')  
plt.annotate(r'$(\sigma_1, 0)$', (sigma_1, 0), textcoords='offset points', xytext=(0,6), ha='center') 
plt.plot(sigma_2, 0, 'ko') 
plt.annotate(r'$(\sigma_2, 0)$', (sigma_2, 0), textcoords='offset points', xytext=(0,6), ha='center') 
 
# Draw Internal Yield Locus (IYL). 
plt.plot([0, sigma_1], [0, sigma_1*np.tan(phi_rad)], 'k-') 
# Draw the angle phi. 
phi_arc = patches.Arc([0, 0], 0.5*R, 0.5*R, angle=0, theta1=0, theta2=phi_deg, color='k', linestyle='-
') 
axes.add_patch(phi_arc) 
plt.annotate(r'$\phi$', (0.2*R*np.cos(0.8*phi_rad), 0.38*R*np.sin(0.8*phi_rad)), textcoords='offset 
points', xytext=(0,0), ha='center', color='k') 
 
# Draw Wall Yield Locus (WYL). 
plt.plot([0, sigma_1], [0, sigma_1*np.tan(phiw_rad)], 'b-') 
# Draw the angle phiw. 
phiw_arc = patches.Arc([0, 0], 0.7*R, 0.7*R, angle=0, theta1=0, theta2=phiw_deg, color='b', 
linestyle='-') 
axes.add_patch(phiw_arc) 
plt.annotate(r'$\phi_w$', (0.4*R*np.cos(0.5*phiw_rad), 0.3*R*np.sin(0.4*phiw_rad)), textcoords='offset 
points', xytext=(0,0), ha='center', color='b') 
 
# Find and plot the point at which internal yielding occurs. 
I_sigma = p-R*np.cos(np.pi/2 - phi_rad) 
I_tau = R*np.sin(np.pi/2 - phi_rad) 
print('(I_sigma, I_tau) = (%.1f, %.1f) kPa' % (I_sigma, I_tau)) 
plt.plot(I_sigma, I_tau, 'ko') 
plt.annotate(r'$I$', (I_sigma, I_tau), textcoords='offset points', xytext=(0,10), ha='center') 
 
# Draw lines from the center of the Mohr's circle to the yield point. 
plt.plot([p, I_sigma], [0, I_tau], 'k--') 
 
# Draw the angle between point I and the minor principal stress. 
I_arc = patches.Arc([p, 0], 0.5*R, 0.5*R, angle=0, theta1=(90+phi_deg), theta2=180, color='k', 
linestyle='-') 
axes.add_patch(I_arc) 
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plt.annotate(r'$\frac{\pi}{2}-\phi$', (p+0.05*R*np.cos(np.pi/2-phi_rad), 0.3*R*np.sin(np.pi/2-
phi_rad)), textcoords='offset points', xytext=(0,0), ha='center', color='k') 
 
# Find and plot the point at which active wall yielding occurs. 
gamma_rad = np.pi - np.arcsin(p/R*np.sin(phiw_rad))  # obtuse angle 
gamma_deg = np.degrees(gamma_rad) 
print('gamma = %.1f deg' % gamma_deg) 
WA_sigma = p-R*np.cos(np.pi-phiw_rad-gamma_rad) 
WA_tau = R*np.sin(np.pi-phiw_rad-gamma_rad) 
print('(WA_sigma, WA_tau) = (%.1f, %.2f) kPa' % (WA_sigma, WA_tau)) 
plt.plot(WA_sigma, WA_tau, 'bo') 
plt.annotate(r'$WA$', (WA_sigma, WA_tau), textcoords='offset points', xytext=(0,10), ha='center', 
color='b') 
 
# Draw lines from the center of the Mohr's circle to the yield point. 
plt.plot([p, WA_sigma], [0, WA_tau], 'b--') 
 
# Draw the angle gamma. 
gamma_arc = patches.Arc([WA_sigma, WA_tau], 0.15*R, 0.15*R, angle=0, theta1=(180+phiw_deg), 
theta2=(180+phiw_deg+gamma_deg), color='b', linestyle='-') 
axes.add_patch(gamma_arc) 
plt.annotate(r'$\gamma$', (WA_sigma+5, WA_tau), textcoords='offset points', xytext=(0,0), ha='center', 
color='b') 
 
# Draw the angle pi-gamma-phiw. 
WA_arc = patches.Arc([p, 0], 35, 35, angle=0, theta1=(gamma_deg+phiw_deg), theta2=180, color='b', 
linestyle='-') 
axes.add_patch(WA_arc) 
plt.annotate(r'$\pi-\gamma-\phi_w$', (p-15, 5), textcoords='offset points', xytext=(0,0), ha='center', 
color='b') 
 
 
axes.axhline(y=0, color='k')  # draw a horz line at y=0 
plt.xlim([0, 1.1*(p+R)])  # set the plot x-range 
plt.ylim([0, 1.1*R])  # set the plot y-range 
plt.xlabel('normal stress, $\sigma$ [kPa]') # add the x-axis label 
plt.ylabel('shear stress, $\\tau$ [kPa]')  # add the y-axis label 
plt.show()  # show the plot 

 
 
Running the code produces the following output in addition to the figure. 

>>python3 ./IdealCoulomb_02.py 
(p, R) = (50.0, 32.1) kPa 
(I_sigma, I_tau) = (29.3, 24.6) kPa 
gamma = 147.9 deg 
(WA_sigma, WA_tau) = (18.6, 6.76) kPa 
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CHAPTER 5

Stresses in a Cylindrical Bin

In this chapter we develop a model for predicting the stresses in a cylindrical bin. Stress distributions are
of considerable industrial interest since particulate materials are often stored in such bins. In addition,
concepts encountered in these analyses, such as asymptotic stress behavior and switch stresses, appear in
other systems.

The models in this chapter are based on the Method of Differential Slices, also frequently called “Janssen’s
Method” after one of the first people to use this approach for particulate materials [1], [2]. The Method of
Differential Slices is just one type of model for predicting stress distributions. Although it is not the most
quantitatively accurate modeling technique due to simplifying assumptions, it does predict observed trends
and is a relatively simple modeling approach. These features make the Method of Differential Slices a good
place to start when modeling stresses in bins.

5.1. Force Balance on a Differential Material Element

Consider a particulate material at rest in a cylindrical bin as shown Figure 5.1. The forces acting in the vertical
direction on a thin slice of material, with differential thickness dz, include the force that the material below
the slice exerts upward on the slice (Fbottom), the force that the material above the slice exerts downward
on the slice (Ftop), the shear force that the wall exerts on the slice (Fsides), and the weight of the slice, W .
In this analysis, assume the material is slipping downward at the wall so the wall shear force acting on the
material acts upwards. Downward slip is a reasonable assumption during filling of the bin since material
already in the bin tends to slip downward as additional material is poured on top of it. Material discharging
from the bin will also move downward against the walls.

Assuming the material slice does not accelerate in the vertical direction (e.g., it’s static or moving at a
constant speed), ∑

Fz = 0 = Ftop − Fbottom − Fsides +W. (5.1)

Assuming the vertical normal stress (σzz) is uniform across the slice, the downward acting force on the top
of the element may be written as,

Ftop = σzz
πD2

4
, (5.2)

where D is the cylindrical bin diameter and πD2/4 is the cross-sectional area of the slice. The force on the
bottom of the element acting upward is,

Fbottom = (σzz + dσzz)
πD2

4
. (5.3)

The additional dσzz term exists since the vertical normal stress may change slightly over the differentially
small distance dz. The frictional shear force exerted by the side walls is,

Fsides = τw (πDdz) , (5.4)

where τw is the shear stress exerted by the wall on the material and πD is the circumference of the circular
bin cross-section. Finally, the weight of the differentially thin element of material is,

W = ρbg
πD2

4
dz, (5.5)
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Figure 5.1. Forces in the vertical direction acting on a thin material element in a cylindrical
bin.

where ρb is the bulk density of the material (assumed uniform across the cross-section) and g is the acceleration
due to gravity.

Substituting the previous expressions into the force balance and simplifying,

σzz
πD2

4
− (σzz + dσzz)

πD2

4
− τw (πDdz) + ρbg

πD2

4
dz = 0, (5.6)

dσzz

dz
+

4

D
τw = ρbg. (5.7)

To simplify this differential equation further, we must relate the shear stress at the wall to the vertical
normal stress. To do this, first assume that the vertical normal stress is related to the radial normal stress
via Janssen’s constant, K (Chapter 4.4),

σrr = Kσzz. (5.8)

In addition, the shear stress at the wall can be related to the radial normal stress via a wall friction coefficient,
µw,

τw = µwσrr. (5.9)

Substituting Eqs. (5.8) and (5.9) into Eq. (5.7),

dσzz

dz
+

4µwK

D
σzz = ρbg. (5.10)

To obtain a closed form solution to this differential equation, first assume the bulk density, wall friction
coefficient, and Janssen’s constant do not change with depth. Next, solve the homogeneous part of the
differential equation,

dσzz,H

dz
+

4µwK

D
σzz,H = 0, (5.11)ˆ

dσzz,H

σzz,H
=

ˆ
−4µwK

D
dz, (5.12)

lnσzz,H =
−4µwK

D
z + C, (5.13)
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σzz,H = C exp

(
−4µwK

D
z

)
, (5.14)

where C is an unknown constant. The particular part of the solution is simply,

4µwK

D
σzz,P = ρbg, (5.15)

σzz,P =
ρbg

(4µwK)/D
. (5.16)

Summing the homogeneous and particular solutions gives,

σzz =
ρbgD

4µwK
+ C exp

(
−4µwK

z

D

)
. (5.17)

The constant C may be found using a boundary condition. In this case, we’ll assume that at z = 0, i.e., the
free surface, there is a uniform applied vertical normal stress of σzz,0, which is known as a surcharge stress.
Using the boundary condition σzz(z = 0) = σzz,0, the previous equation becomes,

σzz =
ρbgD

4µwK

[
1− exp

(
−4µwK

z

D

)]
+ σzz,0 exp

(
−4µwK

z

D

)
. (5.18)

The corresponding radial normal and wall shear stresses are,

σrr = Kσzz =
ρbgD

4µw

[
1− exp

(
−4µwK

z

D

)]
+Kσzz,0 exp

(
−4µwK

z

D

)
, (5.19)

τw = µwσrr =
ρbgD

4

[
1− exp

(
−4µwK

z

D

)]
+ µwKσzz,0 exp

(
−4µwK

z

D

)
, (5.20)

(5.21)

We can make the previous equations dimensionless by dividing by the term in front of the square brackets,

4µwK

(
σzz

ρbgD

)
= 1− exp

(
−4µwK

z

D

)
+ 4µwK

(
σzz,0

ρbgD

)
exp

(
−4µwK

z

D

)
, (5.22)

4µw

(
σrr

ρbgD

)
= 1− exp

(
−4µwK

z

D

)
+ 4µwK

(
σzz,0

ρbgD

)
exp

(
−4µwK

z

D

)
, (5.23)

4

(
τw

ρbgD

)
= 1− exp

(
−4µwK

z

D

)
+ 4µwK

(
σzz,0

ρbgD

)
exp

(
−4µwK

z

D

)
. (5.24)

Notes:

(1) Refer to Chapter 4.4 for a review on Janssen’s constant.
(2) A sketch of the stress as a function of depth is shown in Figure 5.2 for zero surcharge (σzz,0 = 0).

Note that the trend shown in the figure is the same regardless of whether it is the vertical, radial,
or shear stress. The stresses asymptote to a constant value with increasing depth. The friction with
the wall is the reason for this asymptotic behavior since the wall shear stress supports part of the
material weight. More mathematically, taking the limit of Eq. (5.18), assuming zero surcharge, as
µw → 0,

lim
µw→0

(σzz) =
(ρbgD)

(
4K z

D

)
4K

= ρbgz, (5.25)

which is the hydrostatic relation for an incompressible fluid.
(3) With zero surcharge, the stresses approach the hydrostatic relation in the vicinity of the free surface

where wall effects are not yet significant, i.e., when z/D ≪ 1. For example, considering the vertical
normal stress and using a Taylor Series expansion for the exponential term,

σzz =
ρbgD

4µwK

[
1− exp

(
−4µwK

z

D

)]
, (5.26)

=
ρbgD

4µwK

{
1−

[
1− 4µwK

z

D
+

(
−4µwK

z
D

)2
2!

+

(
−4µwK

z
D

)3
3!

+ · · ·

]}
, (5.27)
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Figure 5.2. A sketch of the stress in a cylindrical bin (could be vertical, radial, or shear)
as a function of depth from the free surface for zero surcharge. The figure also shows the
hydrostatic pressure distribution for an incompressible fluid for comparison.

Figure 5.3. (left) A photograph of grain bins. (right) A photograph of tanks containing a
liquid.

=
ρbgD

4µwK

(
4µwK

z

D

) (
since

z

D
≪ 1

)
, (5.28)

= ρbgz. (5.29)

(4) The asymptotic value of the vertical normal stress (including a surcharge stress) is found by taking
the limit of Eq. (5.18) as z/D → ∞,

lim
z/D→∞

σzz =
ρbgD

4µwK

[
1− lim

z/D→∞
exp

(
−4µwK

z

D

)]
+ σzz,0 lim

z/D→∞
exp

(
−4µwK

z

D

)
, (5.30)

=
ρbgD

4µwK
. (5.31)

Note that the asymptotic stress is independent of the surcharge stress. The asymptotic stress in-
creases with increasing bin diameter, decreasing wall friction coefficient, and decreasing Janssen’s
constant. Thus, unlike the hydrostatic pressure relation for incompressible fluids, there is no “pres-
sure penalty” when building a tall bin containing a particulate material. This asymptotic effect is
why grain bins tend to be tall and narrow while tanks containing liquids tend to be short and squat
(Figure 5.3). However, unlike a liquid tank, bins holding particulate materials have a shear stress
acting on the bin wall.

(5) The asymptotic stress in Eq. (5.31) is technically only reached at infinite depth. However, when
4µwK(z/D) = 3, the stresses are approximately 95% of their asymptotic value. For example, if
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Figure 5.4. Experimental measurements of the radial normal stress as a function of depth
from the free surface (no surcharge) for different fill levels of Milo (a beverage powder).
Included in the figure is Janssen’s prediction where Janssen’s constant is a fitted parameter.
This plot is from Suzuki et al. [3].

the wall friction angle is ϕw = 20◦ so µw = tanϕw = 0.36 and K = 0.4, then the stress reaches
95% of its asymptotic value when the depth is approximately five bin diameters (z/D ≈ 5.2). The
larger the wall friction coefficient and Janssen’s constant, the shallower the depth to reach 95% of
the asymptotic stresses.

(6) Experimental measurements support the model predictions. Figure 5.4 shows experimental mea-
surements of the radial normal stress as a function of depth from the free surface (no surcharge) for
different fill levels of Milo (a beverage powder). Included in the figure is a fit using the Janssen pre-
diction where Janssen’s constant is a fitted parameter. The asymptotic behavior is clearly observed.

(7) The surcharge has no impact on the asymptotic stress as is evident from Eq. (5.31) as well as in
Figure 5.5. Janssen’s assumption of a uniform vertical normal stress is known to be incorrect (dis-
cussed in a following note). In particular, this assumption results in large error near the free surface
when a surcharge is present. Thus, the trends in Figure 5.5 should only be viewed qualitatively and
not quantitatively.

(8) The stress derivation given in this section assumes that the wall friction is fully activated, meaning
that the material is either slipping or in an incipient state of slipping against the wall. In a real
system, the material may not be slipping and, thus, the previous derivation is a limiting case.
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Figure 5.5. A plot of dimensionless vertical stress as a function of dimensionless depth
from the free surface for different dimensionless surcharge stresses using Eq. (5.22). Note
that the asymptotic stress values are identical regardless of the surcharge stress.

(9) The bulk density, wall friction angle, and Janssen’s constant can vary as the applied stresses vary.
These variations can be accounted for in the stress analysis by numerically solving the differential
equation (Eq. (5.11)) with appropriate fits or numerical data for the stress-varying parameters.

(10) For non-circular bin cross-sections, a hydraulic diameter may be used in place of the diameter. The
hydraulic diameter, DH , is defined as,

DH :=
4A

P
, (5.32)

where A is the bin cross-sectional area and P is the cross-sectional perimeter. For example, for a
rectangular cross-sectional bin,

DH =
4LB

2L+ 2B
=

2LB

L+B
, (5.33)

where L and B are the lengths of the bin sides. The predictions using a hydraulic diameter for a
non-circular cross section won’t be as accurate since the model derivation assumes uniform stresses
across the cross section.

5.2. Active and Passive States

During filling and storage in a cylindrical bin, the system is mostly in the active state as material is compressed
vertically during filling (Figure 5.6, left). During discharge, the system moves closer to a passive state near
the exit since the vertical stress decreases as material dilates vertically when the exit is opened and the
vertical stress becomes small (Figure 5.6, right). Far from the exit, however, the system will continue to be
in an active state. For the purpose of simplifying the following explanation, assume that the discharging
material is in an active state far from the exit and in a passive state near the exit (Figure 5.7). The division
between the active and passive regions is called a switch plane.
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Figure 5.6. (left) The active stress state during filling of a cylinder. (right) The passive
stress state during discharge of a cylinder.

Figure 5.7. A simple model illustrating a switch plane in a discharging cylinder.

Now use Janssen’s analysis in each region of the cylinder, subject to appropriate boundary conditions and
Janssen’s constants. Note that this analysis breaks down in the near vicinity of the exit since the vertical
stress should go to zero there. In the active region, assuming no surcharge,

σzz =
ρbgD

4µwKA

[
1− exp

(
−4µwKA

zA
D

)]
, (5.34)

σrr =
ρbgD

4µw

[
1− exp

(
−4µwKA

zA
D

)]
. (5.35)

For a sufficiently deep active zone, the stresses approach their asymptotic values,

lim
zA→∞

(σzz) =
ρbgD

4µwKA
, (5.36)

lim
zA→∞

(σrr) =
ρbgD

4µw
. (5.37)

Just below the switch plane, assuming a deep active region,

σzz(zP = 0) = σzz(zA → ∞) =
ρbgD

4µwKA
, (5.38)

since the vertical stress must be continuous at the switch plane as can be proven by considering a vertical force
balance on a material element at the switch plane. Note that there is no such restriction on the radial stress.
Now apply Janssen’s analysis to the passive zone using the active zone asymptotic stress as the surcharge
stress for the passive zone,

σzz =
ρbgD

4µwKP

[
1− exp

(
−4µwKP

zP
D

)]
+

ρbgD

4µwKA
exp

(
−4µwKP

zP
D

)
, (5.39)
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Figure 5.8. A sketch showing the vertical and radial stresses in a vertical cylinder with
active and passive zones.

σrr =
ρbgD

4µw

[
1− exp

(
−4µwKP

zP
D

)]
+

ρbgDKP

4µwKA
exp

(
−4µwKP

zP
D

)
. (5.40)

For a sufficiently deep passive zone,

lim
zP→∞

(σzz) =
ρbgD

4µwKP
, (5.41)

lim
zP→∞

(σrr) =
ρbgD

4µw
. (5.42)

Of particular interest is the radial stress just below the switch plane. Here the radial stress has its maximum
value,

σrr(zP = 0) =
ρbgDKP

4µwKA
. (5.43)

Since KP > KA, there is a sudden increase in the radial stress at the switch plane. This large radial stress
is called a switch stress. A sketch showing the stresses from the previous analysis is shown in Figure 5.8.

Notes:

(1) The largest (radial) wall stress occurs when the bin is opened. During filling the bin entirely in an
active state, but during discharge an active zone is located above a passive zone. Thus, one should
consider the stresses during discharge to ensure that the largest wall stresses have been considered.

(2) A similar switch stress occurs in the junction between the vertical (e.g., cylindrical) and converging
(e.g., conical) sections of a hopper. This topic is addressed in the next chapter.

(3) Plots of the lines of major principal stress are often helpful for visualizing stress fields. For the
active state, the major principal stress along the centerline is σzz since there is no shear stress at
the centerline due to symmetry and σzz > σrr in the active state. Thus, the slope of the major
principal stress line at the centerline is vertical. To determine the direction of the major principal
stress at the wall, refer to the active state Mohr’s circle shown in Figure 5.9a. The angle from the
vertical normal stress (state ZA) to the major principal stress in the Mohr’s circle is ω − ϕw in the
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counter-clockwise direction, where ω is found using Eq. (4.30). Thus, in the “real world” the angle
from the vertical normal stress to the major principal stress is 1

2 (ω − ϕw) in the counter-clockwise
direction. A sketch of the corresponding major principal stress lines are shown to the left of the
Mohr’s circle. Note that when the wall is frictionless (ϕw = 0), ω = 0 and the lines of major
principal stress are vertical everywhere.
A similar analysis can be performed for the passive state (Figure 5.9b). For this case, σrr > σzz

along the centerline so the slope of the major principal stress line is horizontal there. The angle
in the Mohr’s circle from the radial stress at the wall to the major principal stress is ω + ϕw in
the clockwise direction and, thus, the “real world” angle from the radial wall stress to the major
principal stress is 1

2 (ω + ϕw). If the wall is frictionless, then the lines of major principal stress are
horizontal everywhere.

5.3. The Distribution Factor for a Cylindrical Bin

Janssen assumed a uniform vertical normal stress, but this assumption cannot be correct. From symmetry
the shear stress τrz at the centerline must be zero, making the vertical and radial normal stresses principal
stresses at the centerline. At a frictional wall the shear stress is non-zero. Thus, the shear stress, and
normal stresses, can vary over a horizontal cross-section. Figure 5.10 shows experimental measurements of
the vertical normal stress as a function of radius in a cylindrical bin in two different experiments. Clearly
the stress does not remain constant over the cross-section.

In Janssen’s analysis (Figure 5.1), we should have used an average vertical normal stress,

σzzA =

ˆ
A

σzzdA =⇒ σzz =
1

A

ˆ
A

σzzdA, (5.44)

where A is the cross-sectional area of the material element in the bin. Repeating Eq. (5.7), but using an
average vertical normal stress,

dσzz

dz
+

4

D
τw = ρbg. (5.45)

When writing the wall shear stress in terms of the radial and vertical normal stresses, the values specifically
at the wall, indicated by a subscript “w”, should be used, i.e.,

σrr,w = Kwσzz,w, (5.46)

τw = µwσrr,w, (5.47)

where Kw is Janssen’s constant evaluated at the wall (Eq. (4.51)). Substituting these expressions into the
differential equation gives,

dσzz

dz
+

4µwKw

D
σzz,w = ρbg. (5.48)

Walker [5] defined a Distribution Factor, D, to relate the vertical normal stress at the wall to the average
vertical normal stress,

D :=
σzz,w

σzz
. (5.49)

Re-writing the differential equation using the distribution factor,

dσzz

dz
+

4µwKwD
D

σzz = ρbg. (5.50)

Assuming D (and ρb, g, µw, and Kw) does not vary with the depth z, the solution to the differential equation
with zero surcharge is similar to the previous Janssen relation,

σzz =
ρbgD

4µwKwD

[
1− exp

(
−4µwKwD

z

D

)]
. (5.51)

To determine the value for the distribution function, Walters [6] made use of Mohr’s circles for material
elements at the bin centerline, the wall, and at some arbitrary radius in between. In particular, he assumed:
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(a) Active state

(b) Passive state

Figure 5.9. (right) The Mohr’s circles corresponding to a material element at a vertical
wall. (left) The corresponding lines of major principal stress. Conditions for active and
passive stress states are shown.

(1) that the radial normal stress (σrr) is independent of the radius, and (2) that the shear stress varies
linearly with the radius, i.e.,

τrz = τrz,w︸ ︷︷ ︸
=τw

(
r

D/2

)
. (5.52)

Recall that τrz = 0 at the centerline (r = 0) from symmetry.

Assumption 2 is strictly only true at large depths where the vertical stress has reached its asymptotic value
so the force balance on the material element is,

τrz(2πrdz) = ρbg(πr
2dz) =⇒ τrz =

1

2
ρbgr. (5.53)
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Figure 5.10. Vertical normal stress as a function of dimensionless radial position for cylin-
drical bins containing various granular materials. The left figure from Liu et al. [4] and the
right figure is from Suzuki et al. [3].

C. Wassgren 97 2024-06-12



Powder Storage and Flow

Assumption 1 can be shown to be incorrect via the following argument. From the solid mechanics Equilibrium
Equations in cylindrical coordinates assuming axisymmetric and asymptotic (in z) conditions,

dσrr

dr
=

σθθ − σrr

r
. (5.54)

Since σθθ ̸= σrr, in general (σθθ is a principal stress while σrr isn’t), σrr will be a function of r.

Despite the questionable assumptions, we’ll continue with the analysis following Walker’s approach. Consider
the Mohr’s circles for material elements at the centerline, wall, and at an arbitrary radius shown in Figure 5.11.
Since we’re assuming that the radial normal stress is constant, the radial states at the centerline, at an
arbitrary radius, and the wall, Rc, Rr, and Rw, respectively, must all align vertically. Note that the radial
and vertical stresses are principal stresses at the centerline. Considering the Mohr’s circle through point Rr

and using Pythagorean’s Theorem for triangle ∆prRcRr,

x2
r = τ2rz,r + (pr − σrr)

2
, (5.55)

where xr and pr are, respectively, the radius and hydrostatic pressure of the Mohr’s circle for the arbitrary
radius Mohr’s circle. The previous equation is identical for the active and passive states, although in the
passive state the terms in the parentheses are flipped. Note that from triangle ∆prOE,

sin δ =
xr

pr
=⇒ pr =

xr

sin δ
. (5.56)

Substituting the previous equation into the one prior to that, re-arranging, and solving for xr,

x2
r = τ2zr,r +

[( xr

sin δ

)
− σrr

]2
, (5.57)

x2
r = τ2rz,r +

( xr

sin δ

)2
− 2

( xr

sin δ

)
σrr + σ2

rr, (5.58)(
1− 1

sin2 δ

)
x2
r + 2

( σrr

sin δ

)
xr −

(
σ2
rr + τ2rz,r

)
= 0, (5.59)(

sin2 δ − 1

sin2 δ

)
x2
r + 2

( σrr

sin δ

)
xr −

(
σ2
rr + τ2rz,r

)
= 0, (5.60)(

− cos2 δ

sin2 δ

)
x2
r + 2

( σrr

sin δ

)
xr −

(
σ2
rr + τ2rz,r

)
= 0, (5.61)

xr =

(
− sin δ

2 cos2 δ

)[
−2
( σrr

sin δ

)
±
√

4σ2
rr

sin2 δ
− 4 cos2 δ

sin2 δ

(
σ2
rr + τ2rz,r

)]
, (5.62)

xr =

(
sin δ

cos2 δ

)[( σrr

sin δ

)
± 1

sin δ

√
σ2
rr − cos2 δ

(
σ2
rr + τ2rz,r

)]
, (5.63)

xr =

(
1

cos2 δ

)[
σrr ±

√
σ2
rr sin

2 δ − τ2rz,r cos
2 δ

]
, (5.64)

xr =

(
tan δ

cos δ

)[
σrr ±

√
σ2
rr sin

2 δ − τ2rz,r cos
2 δ

]
. (5.65)

The positive square root is used for the active case and the negative root is for the passive case.

We can also obtain the following from the center of the Mohr’s circle,

pr =
1

2
(σzz,r + σrr) =⇒ σzz,r = 2pr − σrr. (5.66)

Substituting Eq. (5.56) into this equation gives,

σzz,r = 2
( xr

sin δ

)
− σrr. (5.67)
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Figure 5.11. Mohr’s circles for material elements at the centerline (red), at the wall (blue),
and at an arbitrary radius (green).
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Substituting Eqs. (5.52) and (5.65) into the previous equation gives,

σzz,r =
2

sin δ

(
tan δ

cos δ

)σrr ±

√
σ2
rr sin

2 δ − τ2w

(
r

D/2

)2

cos2 δ

− σrr, (5.68)

=

(
2

cos2 δ

)σrr ±

√
σ2
rr sin

2 δ − 4σ2
rr

(
τw
σrr

)2 ( r

D

)2
cos2 δ

−
(

2

cos2 δ

)
σrr cos

2 δ

2
, (5.69)

=

(
2

cos2 δ

)[
σrr −

1

2
(cos2 δ)σrr ± σrr

√
sin2 δ − 4 tan2 ϕw

( r

D

)2
cos2 δ

]
, (5.70)

=

(
2σrr

cos2 δ

)[
1− 1

2
(cos2 δ)±

√
sin2 δ − 4 tan2 ϕw cos2 δ

( r

D

)2]
, (5.71)

=
( σrr

cos2 δ

)1 + 1− cos2 δ ± 2

√
sin2 δ − 4 sin2 δ

(
tanϕw

tan δ

)2 ( r

D

)2 , (5.72)

σzz,r =
( σrr

cos2 δ

)[
1 + sin2 δ ± 2 sin δ

√
1− 4c

( r

D

)2]
, (5.73)

where,

c :=

(
tanϕw

tan δ

)2

. (5.74)

The average vertical stress on a horizontal circular cross section is,

σzz =
1

πD2/4

ˆ D/2

0

σzz,r(2πrdr). (5.75)

Substituting Eq. (5.73) into the previous integral and expanding,

σzz =
1

πD2/4

ˆ D/2

0

( σrr

cos2 δ

)[
1 + sin2 δ ± 2 sin δ

√
1− 4c

( r

D

)2]
(2πrdr), (5.76)

=
8

D2

( σrr

cos2 δ

) ˆ D/2

0

[
1 + sin2 δ ± 2 sin δ

√
1− 4c

( r

D

)2]
(rdr), (5.77)

=
8

D2

( σrr

cos2 δ

){D2

8
+

D2

8
sin2 δ ±

(sin δ)D2
[
(1− c)3/2 − 1

]
6c

}
, (5.78)

=
( σrr

cos2 δ

){
1 + sin2 δ ±

4 sin δ
[
(1− c)3/2 − 1

]
3c

}
, (5.79)

σzz =
( σrr

cos2 δ

) (
1 + sin2 δ ± 2y sin δ

)
, (5.80)

where,

y :=
2

3c

[
1− (1− c)3/2

]
. (5.81)

Now recall that the Janssen constant at the wall (Eq. (4.51)) is,

Kw =
σrr,w

σzz,w
=⇒ σzz,w =

σrr,w

Kw
=

σrr

Kw
, (5.82)

where the last equality is because the radial normal stress is assumed constant along a horizontal cross section.
From the definition of the distribution factor (Eq. (5.49)),

D =
σzz,w

σzz
=

σrr

Kw

(
σrr

cos2 δ

) (
1 + sin2 δ ± 2y sin δ

) , (5.83)
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=
cos2 δ

Kw

(
1 + sin2 δ + κ2y sin δ

) , (5.84)

where κ = +1 for the active case and κ = −1 for the passive case.

Notes:

(1) For convenience, several of the previous expressions are re-written here:

σzz,w = Dσzz, (5.85)

σrr,w = Kwσzz,w, (5.86)

D =
cos2 δ

Kw

(
1 + sin2 δ + κ2y sin δ

) , (5.87)

Kw =
1− κ sin δ cos(ω − κϕw)

1 + κ sin δ cos(ω − κϕw)
, (5.88)

sinω =
sinϕw

sin δ
, (5.89)

c =

(
tanϕw

tan δ

)2

, (5.90)

y =
2

3c

[
1− (1− c)3/2

]
, (5.91)

κ =

{
+1 active case

−1 passive case
. (5.92)

(2) A plot of the active and passive distribution factors as functions of the effective angle of internal
friction for a range of wall friction angles is shown in Figure 5.12. For the active state, the dis-
tribution factor ranges between 0.6 < DA < 1. If ϕw < δ − 5◦, then 0.9 < DA < 1 and DA can
reasonably be assumed to equal one. For the passive state, 1 < DP < 3. Keep in mind that D is
assumed to be independent of depth and that σrr is constant, neither of which is exactly true and,
thus, the precise value of D is not well known. In practice, DA is usually assumed equal to one for
simplicity and because the error of this assumption is typically small. Although the precise value
for the distribution factor for the passive case isn’t known, it does appear to be significant and a
safety factor should be considered in stress calculations.

(3) Examining Eq. (5.73) shows that the vertical normal stress is expected to decrease monotonically
from the centerline to the wall for the active case (increase monotonically for the passive case).
This trend doesn’t match the experimental trends shown in Figure 5.10. Thus, although defining
a distribution factor to account for a non-uniform vertical stress is worthwhile, the assumptions
of a constant radial stress and the distribution factor being independent of the depth need to be
improved to better match experimental observations.

5.4. Summary

Summarizing the significant points in this chapter:

(1) The Method of Differential Slices (aka Janssen’s method) is a simple model for estimating stresses
in bins.

(2) Stresses asymptote with depth due to wall shear stresses supporting some of the material weight.
(3) During filling of a cylindrical bin, the material is close to being in an active stress state. During

discharge, the material near the exit is in a passive state.
(4) A (radial) wall switch stress occurs when the stress state changes from active to passive in a

cylindrical bin.
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Figure 5.12. A plot of the active and passive distribution factors as functions of the effective
angle of internal friction for a range of wall friction angles.

(5) A distribution factor can be defined to relate the vertical normal stress at the wall to the average
vertical normal stress. The model presented here for the distribution factor assumes the radial stress
is a constant (not accurate) and that the shear stress is proportional to the radius (only true at
large depths). If the wall friction angle is smaller than the effective angle of internal friction by 5◦,
then DA ≈ 1. For the passive case, 1 < DP < 3. Including the distribution factor in the calculation
of the switch stress can provide a conservative value for design purposes.
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A flat-bottomed steel silo 12 ft in diameter and 60 ft high is to be built.   
1. Estimate the maximum normal stress acting on the silo side walls if the silo is filled with a particulate 

material with a specific weight of 62.4 lbf/ft3, an effective angle of internal friction of 40o, and a wall 
friction angle of 20°.  Assume an active stress state during filling and a distribution factor of one. 

2. Estimate the total force the silo base must support. 
3. Estimate the maximum normal stress if the silo is filled with water with a specific weight of 62.4 lbf/ft3. 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
Use the Method of Differential Slices (Janssen’s method) to estimate the stresses.  From the derivation in 
lecture for a cylindrical bin filled with constant property material and no surcharge, 

𝜎!!,# =
$!%&

'(")",$𝒟$
#1 − exp )−4𝜇#𝐾#,+𝒟+

!
&
./, (1) 

𝜎,,,# = 𝐾#,+𝜎!!,# =
$!%&
'("𝒟$

#1 − exp )−4𝜇#𝐾#,+𝒟+
!
&
./, (2) 

𝐹-./0 = 𝜎!!1111|!12
3&%

'
. (3) 

 
In the previous equations, 

𝜇# = tan𝜙#, (4) 
𝐾#,+ =

45/67 8 9:/(<5=")
4?/67 8 9:/(<5=")

   (It’s acceptable to also use the Eurocode 1 or DIN values.), (5) 

sin𝜔 = /67 8
/67="

, (6) 

𝒟 = @&&,"
@&&AAAAA

. (7) 
 
Using the given data, 

rbg = 62.4 lbf/ft3,  D = 12 ft,  H = 60 ft,  d = 40o,  ϕw = 20o, 𝒟+ ≈  1, 
=>  𝜇#  = 0.364, 𝜔 = 32.147o, 𝐾#,+ = 0.228, 
=>  𝜎!!,#;!12  = 1825.79 psf, 𝜎,,,#;!12  = 417 psf, 𝐹-./0 = 206000 lbf. 

 
If using the Eurocode 1 Janssen coefficient, 

𝐾BCD:9:E0 = 1.1(1 − sin 𝛿) = 0.393, (8) 
=>  𝜎!!,#;!12  = 1234.01 psf, 𝜎,,,#;!12  = 485 psf, 𝐹-./0 = 140000 lbf. 

 
If using the German DIN Janssen coefficient, 

𝐾FGH = 1.2(1 − sin 𝛿) = 0.429, (9) 
=>  𝜎!!,#;!12  = 1146.90 psf, 𝜎,,,#;!12  = 492 psf, 𝐹-./0 = 130000 lbf. 

 
Clearly, the choice of Janssen’s coefficient makes a significant difference in calculating the vertical stress 
and force, but has less of an effect on the radial wall stress. 
 
For an incompressible liquid with the same specific weight evaluated at z = H, 

	𝜎,, = 𝜌𝑔𝑧  =>  σrr = 3740 psf. (10)  
  

g 

D 

H 
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The following Python code was used to perform the calculations. 
# janssen_01.py 
 
import numpy as np 
import matplotlib.pyplot as plt 
 
def K_w_fcn(delta_rad, phiw_rad, kappa):  # fcn to find Janssen's coefficient 
    # kappa_A = +1, kappa_P = -1 
    omega_rad = np.arcsin(np.sin(phiw_rad)/np.sin(delta_rad)) 
    print('omega = %.3f deg' % np.degrees(omega_rad)) 
    return((1 - kappa*np.sin(delta_rad)*np.cos(omega_rad - kappa*phiw_rad))/(1 + 
kappa*np.sin(delta_rad)*np.cos(omega_rad - kappa*phiw_rad))) 
 
def K_Eurocode_fcn(delta_rad):  # Eurocode 1 value for Janssen's coefficient. 
    return(1.1*(1-np.sin(delta_rad))) 
 
def K_DIN_fcn(delta_rad):  # German DIN value for Janssen's coefficient. 
    return(1.2*(1-np.sin(delta_rad))) 
 
 
# The given parameters. 
gamma_b = 62.4  # lbf/ft^3, bulk specific weight 
D = 12  # ft, bin diameter 
delta_deg = 40  # deg, effective angle of internal friction 
phiw_deg = 20  # deg, wall friction angle 
z = 60  # ft, material depth 
ScriptD_A = 1  # -, active distribution factor 
 
# Convert from degrees to radians. 
delta_rad = np.radians(delta_deg) 
phiw_rad = np.radians(phiw_deg) 
 
# Calculate the wall friction coefficient. 
mu_w = np.tan(phiw_rad) 
print('mu_w = %.3f' % mu_w) 
 
# Calculate the active wall Janssen coefficient. 
K_wA = K_w_fcn(delta_rad, phiw_rad, 1) 
print('K_wA = %.3f' % K_wA) 
 
# Calculate the vertical stress at the wall of the bin base. 
sigma_zzw = gamma_b*D/4/mu_w/K_wA/ScriptD_A*(1 - np.exp(-4*mu_w*K_wA*ScriptD_A*z/D)) 
print('sigma_zzw = %.3f psf' % sigma_zzw) 
 
# Calculate the radial stress at the wall of the bin base. 
sigma_rrw = K_wA*sigma_zzw 
print('sigma_rrw = %.3f psf' % sigma_rrw) 
 
# Calculate the vertical force on the base. 
F_base = sigma_zzw*np.pi*D*D/4 
print('F_base = %.3f lbf' % F_base) 
 
# Using the Eurocode Janssen coefficient. 
print('Using K_Eurocode:') 
K_Euro = K_Eurocode_fcn(delta_rad) 
print('K_Eurocode = %.3f' % K_Euro) 
 
# Calculate the vertical stress at the wall of the bin base. 
sigma_zzw = gamma_b*D/4/mu_w/K_Euro/ScriptD_A*(1 - np.exp(-4*mu_w*K_Euro*ScriptD_A*z/D)) 
print('sigma_zzw = %.3f psf' % sigma_zzw) 
 
# Calculate the radial stress at the wall of the bin base. 
sigma_rrw = K_Euro*sigma_zzw 
print('sigma_rrw = %.3f psf' % sigma_rrw) 
 
# Calculate the vertical force on the base. 
F_base = sigma_zzw*np.pi*D*D/4 
print('F_base = %.3f lbf' % F_base) 

Powder Storage and Flow
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# Using the German DIN Janssen coefficient. 
print('Using K_DIN:') 
 
K_DIN = K_DIN_fcn(delta_rad) 
print('K_DIN = %.3f' % K_DIN) 
 
# Calculate the vertical stress at the wall of the bin base. 
sigma_zzw = gamma_b*D/4/mu_w/K_DIN/ScriptD_A*(1 - np.exp(-4*mu_w*K_DIN*ScriptD_A*z/D)) 
print('sigma_zzw = %.3f psf' % sigma_zzw) 
 
# Calculate the radial stress at the wall of the bin base. 
sigma_rrw = K_DIN*sigma_zzw 
print('sigma_rrw = %.3f psf' % sigma_rrw) 
 
# Calculate the vertical force on the base. 
F_base = sigma_zzw*np.pi*D*D/4 
print('F_base = %.3f lbf' % F_base) 
 
# Calculate the maximum normal stress for water. 
print('H2O:  rho*g*z = %.3f psf' % (gamma_b*z)) 
 
 
Running the code produces the following output: 

>> python3 ./janssen_01.py 
mu_w = 0.364 
omega = 32.147 deg 
K_wA = 0.228 
sigma_zzw = 1825.791 psf 
sigma_rrw = 416.649 psf 
F_base = 206492.051 lbf 
Using K_Eurocode: 
K_Eurocode = 0.393 
sigma_zzw = 1234.006 psf 
sigma_rrw = 484.882 psf 
F_base = 139562.765 lbf 
Using K_DIN: 
K_DIN = 0.429 
sigma_zzw = 1146.901 psf 
sigma_rrw = 491.625 psf 
F_base = 129711.399 lbf 
H2O:  rho*g*z = 3744.000 psf 
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You are tasked with estimating the maximum hoop stress, i.e., circumferential stress, acting on a cylindrical silo’s 
wall during filling and discharge.  The silo under consideration has a diameter of 10 m and a wall thickness of 15 
cm.  The silo will be filled with an incompressible material with a bulk density of 720 kg/m3.  The wall friction angle 
is 20o and the material’s effective angle of internal friction is 40o, both of which may be assumed to be constant.  
Include a distribution factor in your analysis. 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
The maximum radial stress is the switch stress occurring during discharge and assuming asymptotic behavior for 
the active region.  The asymptotic vertical stress at the wall for the active state is, 

𝜎!!,#,$,% =
&!'(

)*"+",$𝔇$
. (1) 

Thus, the wall radial stress at the switch plane in the passive region is, 
𝜎--,#,.,/01234 = 𝐾#,.𝜎!!,#,$,% =

&!'(+",%
)*"+",$𝔇$

. (2) 

where, 
𝜇# = tan𝜙#, (3) 
𝐾# =

567 /18 9 3:/(<67=")
5?7 /18 9 3:/(<67=")

   (𝜅% = +1, 𝜅. = −1), (4) 

sin𝜔 = /18="
/18 9

, (5) 

𝔇% =
3:/& 9

+",$(5?/18& 9?@A /18 9)
, (6) 

𝑦 = @
BC
21 − (1 − 𝑐)B/@6, (7) 

𝑐 = 72E8="
2E89

8
@
. (8) 

Using the given values, 
𝜌F = 700 kg/m3, g = 9.81 m/s2, 𝜙# = 20o, 𝛿 = 40o, 
=>  𝜇# = 0.364, 𝜔 = 32.15o, 𝐾#,% = 0.228, 𝐾#,. = 2.303, 𝑐 = 0.188, 𝑦 = 0.951, 𝔇% = 0.975, 
=>  𝜎--,#,.,/01234 = 501.9 kPa. 

 
 
 
 
 
 
 
 
The hoop stress may be found by balancing lateral forces on half the cylindrical bin cross-section, 

2𝜎4::G𝑡𝐿 = 𝜎--𝐷𝐿  =>  𝜎4::G = 𝜎-- 7
(
@H
8, (5) 

where L is the distance into the page.  Using the previously calculated and the given values, 
𝜎4::G = 16.7	MPa. (6) 

 
 

  

g 

D 

t 

𝜎4::G 𝜎4::G 𝜎II 

𝐷 𝑡 
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The following Python code was used to perform the calculations. 
# janssen_05.py 
 
import numpy as np 
 
def K_w_fcn(delta_rad, phiw_rad, kappa): 
    omega_rad = np.arcsin(np.sin(phiw_rad)/np.sin(delta_rad)) 
    return ( (1-kappa*np.sin(delta_rad)*np.cos(omega_rad - 
kappa*phiw_rad))/(1+kappa*np.sin(delta_rad)*np.cos(omega_rad - kappa*phiw_rad)) ) 
  
def ScriptD_fcn(delta_rad, phiw_rad, kappa): 
    K_w = K_w_fcn(delta_rad, phiw_rad, kappa) 
    c = (np.tan(phiw_rad)/np.tan(delta_rad))**2 
    y = 2/3/c*(1-(1-c)**1.5) 
    print('(c, y) = (%.3f, %.3f)' % (c, y)) 
    return( (np.cos(delta_rad))**2/(K_w*(1+(np.sin(delta_rad))**2 + kappa*2*y*np.sin(delta_rad))) ) 
 
# The given parameters: 
D = 10  # m, diameter 
t = 0.15  # m, wall thickness 
rhob = 720 # kg/m^3, bulk density 
g = 9.81  # m/s^2, gravitational acceleration 
delta_deg = 40  # deg, effective angle of internal friction 
delta_rad = np.radians(delta_deg)  # convert to radians 
phiw_deg = 20  # deg, wall friction angle 
phiw_rad = np.radians(phiw_deg)  # convert to radians 
 
mu_w = np.tan(phiw_rad)  # wall friction coefficient 
print('mu_w = %.3f' % mu_w) 
 
omega_rad = np.arcsin(np.sin(phiw_rad)/np.sin(delta_rad)) # angle omega 
print('omega = %.3f deg' % np.degrees(omega_rad)) 
 
K_wA = K_w_fcn(delta_rad, phiw_rad, 1)  # active Janssen coeff at the wall 
K_wP = K_w_fcn(delta_rad, phiw_rad, -1)  # passive Janssen coeff at the wall 
print('(K_wA, K_wP) = (%.3f, %.3f)' % (K_wA, K_wP)) 
 
ScriptD_A = ScriptD_fcn(delta_rad, phiw_rad, 1)  # active distribution factor 
print('ScriptD_A = %.3f' % ScriptD_A) 
 
# Determine the radial switch stress, i.e., the largest stress radial stress. 
sigma_rr_switch = (rhob*g*D*K_wP)/(4*mu_w*K_wA*ScriptD_A) 
print('sigma_rr_switch = %.1f kPa' % (sigma_rr_switch/1000)) 
 
# Calculate the corresponding hoop stress. 
sigma_hoop_switch = sigma_rr_switch*(D/2/t) 
print('sigma_hoop_switch = %.1f MPa' % (sigma_hoop_switch/1e6)) 
 

Running the code provides the following output. 
>> python3 ./janssen_05.py 
mu_w = 0.364 
omega = 32.147 deg 
(K_wA, K_wP) = (0.228, 2.303) 
(c, y) = (0.188, 0.951) 
ScriptD_A = 0.975 
sigma_rr_switch = 501.9 kPa 
sigma_hoop_switch = 16.7 MPa 
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Derive an expression for the force required to push a uniform plug of material of 
length L upward through a vertical pipe of diameter D.  Assume the material bulk 
density is rb, the wall friction coefficient is µw and Janssen’s coefficient is K.  
Assume all of these quantities are constants. 
 
Sketch how the force increases with increasing material length in the pipe. 
 
 
 
SOLUTION: 
 
 
 
 
  
 
 
 
 
 
 
Balance forces in the vertical direction on a differentially thin material element, 

∑𝐹! = 0 = 𝐹" − 𝐹# − 𝐹$ −𝑊, (1) 
where, 

𝐹" = 𝜎%%((((
&'!

(
, (2) 

𝐹# = (𝜎%%(((( + 𝑑𝜎%%(((()
&'!

(
, (3) 

𝐹$ = 𝜏)(𝜋𝐷𝑑𝑧), (4) 

𝑊 = 𝜌*𝑔
&'!

(
𝑑𝑧. (5) 

Substitute and simplify, 

𝜎%%((((
&'!

(
− (𝜎%%(((( + 𝑑𝜎%%(((()

&'!

(
− 𝜏)(𝜋𝐷𝑑𝑧) − 𝜌*𝑔

&'!

(
𝑑𝑧 = 0, (6) 

+,""-----
+%

+ (
'
𝜏) = −𝜌*𝑔. (7) 

Relate the shear stress at the wall to the radial stress at the wall via the wall friction coefficient, 
𝜏) = 𝜇)𝜎..,). (8) 

Relate the radial normal stress at the wall to the vertical normal stress at the wall using Janssen’s coefficient, 
𝜎..,) = 𝐾)𝜎%%,). (9) 

Relate the vertical stress at the wall to the average vertical stress using a distribution factor, 
𝜎%%,) = 𝒟𝜎%%((((. (10) 

Substitute Eqs. (8) – (10) into Eq. (7), 
+,""-----
+%

+ (0#1#𝒟
'

𝜎%%(((( = −𝜌*𝑔. (11) 
 
Solve the previous differential equation assuming the material bulk density, gravitational acceleration, wall 
friction coefficient, Janssen coefficient, and distribution factor don’t vary with the elevation, 

𝜎%%(((( = − 3$4'
(0#1#𝒟

+ 𝐶 exp :−4𝜇)𝐾)𝒟
%
'
<, (12) 

where 𝐶 is a constant of integration.  This constant may be found from the boundary condition applied at z = L 
where the stress is zero, 

𝜎%%(((((𝑧 = 𝐿) = 0 = − 3$4'
(0#1#𝒟

+ 𝐶 exp :−4𝜇)𝐾)𝒟
5
'
<  =>  𝐶 = 3$4'

(0#1#𝒟
exp :4𝜇)𝐾)𝒟

5
'
<. (13) 
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D 
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L 

z 
𝑑𝑧 𝐹$ 

𝐹" 

𝐹#  

𝑊 
Assume the material is 
slipping upwards. 
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Thus, the vertical stress distribution is, 
𝜎%%(((( = − 3$4'

(0#1#𝒟
+ 3$4'

(0#1#𝒟
exp :4𝜇)𝐾)𝒟

5
'
< exp :−4𝜇)𝐾)𝒟

%
'
<, (14) 

𝜎%%(((( =
3$4'

(0#1#𝒟
>exp ?4𝜇)𝐾)𝒟:

56%
'
<@ − 1B. (15) 

 
The force applied by the piston is, 

𝐹 = 𝜎%%(((((𝑧 = 0) &'
!

(
= &'!

(
3$4'

(0#1#𝒟
>exp ?4𝜇)𝐾)𝒟:

5
'
<@ − 1B. (16)  

In dimensionless form, 
𝐹 :780#1#𝒟

&3$4'%
< = exp ?4𝜇)𝐾)𝒟 :

5
'
<@ − 1.  (17)  

A plot of the dimensionless force as a function of the dimensionless length is shown below.   
 
Note that the force increases exponentially with the length of material in the cylinder and extremely large 
forces are required to push long lengths of material through the pipe.  Thus, granular materials are rarely 
“pumped” through pipes, unlike fluids. 

 
 
The following Python code was used to generate the plot. 

# janssen_06.py 
 
import numpy as np 
import matplotlib.pyplot as plt 
 
def F_prime(Lprime):  # dimensionless force 
    return (np.exp(Lprime)-1) 
 
Lprime_values = np.linspace(0,5,1000)  # range of dimensionless length 
 
F_values = F_prime(Lprime_values)  # calculate dimensionless force values 
 
# Plot the results. 
plt.plot(Lprime_values, F_values, color='k', linestyle = 'solid', marker='') 
plt.xlabel(r'dimensionless bed height, $4 \mu_w K_w \mathcal{D} \left(\frac{L}{D}\right)$') 
plt.ylabel(r'dimensionless force, $\left(\frac{16 \mu_w K_w \mathcal{D}}{\pi \rho_b g D^3}\right) F$') 
plt.margins(x=0,y=0) 
plt.show() 
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CHAPTER 6

Stresses in a Conical Hopper

In addition to cylindrical bins, conical hoppers are also common geometries found in industrial applications.
In this chapter we apply the Method of Differential Slices to a conical hopper. Although not provided in this
chapter, the same analysis can be performed for a wedge-shaped hopper (aka a planar or slot hopper).

6.1. Force Balance on a Differential Material Element

Consider an axi-symmetric conical hopper containing a material with constant properties, as shown in Fig-
ure 6.1. For this geometry, we’ll put the coordinate system at the hopper apex for convenience. We’ll also
assume the hopper has a half-angle from the vertical of θ. Assume the material is in an incipient state of
downward slip, as if it was discharging from the hopper, for example. As with the analysis for a cylindrical
bin, we’ll balance forces in the vertical direction on a thin horizontal element, which can be written as,∑

Fz = 0 = Fbottom − Ftop −W + Fsides. (6.1)

The force that the material below the element exerts upward on the element is,

Fbottom = σzzA, (6.2)

where σzz is the average vertical normal stress acting on the element and A is the cross-sectional area of the
element. The force that the material above the element exerts downward on the element is,

Ftop = σzzA+ d (σzzA) , (6.3)

Note that both the average vertical normal stress and the element area can change over the small distance
dz; hence, the differential term includes both the stress and area. The material (differential) weight acts

Figure 6.1. Forces in the vertical direction on a thin material element in a conical hopper.
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Figure 6.2. A schematic showing the length of the element at the inclined wall along with
the angles for determining the vertical components of the normal and shear stresses at the
wall.

downward and is given by,

W = ρbgdV = ρbgAdz, (6.4)

where ρb is the material bulk density, g is the acceleration due to gravity, and dV is the differential volume
of the element, which is given by dV = Adz. As the element thickness approaches zero, the small volume
of material in the corners of the element becomes exceedingly small and can be neglected. Lastly, the force
acting at the sides of the element include a wall normal force and a wall tangential force. The vertical
components of these forces are given by,

Fsides = σwP

(
dz

cos θ

)
sin θ + τwP

(
dz

cos θ

)
cos θ, (6.5)

where σw and τw are the normal and tangential stresses at the wall and P is the perimeter of the element.
Note that the inclined distance of the element along the wall is dz/ cos θ, as shown in Figure 6.2.

Substituting these terms into the force balance and simplifying,

σzzA− [σzzA+ d (σzzA)]− ρbgAdz + σwP

(
dz

cos θ

)
sin θ + τwP

(
dz

cos θ

)
cos θ = 0, (6.6)

− d (σzzA)− ρbgAdz + P

(
dz

cos θ

)
(σw sin θ + τw cos θ) = 0, (6.7)

−Adσzz − σzzdA+ P

(
dz

cos θ

)
(σw sin θ + τw cos θ) = ρbgAdz, (6.8)

dσzz

dz
+

1

A

dA

dz
σzz −

P

A

(
1

cos θ

)
(σw sin θ + τw cos θ) = −ρbg. (6.9)

For a conical hopper, which has a circular cross section, the area and perimeter of the element are,

A =
πD2

4
, (6.10)

P = πD, (6.11)

where D is the diameter at the elevation z, i.e.,

D = 2z tan θ. (6.12)

Note that,

1

A

dA

dz
=

(
4

πD2

)(
π2D

4

dD

dz

)
, (6.13)

=
2

D
(2 tan θ) , (6.14)
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=
2

2z tan θ
(2 tan θ) , (6.15)

=
2

z
. (6.16)

In addition, the wall shear stress is related to the wall normal stress via the wall friction angle, ϕw,

τw = σw tanϕw. (6.17)

Substituting these expressions into the force balance and simplifying gives,

dσzz

dz
+

2

z
σzz −

πD

πD2/4

(
1

cos θ

)
(σw sin θ + σw tanϕw cos θ) = −ρbg, (6.18)

dσzz

dz
+

2

z
σzz −

2

z tan θ

(
1

cos θ

)
σw (sin θ + tanϕw cos θ) = −ρbg, (6.19)

dσzz

dz
+

2

z
σzz −

2

z sin θ
σw (sin θ + tanϕw cos θ) = −ρbg, (6.20)

dσzz

dz
+

2

z
σzz − σw

2

z

(
1 +

tanϕw

tan θ

)
= −ρbg. (6.21)

At this point we have a differential equation involving the average vertical normal stress (σzz) and the normal
stress at the wall (σw). We can relate the normal stress at the wall to the average vertical stress using a
Mohr’s circle applied to a material element at the wall and a distribution factor.

First, consider the Mohr’s circle for a material element adjacent to the wall in a passive state as shown in
Figure 6.3. The corresponding material element is shown in Figure 6.4. Assume the material element is
yielding internally, thus touching the effective yield locus (EYL) at point I, and yielding at the wall, thus
touching the wall yield locus (WYL) at point WP . As shown in Figure 6.4, the radial stress plane is at an
angle θ in the counter-clockwise direction from the wall plane which means that the radial plane stress state
RP is rotated an angle 2θ in the counter-clockwise direction from the wall stress state WP in the Mohr’s
circle. The vertical stress state ZP is located 180◦ from the radial stress state in the Mohr’s circle. Recall
that for a passive stress state, σrr,w > σzz,w and, thus, point RP is located to the right of point ZP in the
Mohr’s circle. From the right triangle ∆OIp,

sin δ =
R

p
=⇒ R = p sin δ. (6.22)

Let ω be the angle between lines OWP and pWP . From the Law of Sines on triangle ∆OWP p,

sinω

p
=

sinϕw

R
. (6.23)

Substituting Eq. (6.22) into Eq. (6.23),

sinω =
sinϕw

sin δ
. (6.24)

Since the interior angles of a triangle sum to π radians, the angle between line Op and pWp must be π−ω−ϕw.
The other angles in Figure 6.3 may be found from similar geometric arguments.

Using the Mohr’s circle geometry, the wall normal stress, radial normal stress, and vertical normal stress can
be written, respectively, as,

σw = p+R cos(ω + ϕw), (6.25)

σrr,w = p+R cos(ω + ϕw + 2θ), (6.26)

σzz,w = p−R cos(ω + ϕw + 2θ). (6.27)

Making use of Eq. (6.22), the previous equations become,

σw = p [1 + sin δ cos(ω + ϕw)] , (6.28)

σrr,w = p [1 + sin δ cos(ω + ϕw + 2θ)] , (6.29)
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Figure 6.3. A Mohr’s circle for a material element in a passive state adjacent to the wall
in a conical hopper. Recall that in a passive state σrr,w > σzz,w.

Figure 6.4. A material element located at the wall in a conical bin. The wall stress state
is W = (σw, τw), the radial stress state is R = (σrr,w, τrz,w), and the vertical stress state is
Z = (σzz,w, τzr,w = −τrz,w).

σzz,w = p [1− sin δ cos(ω + ϕw + 2θ)] . (6.30)

Thus, we can write the ratios,

σw

σzz,w
=

1 + sin δ cos(ω + ϕw)

1− sin δ cos(ω + ϕw + 2θ)
, (6.31)

σrr,w

σzz,w
= Kw,P =

1 + sin δ cos(ω + ϕw + 2θ)

1− sin δ cos(ω + ϕw + 2θ)
. (6.32)

where Kw is Janssen’s constant at the wall.
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Figure 6.5. A Mohr’s circle for a material element in an active state adjacent to the wall
in a conical hopper. Recall that in an active state σzz,w > σrr,w.

We can perform a similar analysis for the active state using the Mohr’s circle shown in Figure 6.5. For this
case, the stress ratios are,

σw

σzz,w
=

1− sin δ cos(ω − ϕw)

1 + sin δ cos(ω − ϕw − 2θ)
, (6.33)

σrr,w

σzz,w
= Kw,A =

1− sin δ cos(ω − ϕw − 2θ)

1 + sin δ cos(ω − ϕw − 2θ)
. (6.34)

The stress ratios for the passive and active cases may be written more compactly as,

σw

σzz,w
=

1− κ sin δ cos(ω − κϕw)

1 + κ sin δ cos(ω − κϕw − κ2θ)
, (6.35)

σrr,w

σzz,w
= Kw =

1− κ sin δ cos(ω − κϕw − κ2θ)

1 + κ sin δ cos(ω − κϕw − κ2θ)
. (6.36)

where κ = +1 for the active case and κ = −1 for the passive case.

From Eq. (6.35), we now have an expression relating σw to σzz,w which can be substituted into Eq. (6.21).
To relate σzz,w to σzz, make use of a distribution factor, D, which is defined as,

D :=
σzz,w

σzz
=⇒ σzz,w = Dσzz. (6.37)

Substituting Eqs. (6.35) and (6.37) into Eq. (6.21) results in,

dσzz

dz
+

2

z
σzz − σzz,w

[
1− κ sin δ cos(ω − κϕw)

1 + κ sin δ cos(ω − κϕw − κ2θ)

]
2

z

(
1 +

tanϕw

tan θ

)
= −ρbg, (6.38)

dσzz

dz
+

2

z
σzz −Dσzz

[
1− κ sin δ cos(ω − κϕw)

1 + κ sin δ cos(ω − κϕw − κ2θ)

]
2

z

(
1 +

tanϕw

tan θ

)
= −ρbg, (6.39)
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Figure 6.6. At the free surface of the material (z = H) the average vertical applied stress,
i.e., the surcharge, is assumed to be σzz,H .

dσzz

dz
+

2

z

{
1−D

[
1− κ sin δ cos(ω − κϕw)

1 + κ sin δ cos(ω − κϕw − κ2θ)

](
1 +

tanϕw

tan θ

)}
σzz = −ρbg, (6.40)

dσzz

dz
+

C

z
σzz = −ρbg, (6.41)

where,

C := 2

{
1−D

[
1− κ sin δ cos(ω − κϕw)

1 + κ sin δ cos(ω − κϕw − κ2θ)

](
1 +

tanϕw

tan θ

)}
. (6.42)

Equation (6.41) can be solved analytically by multiplying the entire equation by zC and separating variables,

dσzz

dz
zC +

C

z
σzzz

C = −ρbgz
C , (6.43)

zCdσzz + σzzCzC−1 = −
(
ρbgz

C
)
dz, (6.44)

d
(
zCσzz

)
= −

(
ρbgz

C
)
dz. (6.45)

Integrating both sides of the previous equation assuming the properties (δ, ϕw, ρb), gravitational acceleration
(g), and distribution factor (D) do not vary with the height z, we obtain,

zCσzz =

{
−
(

ρbg
C+1

)
zC+1 + c1 C ̸= −1

−ρbg ln z + c1 C = −1
, (6.46)

σzz =

{
−
(

ρbg
C+1

)
z + c1z

−C C ̸= −1

−ρbgz ln z + c1z C = −1
. (6.47)

where c1 is an unknown constant of integration. Note that we’ll address the constant distribution factor
assumption later in this chapter.

To determine the integration constant c1, make use of a boundary condition at the free surface of the material.
Assume the average vertical applied stress at the free surface, i.e., the surcharge, is (Figure 6.6),

σzz|z=H = σzz,H . (6.48)

Substitute into Eq. (6.47) and solve for the constant c1,

σzz,H =

{
−
(

ρbg
C+1

)
H + c1H

−C C ̸= −1

−ρbgH lnH + c1H C = −1
, (6.49)

c1 =

{
σzz,HHC +

(
ρbg
C+1

)
H1+C C ̸= −1

σzz,H

H + ρbg lnH C = −1
. (6.50)
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Thus,

σzz =

{
σzz,HHCz−C −

(
ρbg
C+1

) (
z −H1+Cz−C

)
C ̸= −1

−ρbgz ln z +
σzz,H

H z + ρbgz lnH C = −1
. (6.51)

The previous equation may be written in dimensionless form as,

σzz

ρbgH
=


(

σzz,H

ρbgH
+ 1

C+1

) (
z
H

)−C −
(

1
C+1

) (
z
H

)
C ̸= −1[

σzz,H

ρbgH
− ln

(
z
H

)] (
z
H

)
C = −1

. (6.52)

Re-writing some previous equations for convenience,

C := 2

{
1−D

[
1− κ sin δ cos(ω − κϕw)

1 + κ sin δ cos(ω − κϕw − κ2θ)

](
1 +

tanϕw

tan θ

)}
, (6.53)

sinω =
sinϕw

sin δ
, (6.54)

D :=
σzz,w

σzz
, (6.55)

σw

σzz,w
=

1− κ sin δ cos(ω − κϕw)

1 + κ sin δ cos(ω − κϕw − κ2θ)
, (6.56)

σrr,w

σzz,w
= Kw =

1− κ sin δ cos(ω − κϕw − κ2θ)

1 + κ sin δ cos(ω − κϕw − κ2θ)
, (6.57)

τrz,w = σw tanϕw, (6.58)

where κ = +1 for the active state and κ = −1 for the passive state.

Of particular interest is the value of the stress at the cone’s vertex (z = 0) since that is where feeding
equipment and valves are typically located. Taking the limit of Eq. (6.52) as z/H → 0,

lim
z/H→0

(
σzz

ρbgH

)
=


(

σzz,H

ρbgH
+ 1

C+1

)
limz/H→0

(
z
H

)−C −
(

1
C+1

)
limz/H→0

(
z
H

)
C ̸= −1

limz/H→0

[
σzz,H

ρbgH
− ln

(
z
H

)] (
z
H

)
C = −1

, (6.59)

=


0 C < 0 (including C = −1)

∞ C > 0
σzz,H

ρbgH
+ 1 C = 0

. (6.60)

Thus, negative values of C result in zero stress at the vertex, which implies that the stresses acting on
discharge equipment would be small. Positive values of C result in unbounded stresses at the vertex, which
isn’t physically reasonable (hoppers don’t explode when filled with powder, fortunately). When C = 0 the
vertex stress is equal to what would be expected for hydrostatic loading.

Figure 6.7 plots the dimensionless average vertical normal stress as a function of dimensionless height from the
cone’s vertex (Eq. (6.52)) for various values of C, assuming no surcharge stress. Consistent with Eq. (6.60),
when C > 0 the stresses increase from zero at the free surface (no surcharge) and diverge to infinity ap-
proaching the vertex. When C = 0 the stress profile is linear with depth, indicating hydrostatic loading.
When C < 0 the stress first increases with depth from the free surface, reaches a maximum, then decreases
to zero at the vertex. For negative values of C but close to a value of zero, the stress remains close to the
hydrostatic case until close to the vertex.

The parameter C in Eq. (6.42) is a complex function of the effective angle of internal friction (δ), the wall
friction angle (ϕw), and the hopper wall half angle (θ). Walters [1] assumed that the wall shear stress should
point upwards (τrz,w ≥ 0) otherwise the vertical stress gradient with depth would be larger than hydrostatic.
From the active state Mohr’s circle (Figure 6.5), we see that,

τrz,w ≥ 0 =⇒ ω − ϕw − 2θ ≥ 0 =⇒ θ ≤ 1

2
(ω − ϕw) . (6.61)
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Figure 6.7. The dimensionless average vertical normal stress (horizontal axis) plotted as
a function of the dimensionless height above the vertex (vertical axis) for a conical hopper
for various values of C (refer to Eq. (6.52)). Note that zero surcharge stress is assumed, i.e.,
σzz,H = 0.

For wall angles larger than this critical value, the stress state is likely not internally yielding or yielding at
the wall [2]. Figure 6.8 plots this maximum wall angle as a function of the wall friction angle for various
effective internal friction angles.

For the passive state the shear stress will always be positive, but there is the limitation that the point Rp in
Figure 6.3 should remain to the right of the point I. Mathematically,

ω + ϕw + 2θ ≤ π −
(π
2
− δ
)

=⇒ θ ≤ 1

2

(π
2
+ δ − ω − ϕw

)
. (6.62)

Figure 6.8 also plots this limiting hopper wall half angle as a function of the wall friction angle. Walters [1]
assumed that large wall angles were unlikely to be in mass flow, i.e., not yielding at the wall or internally,
and, thus, the current analysis would not hold.

6.2. The Distribution Factor for a Conical Hopper

Now examine the distribution factor D for a conical hopper. The analysis here is similar to the one presented
for a cylinder in Section 5.3. The average vertical stress can be determined from,

σzz =
1

πD2/4

ˆ D/2

0

σzz,r(2πrdr), (6.63)

where σzz,r is the value of the vertical stress at radius r. As with the distribution factor analysis for a
cylinder, the two assumptions by Walters [1] are used: (1) the radial stress remains constant with radius, and
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Figure 6.8. The maximum wall half angle (θ) plotted as a function of the wall friction
angle (ϕw) for various effective angles of internal friction (δ) using Eqs. (6.61) (solid lines)
and (6.62) (dashed lines) for the active and passive states, respectively. Note that ϕw ≤ δ.

(2) the distribution factor is independent of elevation. The first assumption was shown to be incorrect in the
previous chapter. The second assumption was true at large depths in cylindrical bins where the vertical stress
asymptotes, but in the conical geometry the vertical stress doesn’t asymptote. The only location where the
shear stress varies linearly with radius is at the stress maximum where ∂σzz/∂z = 0 (and the vertical normal
stresses on a material element balance). Despite these poor assumptions, we will continue the analysis for
completeness.

Figure 6.9 shows two material elements in the conical bin: one at the centerline (red) and one adjacent to
the wall (blue). The corresponding Mohr’s circles for the two elements for the passive and active cases are
shown in Figures 6.10. The material elements are assumed to be yielding internally and the element adjacent
to the wall is assumed to be yielding at the wall (point W on the Mohr’s circle). In the real world, to go
from the wall plane to the plane on which the radial normal stress acts we move in the counter-clockwise
direction by an angle θ. Thus, in the Mohr’s circle we rotate in the counter-clockwise direction an angle 2θ to
go from stress state W to stress state R. Comparing these two Mohr’s circles to those used in the cylindrical
bin distribution factor derivation (Figures 5.11) we see that the Mohr’s circles are nearly identical except
the radial stress aligns with point Rw, which is at angle η with respect to the origin, rather than point W ,
which is at ϕw. Thus, the expression for the distribution factor derived for the cylinder geometry can be
used for the conical geometry except the term τrz,w/σrr should equal tan η instead of tanϕw. In addition
the expression for Kw should be Eq. (6.36). Thus, the distribution factor for a conical hopper is,

D =
cos2 δ

Kw

(
1 + sin2 δ + κ2y sin δ

) , (6.64)

where,

Kw =
1− κ sin δ cos(ω − κϕw − κ2θ)

1 + κ sin δ cos(ω − κϕw − κ2θ)
, (6.65)

sinω =
sinϕw

sin δ
, (6.66)
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Figure 6.9. Two material elements in the conical hopper. One at the hopper’s centerline
(red) and one adjacent to the wall (blue). The elements’ stress states on radial faces are
noted by R and the stress states on the vertical faces are identified by Z.

y =
2

3c

[
1− (1− c)3/2

]
, (6.67)

c =

(
tan η

tan δ

)2

, (6.68)

with κ = +1 for the active state and κ = −1 for the passive state. The angle η can be found from the
geometry in the Mohr’s circles,

tan η =
τrz,w
σrr,w

, (6.69)

=
R sin(ω − κϕw − κ2θ)

p− κR cos(ω − κϕw − κ2θ)
, (6.70)

=
p sin δ sin(ω − κϕw − κ2θ)

p [1− κ sin δ cos(ω − κϕw − κ2θ)]
, (6.71)

tan η =
sin δ sin(ω − κϕw − κ2θ)

1− κ sin δ cos(ω − κϕw − κ2θ)
, (6.72)

where,

sinω =
sinϕw

sin δ
. (6.73)

Note that when θ = 0, η = ϕw. Plots of the angle η as a function of the wall friction angle for various effective
internal friction angles and wall half angles are shown in Figure 6.11.

Now let’s return to parameter C in Eq. (6.53). This parameter is a complex function of the effective angle
of internal friction (δ), the wall friction angle (ϕw), and the hopper wall half angle (θ). Figure 6.12 plots
active and passive state values for C as a function of the wall friction angle for a variety of effective angles
of internal friction at three different hopper wall half angles. These plots also take into account the limiting
angles given by Eqs. (6.61) and (6.62). For all angles, C < 0 resulting in the stresses approaching zero at the
hopper apex.

Notes:

(1) There is some disagreement as to the what the state of stress is within the hopper after filling.
Nedderman [3] argues that as material fills the hopper, the material slides downward along the wall.
As a result, the material is compressed laterally by the converging walls resulting in σrr,w > σzz,w
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(a) Active state

(b) Passive state

Figure 6.10. The Mohr’s circles for centerline (red) and wall (blue) material elements.

and a passive stress state. In contrast, Schulze [2] states that, in general, the vertical stresses are
larger than the horizontal stresses after filling. Other studies (e.g., McLean [4]) have shown that the
material compressibility and hopper compliance can affect the filling stress state. Regardless of the
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(a) θ = 10◦ (b) θ = 20◦ (c) θ = 30◦

Figure 6.11. The angle η as a function of the wall friction angle (ϕw) for various effective
internal friction angles (δ) and wall half angles (θ). Equation (6.72) was used to produce the
plots.

(a) Active, θ = 10◦ (b) Active, θ = 20◦ (c) Active, θ = 30◦

(d) Passive, θ = 10◦ (e) Passive, θ = 20◦ (f) Passive, θ = 30◦

Figure 6.12. The parameter C (Eq. (6.42)) plotted as a function of the wall friction angle
(ϕw) for various values of the effective angle of internal friction (δ) for three different wall
half angles from the vertical (θ). The dashed termination lines correspond to the limiting
angles given by Eqs. (6.61) and (6.62).

actual stress state, the active case generally provides a more conservative estimate of the stresses
since it is close to hydrostatic, except near the apex.

(2) During discharge, the conical hopper is observed to be in a passive stress state. As the material
moves toward the exit, it is compressed laterally by the walls and elongates vertically. Thus,
σrr > σzz.

(3) Other models, for example, those assuming a radial stress field (e.g., Jenike [5]), provide better
predictions for the stress state in a conical hopper than what’s presented here, but the trends from
the Method of Differential Slices model are consistent with observations and still provide valuable
insight.
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(a) Active (b) Passive

Figure 6.13. Sketches of the lines of major principal stress in a conical hopper.

(4) Lines of major principal stress within a conical hopper are sketched in Figure 6.13. As with the
cylindrical bin, the vertical and radial stresses along the centerline are principal stresses. For the
active state, σzz > σrr and the slope of the major principal stress line at the centerline is vertical.
For the passive state, σrr > σzz and the major principal stress line slope at the centerline is
horizontal. Referring to Figures 6.5 and 6.3, at the wall the angles of the major principal stress line
with respect to the wall normal are 1

2 (π−ω+ϕw) and
1
2 (ω+ϕw), for the active and passive states,

respectively.

6.3. The Switch Stress

In many industrial applications a cylindrical bin has a conical hopper attached to its bottom to facilitate
discharge of material (Figure 6.14). A switch stress is observed at the junction of the two geometries. This
section combines the models from this chapter and the previous one to predict the magnitude of the switch
stress. Assume the material in the cylinder is in an active state since it’s far from the exit, and reaches its
asymptotic values,

(σzz,∞, σrr,w = σw)
∣∣
cyl,int

=

(
ρbgD

4 tanϕwKw,A,cylDA,cyl
,Kw,A,cyl(DA,cylσzz)

)
. (6.74)

The interface average vertical stress is the surcharge vertical stress for the conical hopper. The corresponding
vertical stress at the wall in the conical bin, assuming a passive state is,

σzz,w = DP,coneσzz. (6.75)

The wall stress at the interface in the conical section is,

σw,cone,int = σzz,w

[
1 + sin δ cos(ω + ϕw)

1− sin δ cos(ω + ϕw + 2θ)

]
. (6.76)

Combining Eqs. (6.74) – (6.76),

σw,cone,int =
ρbgDDP,cone

4 tanϕwKw,A,cylDA,cyl

[
1 + sin δ cos(ω + ϕw)

1− sin δ cos(ω + ϕw + 2θ)

]
. (6.77)
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Figure 6.14. A sketch of a cylindrical bin with a conical hopper at the bottom. Material
in the cylindrical portion is assumed to be in an active state while material in the conical
section is assumed to be in a passive state.

Since KA,cyl < 1, DP,cone > 1, DA,cyl < 1, and the term in square brackets is > 1, the wall stress increases
abruptly, i.e., there is a switch stress at the interface between the cylindrical and conical sections.

Notes:

(1) A similar analysis can be performed for the conical section being in an active state. A switch stress
occurs for that case as well.

(2) Figure 6.15 shows examples of the lines of major principal stress and the corresponding vertical and
wall stresses for systems during filling, assuming the cylinder and cone are both in an active state,
and during discharge where the cylinder remains in an active state but the cone is in a passive state.
A wall switch stress appears in both systems.

(3) Discrete element method computer simulations also show the presence of switch stresses. Figure 6.16
shows the principal stresses in a two-dimensional particulate material discharging from a vertical bin
with a wedge-shaped hopper. The orientation of the crosses in the figure reflect the orientation of
the major and minor principal stresses while the the length of the cross arms correspond to the stress
magnitudes (the larger length being the major principal stress). The figure shows that the major
principal stress direction in the vertical section approaches a vertical orientation while the major
principal stress direction in the hopper is arch-shaped, consistent with the sketch in Figure 6.15b.
The largest stress magnitude, corresponding to a switch stress, occurs at the interface between the
vertical and hopper sections. Note that the stresses decrease toward the hopper exit as predicted.

(4) Figure 6.17 shows experimental results of the wall stresses in a cylinder-cone system. A switch
stress is clearly observed at the interface.

6.4. Enstad’s Conical Hopper Model

Another Method of Differential Slices model for predicting the stresses in a conical hopper comes from
Enstad [7]. This model consists of a vertical force balance on a differential spherical cap element (Figure 6.18)
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(a) After filling with the cylinder and cone in active states.
(b) During discharge with the cylinder in an active state
and cone in a passive state.

.

Figure 6.15. Examples of the lines of major principal stress and the corresponding vertical
and wall stresses for cylinder-cone systems during (left) filling, assuming the cylinder and
cone are both in an active state, and (right) during discharge where the cylinder remains
in an active state but the cone is in a passive state. A wall switch stress appears in both
systems. These figures are slightly modified from [2]

rather than a horizontal, planar element. The model assumes that: (1) the material is in a passive stress
state and is yielding internally and at the wall, and (2) the stress on the upper and lower surfaces of the
spherical cap are minor principal stresses.

Figure 6.19 shows the Mohr’s circle for the material element in Figure 6.18. This Mohr’s circle is identical to
the one used in the planar element analysis in Figure 6.3. Of particular note, the angle from the wall normal
stress to the major principal stress is ω + ϕw in the clockwise direction in the Mohr’s circle, which means
that the same angle in the real world is β := 1

2 (ω + ϕw) with the same orientation, where,

sinω =
sinϕw

sin δ
, (6.78)

and,

sin δ =
R

p
, (6.79)

consistent with previous analyses. Note that the minor principal stress is aligned in the radial direction of
the spherical cap. The cap radius, Rcap is found by applying the Law of Sines to triangle ∆OAB,

sin θ

Rcap
=

sin[π − (θ + β)]

r
=

sin(θ + β)

r
, (6.80)

Rcap = r

[
sin θ

sin(θ + β)

]
, (6.81)

where r is the radius from the cone apex out to the spherical cap.
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Figure 6.16. Results from two-dimensional discrete element method computer simulations
of a particulate material discharging from a cylinder-cone system. The crosses in the figure
show the orientation and magnitudes of the major and minor principal stresses. This figure
is from Potapov and Campbell [6].

Figure 6.17. Experimental measurements of the wall stress in a cylinder-cone system. The
switch stress at the interface is clearly visible.

Now examine a vertical force components acting on the element. The element weight acts downward with
magnitude,

W = ρbgdVtotal, (6.82)
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Figure 6.18. The geometry and force balance for the spherical cap element used in the
Enstad model.

Figure 6.19. The Mohr’s circle used in the Enstad model.

where dVtotal is the differential volume of the spherical cap (to be addressed momentarily). The wall normal
and shear stresses also have components in the vertical direction,

Fwall = (σw sin θ + τw cos θ)[2π(r sin θ)dr], (6.83)
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where 2π(r sin θ) is the perimeter of the cap element and dr is the cap differential thickness. Acting on the
top and bottom surfaces of the element are minor principal stresses, which have vertical force components
of,

Fbottom = σ2π(r sin θ)
2, (6.84)

Ftop = σ2π(r sin θ)
2 + d

[
σ2π(r sin θ)

2
]
. (6.85)

Balancing forces in the vertical direction,∑
Fvertical = 0 = −W + Fwall + Fbottom − Ftop, (6.86)

− ρbgdVtotal + (σw sin θ + τw cos θ)[2π(r sin θ)dr] + σ2π(r sin θ)
2

−
{
σ2π(r sin θ)

2 + d
[
σ2π(r sin θ)

2
]}

= 0,
(6.87)

− ρbgdVtotal + (σw sin θ + τw cos θ)[2π(r sin θ)dr]− d
[
σ2π(r sin θ)

2
]
= 0. (6.88)

At this point, refer back to the Mohr’s circle (Figure 6.19) to obtain expressions for the wall normal stress,
wall shear stress, and minor principal stress,

σw = p+R cos(ω + ϕw) = p [1 + sin δ cos(ω + ϕw)] , (6.89)

τw = σw tanϕw, (6.90)

σ2 = p−R = p(1− sin δ), (6.91)

where Eq. (6.79) has been used to eliminate the radius R in the previous equations.

Now determine the differential volume of the spherical cap element (Vtotal). To find this volume, first
determine the volume of all the material from the cone vertex up to the top of the spherical cap. This volume
is the sum of the volumes of a cone and a spherical cap,

Vtotal = Vcone + Vcap, (6.92)

where,

Vcone =
π

3
(r sin θ)2(r cos θ), (6.93)

and,

Vcap =
π

3
R3

cap [2 + cos(θ + β)] [1− cos(θ + β)]
2
, (6.94)

=
π

3

{
r

[
sin θ

sin(θ + β)

]}3

[2 + cos(θ + β)] [1− cos(θ + β)]
2
, (6.95)

making use of Eq. (6.81). Thus,

Vtotal =
π

3
(r sin θ)2(r cos θ) +

π

3

{
r

[
sin θ

sin(θ + β)

]}3

[2 + cos(θ + β)] [1− cos(θ + β)]
2
. (6.96)

Now differentiate with respect to r to get the differential cap volume,

dVtotal = πr2 sin2 θf(θ, β)dr, (6.97)

where,

f(θ, β) := cos θ +

[
sin θ

sin3(θ + β)

]
[2 + cos(θ + β)] [1− cos(θ + β)]

2
. (6.98)

Substitute into Eq. (6.88) the expressions for the wall normal, wall shear, and minor principal stresses as well
as the element differential volume,

− ρbgπr
2 sin2 θf(θ, β)dr

+ p [1 + sin δ cos(2β)] (sin θ + tanϕw cos θ)) [2π(r sin θ)dr]

− d
[
p(1− sin δ)π(r sin θ)2

]
= 0.

(6.99)

C. Wassgren 128 2024-06-12



Powder Storage and Flow

where β = 1
2 (ω+ϕw). Now expand the differential term and move the element weight to the right-hand side

of the equation,

p [1 + sin δ cos(2β)] (sin θ + tanϕw cos θ)[2π(r sin θ)dr]

− dp(1− sin δ)πr2 sin2 θ − p(1− sin δ)π
(
2r sin2 θdr

)
= ρbgπr

2 sin2 θf(θ, β)dr.

(6.100)

Dividing by (1− sin δ)πr2 sin2 θdr,

2p
[1 + sin δ cos(2β)] (sin θ + tanϕw cos θ)

(1− sin δ)r sin θ
− dp

dr
− 2

r
p = ρbg

[
f(θ, β)

1− sin δ

]
. (6.101)

Re-arrange the terms to bring the dp/dr expression to the front, combine the p terms, and multiply through
by −1,

dp

dr
−
{
[1 + sin δ cos(2β)] (1 + tanϕw cot θ)

1− sin δ
− 1

}
2

r
p = −ρbg

[
f(θ, β)

1− sin δ

]
. (6.102)

Writing the previous expression more compactly,

dp

dr
− X

r
p = −ρbgY, (6.103)

where,

X := 2

{
[1 + sin δ cos(2β)](1 + tanϕw cot θ)

1− sin δ
− 1

}
, (6.104)

Y :=
f(θ, β)

1− sin δ
. (6.105)

The solution to this ODE is,

p = c1r
X +

ρbgY

X − 1
r, (6.106)

where c1 is a constant of integration. To find this unknown constant, assume the minor principal stress at
the free surface, located at r = R, is σ2,0 as shown in Figure 6.20. Note that from Eq. (6.91),

σ2,0 = p0(1− sin δ) =⇒ p0 =
σ2,0

1− sin δ
. (6.107)

Thus, at the free surface,

p0 = c1R
X +

ρbgY

X − 1
R =⇒ c1 =

(
p0 −

ρbgY

X − 1
R

)
R−X . (6.108)

Finally,

p =

(
p0 −

ρbgY

X − 1
R

)( r

R

)X
+

ρbgY

X − 1
r, (6.109)

or, in dimensionless form,

p

ρbgR
=

(
p0

ρbgR
− Y

X − 1

)( r

R

)X
+

(
ρbgY

X − 1

)( r

R

)
. (6.110)

The wall normal stress can be found using Eq. (6.89),

σw

ρbgR
=

[(
p0

ρbgR
− Y

X − 1

)( r

R

)X
+

(
ρbgY

X − 1

)( r

R

)]
[1 + sin δ cos(2β)] . (6.111)

Notes:

(1) The Enstad and Walters models are compared for two different sets of parameters in Figure 6.21.
Both show similar trends with the maximum wall stress located in similar locations.
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Figure 6.20. The free surface boundary condition used in the Enstad model.

(a) (θ, δ, ϕw) = (15◦, 40◦, 10◦) (b) (θ, δ, ϕw) = (20◦, 30◦, 10◦)

Figure 6.21. Comparisons of the dimensionless wall stresses predicted by the Enstad and
Walters models for two different sets of parameters. There is no surcharge for either case,
passive states of stress are assumed, and the distribution factor for the Walters model is
assumed to be one.

6.5. Summary

The following items summarize the most significant points in this chapter:

(1) The Method of Differential Slices can be applied to conical and wedge-shaped bins. Walters [1] used
a disk element, Enstad [7] used a spherical cap element.

(2) A passive stress state is observed in converging bins during discharge. The stress state during filling
is not well defined. The active state provides a more conservative estimate of the stresses.

(3) For conical and wedge-shaped bins, the stresses approach zero toward the apex of the bin. The
active state is closer to being hydrostatic until near the apex. The load on outlet devices is small!

(4) A wall switch stress is observed at the interface between the cylindrical and conical portions of a
bin. Special attention should be given to this region when designing a storage vessel.
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The dimensionless average vertical stress in a conical hopper as a function of the dimensionless vertical height 
from the vertex is, 

𝜎!!""""
𝜌"𝑔𝐻

= '
(

1
𝐶 + 1, -

𝑧
𝐻/

#$
− (

1
𝐶 + 1,-

𝑧
𝐻/ 𝐶 ≠ −1

−-
𝑧
𝐻/ ln -

𝑧
𝐻/ 𝐶 = −1

 

Derive an expression for the maximum dimensionless average vertical stress and its dimensionless location.  Plot 
the dimensionless location of the dimensionless maximum average vertical stress for various values of the 
constant 𝐶 ≤ 0. 
 
 
SOLUTION: 
To find the maximum, take the derivative of the expression with respect to the dimensionless height and set the 
expression equal to zero, 

%
%(! '⁄ ) -

*!!+++++
,"-'

/ = 0 = 6
−- .

$/.
/ 7𝐶 -!

'
/
#$#.

+ 18 𝐶 ≠ −1

1 + ln-!
'
/ 𝐶 = −1

 (1) 

Solving for the dimensionless height, 

-!
'
/
012

= 6 -− .
$
/
#$
%&$ 𝐶 ≠ −1

exp(−1) ≈ 0.37 𝐶 = −1
 (2) 

Note that, 

lim
$→4

-− .
$
/
#$
%&$ = 0. (3) 

 
The value of the maximum average vertical stress is found by substituting Eq. (2) into the original expression, 

*!!+++++
,"-'

E
012

= 6-
.

$/.
/ -− .

$
/

%
%&$ − - .

$/.
/ -− .

$
/
#$
%&$ 𝐶 ≠ −1

−exp(−1) ln(exp(−1)) 𝐶 = −1
, (4) 
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E
012

= 6−-
.

$/.
/ F-− .

$
/
#$
%&$ − -− .

$
/

%
%&$G 𝐶 ≠ −1

exp(−1) ≈ 0.37 𝐶 = −1
 (5) 

Note that, 

lim
$→4

F- .
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/ -− .
$
/

%
%&$ − - .

$/.
/ -− .

$
/
#$
%&$G = 1 + 0 = 1. (6) 
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Equations (2) and (5) are plotted as a dotted line in the following figure for various values of 𝐶 ≤ 0. 
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The following Python code was used to generate the figure. 
# MoDS_05.py 
 
import numpy as np 
import matplotlib.pyplot as plt 
 
def sigma_zz_prime (zprime, sigma_zz_prime_0, C): 
    # Avg vertical normal stress as a function of dimensionless height. 
    if (C != -1): 
        return (sigma_zz_prime_0*zprime**(-C) - 1/(C+1)*zprime*(1-zprime**(-C-1))) 
    else: 
        return ((sigma_zz_prime_0 - np.log(zprime))*zprime) 
 
def Location(C): 
    # Dimensionless location of the maximum stress. 
    if (C == -1): 
        return(np.exp(-1)) 
    else: 
        return((-1/C)**(-1/(C+1))) 
 
def Value(C): 
    # Dimensionless value of the maximum stress. 
    if (C == -1): 
        return(np.exp(-1)) 
    else: 
        return(-(1/(C+1))*((-1/C)**(-1/(C+1)) - (-1/C)**(C/(C+1)))) 
 
colors = ['k', 'b', 'g', 'r', 'm', 'c', 'y'] 
 
# First, plot some stress vs. height plots. 
zprime = np.linspace(0, 1, 100000) 
C_Values = [0, -0.1, -0.5, -1, -2, -3]  # C values to use for plotting 
color_index = 0 
for C in C_Values: 
    plt.plot(sigma_zz_prime(zprime, 0, C), zprime, linestyle='-', color=colors[color_index], 
label=r'$C=$%.1f' % C) 
    color_index += 1 
 
# Now find the locations and values of the stress maximums. 
Location_Values = []  # array for holding the max location values 
Stress_Values = []  # array for holding the max stress values 
 
C_Values = np.linspace(0, -100, 10000)  # C values to use for plotting 
 
for C in C_Values: 
    Location_Values = np.append(Location_Values, Location(C)) 
    Stress_Values = np.append(Stress_Values, Value(C)) 
 
plt.plot(Stress_Values, Location_Values, linestyle=':', color='k') 
plt.xlabel(r'dimensionless average vertical stress, $\frac{\overline{\sigma_{zz}}}{\rho_b g H}$') 
plt.ylabel(r'dimensionless vertical location, $\frac{z}{H}$') 
plt.xlim([0, 1]) 
plt.ylim([0, 1]) 
plt.legend() 
plt.show() 
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Estimate the maximum wall stress in the discharging hopper shown below.  The incompressible, cohesionless 
material has a bulk density of 700 kg/m3 and has an effective angle of internal friction of 50o.  The wall friction 
angle is 15o. Assume the cylindrical bin is in an active stress state and the converging conical section is in a passive 
state.  Use distribution factors in both the cylindrical and conical sections. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
From the geometry, the vertical distance from the cone apex to the bottom of the conical section is, 

tan 𝜃 =
!
"!

"
  =>  𝐻 =

!
"!

#$%&
  =>  𝐻 = 1.866 m. (1) 

 
The largest wall stress will be a switch stress occurring at the interface between the cylindrical bin and the conical 
wall section and, thus, we must calculate the wall normal stress at the top portion of the conical section.   
 
The average vertical normal stress and wall normal stress (which is equal to the radial normal stress) at the bottom 
of a deep cylindrical bin, assuming an active stress state, are, 

𝜎'',)*+,,(((((((((( = -#.!
/ #$%0$1%,'()𝒟%,'()

  =>  𝜎'',)*+,,(((((((((( = 48.06 kPa, (2) 

where,  
𝐾3,)*+ =

4567% 8 )96(;50$)
4=67% 8 )96(;50$)

  =>  𝐾3,)*+ = 0.1342, (3) 

𝒟3,)*+ =
4

1%,'()
+ )96" 8
4=67%" 8=> 67% 8?

,  =>  𝒟3,)*+ = 0.9936, (4) 

with, 
sin𝜔 = 67%0$

67% 8
  =>  𝜔 = 19.75o, (5) 

𝑐 = 1#$%0$
#$%8

2
>
  =>  𝑐 = 0.0506, (6) 

𝑦 = >
@A
41 − (1 − 𝑐)@/>9  =>  𝑦 = 0.9873. (7) 

 
The wall normal stress at the interface between the cylindrical and conical sections is, 

𝜎C,)9%D,7%# = 𝜎'',C,)9%D,7%# +
4=67% 8 )96(;=0$)

4567% 8 )96(;=0$=>&)
,  =>  𝜎C,)9%D,7%# = 186.4 kPa, (8) 

where, 
𝜎'',C,)9%D,7%# = 𝒟E,)9%D𝜎'',)9%D,F%#((((((((((((( = 𝒟E,)9%D𝜎'',)*+,,((((((((((  =>  𝜎'',C,)9%D,7%# = 77.02 kPa, (9) 

𝒟E,)9%D =
4

1*,'+,-
+ )96" 8
4=67%" 85> 67% 8?

,  =>  𝒟E,)9%D = 1.603, (10) 

𝐾E,)9%D =
4=67% 8 )96(G=H)
4567% 8 )96(G=H)

  =>  𝐾E,)9%D = 1.9709, (11) 

𝐷 

𝜃 

𝐷 = 1 m 
𝜃 = 15o 
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tan 𝜂 = 67% 8 67%(;=0$=>&)
4=67% 8 )96(;=0$=>&)

  =>  𝜂 = 27.57o, (12) 

sinΩ = 67% H
67% 8

  =>  Ω = 37.17o, (13) 

𝑐 = 1#$%H
#$%8

2
>
  =>  𝑐 = 0.1920, (14) 

𝑦 = >
@A
41 − (1 − 𝑐)@/>9  =>  𝑦 = 0.9503. (15) 

 
Thus, the maximum wall stress is 186 kPa, which occurs in the conical section at the interface between the 
cylindrical and conical sections. 
 
The following Python code was used for the calculations. 

# MoDS_04.py 
 
import numpy as np 
from scipy.optimize import bisect 
 
def K_fcn(delta_rad, eta_rad, kappa): 
    omega_rad = np.arcsin(np.sin(eta_rad)/np.sin(delta_rad)) 
    print('omega = %.4f deg' % np.degrees(omega_rad)) 
    return ( (1-kappa*np.sin(delta_rad)*np.cos(omega_rad - 
kappa*eta_rad))/(1+kappa*np.sin(delta_rad)*np.cos(omega_rad-kappa*eta_rad)) ) 
 
def ScriptD_fcn(delta_rad, eta_rad, theta_rad, kappa): 
    K = K_fcn(delta_rad, eta_rad, kappa) 
    c = (np.tan(eta_rad)/np.tan(delta_rad))**2 
    y = 2/3/c*(1-(1-c)**1.5) 
    print('K = %.4f' % K) 
    print('(c, y) = (%.4f, %.4f)' % (c, y)) 
    return(1/K*((np.cos(delta_rad))**2/(1+(np.sin(delta_rad))**2+kappa*2*np.sin(delta_rad)*y))) 
 
def Eta_fcn(delta_rad, phiw_rad, theta_rad, kappa): 
    omega_rad = np.arcsin(np.sin(phiw_rad)/np.sin(delta_rad)) 
    return(np.arctan((np.sin(delta_rad)*np.sin(omega_rad-kappa*phiw_rad-kappa*2*theta_rad))/(1-
kappa*np.sin(delta_rad)*np.cos(omega_rad-kappa*phiw_rad-kappa*2*theta_rad)))) 
 
 
rhob = 700  # kg/m^3, bulk density 
g = 9.81  # m/s^2, gravitational acceleration 
D = 1.0  # m, cylindrical bin diameter 
phiw_deg = 15  # deg, wall friction angle 
delta_deg = 50  # deg, effective angle of internal friction 
theta_deg = 15  # deg, conical wall half angle 
 
phiw_rad = np.radians(phiw_deg) 
delta_rad = np.radians(delta_deg) 
theta_rad = np.radians(theta_deg) 
 
# Calculate the conical section vertical height from the apex. 
H = 0.5*D/np.tan(theta_rad) 
print('H = %.4f m' % H) 
 
print('\nIn the cylindrical section:') 
# Calculate the active Janssen's constant for the cylinder. 
K_A_cyl = K_fcn(delta_rad, phiw_rad, 1) 
print('K_A_cyl = %.4f' % K_A_cyl) 
 
# Calculate the active distribution constant for the cylinder. 
ScriptD_A_cyl = ScriptD_fcn(delta_rad, phiw_rad, theta_rad, 1) 
print('ScriptD_A_cyl = %.4f' % ScriptD_A_cyl) 
 
# Calculate the asymptotic average vertical normal stress in the cylindrical bin. 
sigma_zz_bar_cyl_inf = rhob*g*D/4/np.tan(phiw_rad)/K_A_cyl/ScriptD_A_cyl 
print('sigma_zz_bar_cyl_inf = %.4f kPa' % (sigma_zz_bar_cyl_inf/1000)) 
 
print('\nIn the conical section:') 
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# Calculate the angle eta in the conical section for the passive state. 
eta_rad = Eta_fcn(delta_rad, phiw_rad, theta_rad, -1) 
print('eta = %.4f deg' % np.degrees(eta_rad)) 
 
# Calculate the passive distribution factor in the conical section. 
ScriptD_P_cone = ScriptD_fcn(delta_rad, eta_rad, theta_rad, -1) 
print('ScriptD_P_cone = %.4f' % ScriptD_P_cone) 
 
# Calculate the vertical normal stress in the conical bin at the wall at the interface. 
sigma_zz_w_cone_int = ScriptD_P_cone*sigma_zz_bar_cyl_inf 
print('sigma_zz_w_cone_int = %.4f kPa' % (sigma_zz_w_cone_int/1000)) 
 
# Calculate the wall normal stress in the conical section at the interface. 
omega_rad = np.arcsin(np.sin(phiw_rad)/np.sin(delta_rad)) 
sigma_w_cone_int = sigma_zz_w_cone_int*(1+np.sin(delta_rad)*np.cos(omega_rad+phiw_rad))/(1-
np.sin(delta_rad)*np.cos(omega_rad+phiw_rad+2*theta_rad)) 
print('sigma_w_cone_int = %.4f kPa' % (sigma_w_cone_int/1000)) 

 
Running the Python code produces the following output. 

>> python3 ./MoDS_04.py 
H = 1.8660 m 
 
In the cylindrical section: 
omega = 19.7468 deg 
K_A_cyl = 0.1342 
omega = 19.7468 deg 
K = 0.1342 
(c, y) = (0.0506, 0.9873) 
ScriptD_A_cyl = 0.9936 
sigma_zz_bar_cyl_inf = 48.0612 kPa 
 
In the conical section: 
eta = 27.5727 deg 
omega = 37.1741 deg 
K = 1.9709 
(c, y) = (0.1920, 0.9503) 
ScriptD_P_cone = 1.6026 
sigma_zz_w_cone_int = 77.0223 kPa 
sigma_w_cone_int = 186.4306 kPa 

Powder Storage and Flow
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CHAPTER 7

Types of Hopper Flows

7.1. Introduction

The definitions for a hopper, bin, and silo are not widely agreed upon and the terms are often used inter-
changeably. All of these devices are used to store materials, at least for some period of time. Following are
formal definitions for the different devices, but like others, these definitions are not strictly followed in these
notes:

• Hopper: A container that is discharged from the bottom, which consists of inclined walls. Above
this inclined wall section, there may or may not be a section with vertical walls (Figure 7.1a).
Hoppers are meant for shorter term storage.

• Bin: A container with vertical walls and typically a flat bottom, although inclined walls may also
be used (Figure 7.1b). Bins are meant for longer term storage of material, in contrast to a hopper.

• Silo: A tall bin (Figure 7.1c).

There are many hopper designs as shown in Figure 7.2. The choice of the narrowing section depends on
various factors, such as space constraints, material characteristics, and exit conditions. Typical materials
used to construct hoppers, bins, and silos include:

• concrete: economical when building large hoppers; corrosion and wear resistant; stiff
• carbon steel, stainless steel, aluminum: flexible construction; sanitary
• plastic: only used for small applications

Notes:

(1) The internal surface of the vessel will change over time due to wear as material slides against it and,
thus, the flow patterns within the vessel may change over time, especially with mass flow hoppers.

(2) Internal liners are often used to control wear, but contamination can be a concern.
(3) Venting is sometimes used in thin-walled vessels to avoid air pressure differences with the surround-

ing atmosphere and potential buckling of the vessel walls.

(a) A hopper. (b) A bin. (c) A silo.

Figure 7.1. Examples of a hopper, bin, and silo.
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Figure 7.2. Different hopper designs. This figure is from Chase [1].

(4) Square and rectangular hopper cross-sections are common since they’re easier to manufacture than
circular cross sections. In addition, a square cross-section gives a larger cross-sectional area than a
circular cross-section for the same aspect ratio, resulting in a smaller hopper height for the same
volume capacity. The downsides to square and rectangular cross-sectioned hoppers are that the
flat walls are susceptible to bending, which means that thicker walls must be used than for circular
cross-sections. In addition, the inclined edges found in polygonal cross-sections, i.e., the valleys,
can cause material build-up since they’re less steep than the flat walls (Figure 7.3), i.e., θV > θS .

(5) Wedge-shapes can be approximately 10◦ to 12◦ less steep than conical hoppers and still produce
mass flow. In addition, hoppers with circular exits need to have an exit diameter approximately
twice the width of a rectangular exit to avoid cohesive bridging. These topics are discussed further
in Chapter 9.

7.2. Hopper Flow Modes

The flow through a hopper is of three types: mass flow, funnel flow, and expanded flow. Each type of flow
mode is described in this section. Examples of different hopper flow modes are available at the following
links:
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Figure 7.3. A square cross-sectioned hopper illustrating that the valleys are less steep than
the sides, i.e., θV > θS .

• https://www.youtube.com/watch?v=w_Yd8or3PCk

• https://www.youtube.com/watch?v=NantWOoPT8Q

In mass flow, all of the material within the hopper flows during discharge, but not necessarily at the same
speed (Figure 7.4a). Mass flow is typically desired in hopper flow for the following reasons.

(1) Mass flow produces “first in, first out” flow. In other words, the material that first fills the hopper
is also the first material out of the hopper when discharged. There is less of a concern that long
residence times in the hopper will occur and result in damaged, spoiled, or highly compacted
material.

(2) There are no stagnant regions within the hopper and the entire capacity of the hopper can be used.
All of the material within the hopper is flowing.

(3) There are well-developed models for predicting the stress and velocity fields in mass flow hoppers.
Predictions for the other flow modes are not as well developed.

(4) When discharging, the free surface of a mass flow hopper is nearly flat until near the end of discharge.
A flatter free surface results in less particle segregation during discharge since material won’t flow
down a free surface and be subject to shear-induced percolation.

(5) The material in the hopper is less likely to flood. Flooding occurs when air is entrained within the
powder, causing the material to flow like a liquid, often in an uncontrolled manner. In mass flow the
material moves more consistently and, thus, there is a reduced likelihood that air will get entrained
in gaps within the material.

(6) The flow rate from the hopper and the material’s bulk density at the exit are more consistent than
for the other flow modes.

Although there are many advantages to mass flow, there are a few disadvantages.

(1) Mass flow hoppers tend to have steep hopper walls and, thus, tend to be taller than funnel flow
hoppers, which have more shallow hopper walls.

(2) Because material flows along the walls of a mass flow hopper, wear on the walls can be significant.
(3) The stresses on the hopper walls tends to be larger for mass flow than funnel flow. In funnel flow,

stagnant material at the walls acts to dissipate stresses caused by flowing material.

In funnel flow (aka core flow), material at the walls remains stagnant while material flows in a core region
(Figure 7.4b). Funnel flow is the flow mode most often encountered in practice since many hoppers don’t
have walls steep enough to produce mass flow. The advantages of funnel flow include the following.

(1) Funnel flow hoppers require less head space since the walls are shallower (larger wall angle from the
vertical).
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(a) Mass flow. (b) Funnel flow. (c) Expanded flow.

Figure 7.4. Schematics illustrating different flow modes within a hopper.

(2) The stresses on the hopper walls are reduced while the material is flowing since stresses transmitted
from the flowing zone are dissipated in the stagnant material.

(3) There is less erosion of the hopper walls since material is stagnant there.

Unfortunately there are many negatives to funnel flow.

(1) The hopper operates in a ”first in – last out” mode, which means that much of the material poured
first into the hopper is the last material out of the hopper. The stagnant material can become
damaged, spoil, or pack more tightly as a function of time.

(2) Because there are regions of stagnant material, the full capacity of the hopper isn’t utilized. Fur-
thermore, there may be material that remains in the bin even after discharge.

(3) Ratholes, which are an extreme case of funnel flow, may form and collapse during discharge. Col-
lapsing ratholes can put significant stress on the hopper walls, increase the chances of flooding, and
pose a safety risk

(4) During discharge the material free surface is sloped resulting in avalanching flow down the free
surface and segregation of free-flowing particles with different properties, especially size differences.

(5) The flow rate from a funnel flow hopper is more likely to be intermittent.
(6) To correct flow problems, flow aids such as wall vibrators, air cannons, and mixer blades, are often

required. These devices increase the complexity and costs of storage and discharge.

The last flow mode presented here is expanded flow. Expanded flow consists of a mass flow hopper located
beneath a funnel flow hopper (Figure 7.4c). The mass flow hopper activates a flow channel in the hopper
designed to prevent the formation of a rathole. The advantages of expanded flow include the following.

(1) Less headroom is required than a mass flow hopper due to the presence of the funnel flow region.
(2) Wear on the hopper walls is reduced in the funnel flow region due to the stagnant material there.
(3) The flow in expanded flow hoppers is better than the flow in funnel flow hoppers. A funnel flow

hopper can be retrofitted with a mass flow section to produce expanded flow.

The downsides of expanded flow are as follows.

(1) There are still regions of stagnant material in the hopper.
(2) Segregation can still be an issue at the free surface.
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Figure 7.5. Examples of different types of hopper inserts. This figure is from Härtl [2].

Notes:

(1) Hopper inserts (Figure 7.5) can be used to convert funnel flow to mass flow by promoting flow along
hopper walls. Inserts must be carefully designed otherwise cohesive arching may be exacerbated.
In addition, inserts must be designed to support the significant loads they often encounter. Inserts
are sometimes installed in retrofit applications and can be used for purposes other than flow, such
as blending, injecting gas, or modifying material and wall stresses.

(2) A study performed by L. ter Borg at Bayer [3] involved performing flow tests on 500 different
particulate materials. ter Borg tabulated the percentage of hoppers that resulted in mass flow as a
function of the hopper wall angle measured from the vertical. The results are shown in Table 7.1.
Interestingly, a 45◦ wall angle resulted solely in funnel flow conditions. Even a 15◦ wall angle from
the vertical still resulted in 30% of the materials in funnel flow. It’s clear that designing for mass
flow is more challenging than one might initially expect. Note that 30◦ (from the vertical) conical
hopper walls are common since they are straightforward to construct from flat sheet metal (see, for
example, https://www.blocklayer.com/cone-patternseng).
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angle from the vertical (◦) % of hoppers in mass flow
45 0
30 25
20 50
15 70

Table 7.1. Percentage of hoppers in mass flow in ter Borg’s study [3] as a function of the
hopper wall angle from the vertical.

(a) A schematic of a mechanical arch. (b) A stone arch.

Figure 7.6. Examples of mechanical arches.

7.3. Hopper Flow Problems

This section briefly reviews common problems encountered in hopper flows.

Mechanical arching occurs when particles mechanically wedge into place and support the weight of the
material above it, preventing flow (Figure 7.6). Mechanical arching typically only occurs when the exit
diameter is smaller than 8 – 12 particle diameters. Mechanical arching isn’t a common hopper flow problem,
except for special cases. Vibration can destabilize a mechanical arch, but the arch will likely reform once
the vibration stops. The research paper by To et al. [4] provides a probabilistic model for why mechanical
arching (aka jamming) is unlikely to occur for larger diameter openings.

Cohesive bridging (aka cohesive arching) occurs when the strength developed in the material is sufficient
to support the load from the material above it (Figure 7.7). Cohesive bridging is a common hopper flow
problem. Cohesive bridges most commonly form near a hopper exit but can also form anywhere within a bin
if the bin diameter is sufficiently small. A sufficiently large bin/exit diameter is required to ensure that the
weight of the material will collapse the arch and maintain flow. Vibration and air injection may help collapse
a cohesive bridge, but can potentially result in other problems, such as flooding. Improper application of
vibration can sometimes exacerbate cohesive arching.

Material build-up on hopper walls is common when funnel flow occurs (Figure 7.8). The extreme case of
material build-up is known as a rathole (discussed later in this section). Material build-up results in stagnant
material, intermittent flow, and large dynamic loads when the material collapses. Material buildup is best
avoided by using mass flow hoppers. Common methods for trying to eliminate material build-up include
subjecting the hopper to vibration (using a vibrating motor or via hammering the side), injecting air via an
air cannon at the wall to blast material from the side walls, or injecting air, e.g., with an air lance, to help
fluidize the material.
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(a) A schematic of a cohesive bridge.
(b) A photograph of a
cohesive bridge.

(c) A photograph of a
cohesive bridge.

(d) A photograph of a
cohesive bridge [5].

Figure 7.7. Examples of cohesive bridges.

(a) A schematic of material build-up at the hopper wall. (b) A photograph of material build-up.

Figure 7.8. Examples of material build-up at the hopper wall.

A rathole is when flow only occurs in a narrow core of the material and stable, stagnant regions of material
remain after partial discharge of the hopper (Figure 7.9). Ratholes are particularly problematic since they
can collapse, resulting in large dynamic stresses on the hopper structure and flooding, whereby falling powder
is aerated and flows in an uncontrolled, liquid-like manner. An interesting video discussing the significance
of ratholing called “The Million Dollar Rathole” is available online.

Slow discharge from a hopper can occur if the material has low permeability. As material discharges, the
counter-flow of air into the hopper may slow down the flow rate (Figure 7.10). In come cases, rather than
having a continuous discharge of material, the flow may be irregular with material exiting in discrete “chunks”
(e.g., “plop, plop” flow). A video example of the intermittent flow associated with counter-flowing air is
available at: https://youtu.be/Ml6Etm9pPrU.

Flooding (aka flushing) occurs when an aerated powder flows from a hopper in an uncontrolled, liquid-
like manner (Figure 7.11). Flooding typically only occurs for fine powders (Geldart Group A or smaller),
which have small permeability. Flooding may also occur during rapid filling and discharge, where the powder
becomes and remains aerated. Flooding may also occur when a rathole or cohesive bridge collapses. Improper
injection of air, such as when trying to induce stalled flow, may also result in flooding. A short video showing
flooding is available at: https://www.youtube.com/watch?v=PmTnUOcAnuY.
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(a) A schematic of a rathole.
(b) A photograph of a rathole
(courtesy of B. Hancock). (c) A photograph of a rathole [5].

Figure 7.9. Examples of ratholes.

Figure 7.10. A schematic of hopper discharge slowed by incoming air.

Figure 7.11. An illustration of flooding from a hopper.
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Segregation is the unintentional de-mixing of a previously blended particulate material (Figure 7.12). Many
physical processes can cause segregation, but one of the most common is shear-induced percolation. Shear-
induced percolation occurs when smaller particles fall between the gaps of larger particles in a shear flow.
Shear flows commonly occur at the free surface of a flowing material. In particular, funnel flows have
significant shear flow at the free surface due to the V-shaped surface that appears during discharge. In
addition, filling of a hopper can result in segregation as material falling onto a mound also results in significant
shear flow. Segregation is most significant for freely-flowing materials since particles must be able to move
relative to one another to segregate. Additional information on shear-induced segregation during hopper
discharge is available in Ketterhagen et al. [6], [7] and Anand et al. [8].

Eccentric loading of bin walls can occur when the flow channel in the hopper is off-center (Figure 7.13). Since
bin walls are often thin-walled structures, eccentric loading can result in buckling of the walls. Off-center flow
in the bin usually occurs for funnel flows or asymmetry at the bin outlet, e.g., an eccentric outlet, a partially
open gate valve, or a poorly designed exit feeder. The wall loads caused by a flow channel are smaller at the
flow channel, but larger at the edges of the channel.

Buckling of the bin walls can occur if a low permeability material bridges within the bin (Figure 7.14). As
downstream material flows while upstream material bridges, a void will form between the two regions. If the
material has low permeability, then air may not fill the void rapidly enough to maintain atmospheric pressure
within the void. As a result, the air pressure in the void can drop below atmospheric pressure and buckling
of the bin walls may occur.

Silo quaking/honking can occur during discharge as a result of stick-slip movement of material against the
silo walls (Figure 7.15). The vibrations can be below the audible range (quaking) or in the audible range
(honking). This phenomenon is most noticeable with hard, brittle, and coarse materials in metal bins. It
is believed that most silos experience this issue, but with small amplitudes. Large vibration and noise can
potentially cause structural damage and fatigue, and can present a health concern. Shocks (sudden pressure
changes) can also occur due to sudden changes in flow.

The last hopper problem presented here is Thermal Ratcheting (Figure 7.16). Consider a bin located outdoors.
During the day, the Sun heats the bin walls causing the bin to expand and the material inside to settle. At
night, the bin walls cool and contract, causing the radial stresses to increase significantly since the stresses
required to move the material upwards are exceedingly large (a passive stress state - refer to Chapter 5).
Over successive thermal cycles, the radial stresses during cooling may exceed the bin strength and cause bin
failure. This phenomenon is known as thermal ratcheting. A similar effect can occur for materials that swell
due to temperature or moisture absorption.

Additional examples of hopper/bin problems are shown in Figure 7.17. In addition, the following videos
provide additional hopper/bin problem examples:

(1) A dramatic example of poor flow (caking) leading to tragedy: https://en.wikipedia.org/wiki/
Oppau_explosion.

(2) Grain silo collapse videos:
(a) https://www.youtube.com/watch?v=5yZ8s8Rwo-Y

(b) https://www.youtube.com/watch?v=nljxk1auzHQ

(3) https://www.facebook.com/jordan.white.39545/videos/10211881599893153/

Storage and flow problems can have consequences on manufacturing performance such as:

(1) caking of material stored under large loads and extended storage times, which requires significant
effort to clear from storage vessels,

(2) unacceptable product uniformity due to mass differences and segregation,
(3) low process yields due to inefficient material handling and high reject levels,
(4) equipment damage or uncontrolled flow,
(5) need for force feeders, vibrators, custom hoppers, etc., and
(6) irreproducible manufacturing operations.
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(a) An initially well-mixed material with two particle sizes
(yellow particles are small, black particles are large) that
segregated after flowing through the hopper.

(b) An illustration of shear-induced percolation on a
sloped free surface.

(c) Segregation results from a simulated hopper flow of a
blend of fine and coarse particles [7]. The vertical axis is the
mass fraction of fine particles at the exit plane normalized
by the overall mass fraction of fines. The horizontal axis is
the fraction of total mass discharged from the hopper. A
fines mass fraction of one indicates a well blended mixture,
a value greater than one is fines-rich, and a value less than
one is coarse-rich. The different symbols are for hoppers of
different dimensions.

Figure 7.12. Examples of particle segregation.

7.4. Summary

Following is a summary of the significant points in this chapter.

(1) There are three hopper flow modes: mass flow (usually what is wanted), funnel flow (more common),
and expanded flow (often for a retrofit).

(2) Many flow problems exist, including bridging, material build-up, ratholes, segregation, ...
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(a) A schematic of eccentric loading on a bin’s wall due
to off-center discharge of material within the bin [9].

(b) A photograph of a silo that has buckled due to eccen-
tric wall loading.

Figure 7.13. Examples of eccentric loading of the hopper walls due to an off-center flow
channel.

(a) A schematic illustrating the mechanism causing wall
buckling due to air pressure differences.

(b) A photograph of a silo with buckled walls caused by
pressure differences.

Figure 7.14. Examples of eccentric loading of the hopper walls due to an off-center flow
channel.

(3) Poor flow can impact manufacturing performance and cause structural and safety concerns.
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(a) A schematic illustrating silo quaking and silo honking.
Figure from Schulze [10].

(b) Sound pressure time profile outside a honking silo.
Figure from Tejchman [11].

Figure 7.15. Examples of silo quaking and honking.

(a) Schematics illustrating the phenomenon of thermal
ratcheting.

(b) Photographs of the thermal ratcheting failure of a
bin containing 9000 tons of fly ash. Photographs from
Dogangun et al. [12].

Figure 7.16. Examples of thermal ratcheting.
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(a) From McGee [13]. (b) From
McGlinchey [14].

(c) From http://

jenike.mmcis.com/

Training/fos.html.
(d) From Carson [15].

(e) From
Marinelli [16].

(f) From http://www.youtube.com/watch?v=

s2Rc8fZCjtI.

(g) From http://www.bulksolidsflow.

com/index.php?option=com_content&view=

article&id=5&Itemid=3.

Figure 7.17. Many examples of hopper/bin flow problems.
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CHAPTER 8

Shear Cell Testing

The properties used in bin and hopper design are often obtained from shear cell testing. These are fundamen-
tal powder properties corresponding to the Jenike modeling framework as well as the Ideal Coulomb material
model. They are not flow indices, although they are sometimes used in that manner. There are devices other
than shear cells that can be used for the powder property measurements described in this chapter, including
triaxial testers, uniaxial testers, and biaxial testers, but shear cells are the most commonly used device and
are the only device discussed in these notes. More information on these other testing devices is available in
Schwedes [1].

Notes:

(1) The standard nomenclature used in shear cell testing uses similar symbols making it easy to get
confused. Thus, these notes will use symbols that are not standard, but hopefully are easier to
associate with the physical quantities of interest.

8.1. The Material Flow Function (mFF)

Let’s begin with a simple thought experiments. Imagine making a snowball (Figure 8.1). If you pack the
snowball loosely, i.e., apply a small consolidation stress, the snowball will have little strength, i.e., it’s easy
to break apart (aka yield). However, if you pack the snowball tightly, i.e., apply a large consolidation stress,
then the snowball has more strength. A powder’s strength is a function of the consolidation stress applied
to the powder (or alternately, its solid fraction). One goal of shear cell testing is to (indirectly) measure a
powder’s yield strength as a function of the stress used to compact the powder (aka the consolidation stress).

The unconfined yield strength of a powder (fc) is the maximum principal stress that a powder’s free surface
can withstand before yielding. The unconfined yield strength is important since, in order for material in the
hopper to remain flowing, the local stresses acting on the powder should exceed the powder’s local unconfined

Figure 8.1. A photograph of a snowball.
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Figure 8.2. An illustration of a simple experiment used to determine a material’s flow
function.

Figure 8.3. An example of a material flow function (mFF).

yield strength. If this is the case, then a stable free surface won’t form and the powder will continue to flow
(i.e., yield).

The material flow function (mFF) is the relationship between the powder’s unconfined yield strength (fc) and
the consolidation stress (σ1), which is also the major principal stress, used to consolidate the powder. The
material flow function is primarily a function of the powder properties, although environmental conditions,
such as temperature and relative humidity, can also play a role.

An illustration of a simple unconfined yield strength measurement is shown in Figure 8.2. Here, a cylindrical
container is used to consolidate the sample. The walls of the container are assumed frictionless, which makes
the normal stresses applied by the walls principal stresses. The stress applied on the lid of the container is
the major principal stress (σ1) (aka consolidation stress) and it consolidates the material uniformly to some
solid fraction. The applied stress is removed along with the side walls to create a free, or unconfined, surface.
A new stress is applied to the lid. The stress at which the material yields is the unconfined yield strength
(fc). A plot of a typical material flow function is shown in Figure 8.3.

Notes:
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Figure 8.4. An illustration of how a material flow function changes due to time consolida-
tion.

(1) The simple experiment shown in Figure 8.2 cannot be used in practice for many materials since the
unconfined yield strength may be small enough that the material weight collapses the column when
the side walls are removed.

(2) Material flow functions frequently change with time and environmental conditions as inter-particle
forces change due:

• escape of interstitial air with a corresponding increase in bulk density,
• external vibrations due to machinery, traffic, wind, etc., cause an increase in bulk density,
• moisture collects on particle surfaces resulting in increased cohesion caused by the formation
of liquid bridges,

• evaporation of water results in precipitation of dissolved salts, forming solid bridges between
particles, and

• fragmentation or plastic deformation of particles under pressure (creep) results in an increase
in the contact area between particles and, thus, an increase in cohesion,

• changes in the particle surface due to chemical reactions, e.g., crystallization or fermentation.
This phenomenon whereby the powder strength changes over time is known as Time Consolidation.
An illustration of material flow functions as a function of time is shown in Figure 8.4. The material
flow function performed immediately after the powder has been loaded into the measurement device
for testing is referred to as the “instantaneous material flow function” while the flow functions at
later times are known as “time material flow functions”. It is essential that material flow functions
be prepared over the range of conditions anticipated for the powder, e.g., the storage times, tem-
peratures, humidities, and loads, otherwise the properties used in design calculations will not be
representative of the powder’s true state.

(3) A material flow factor, (mff) is the inverse slope, measured from the origin, of a point on the material
flow function (mFF) , i.e.,

mff :=
σ1

fc
. (8.1)

The material flow factor is used in hopper design calculations and is often reported as a comparative
measure of a powder’s flowability. It’s important to note, however, that the material flow factor
is not a constant and, thus, reporting a single value for the parameter should be considered with
caution. At the very least, the consolidation stress at which the material flow factor is determined
should be reported. Jenike [2] provided qualitative characterization of a powder’s flow behavior
based on the material flow factor as described in Table 8.1 and shown in Figure 8.5. As the material
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material flow factor (mff) flow behavior
mff < 1 hardened

1 < mff < 2 very cohesive
2 < mff < 4 cohesive
4 < mff < 10 easy flowing
10 < mff free flowing

Table 8.1. Qualitative flow behavior for various ranges of the material flow factor (mff).

Figure 8.5. Qualitative flow behavior for various values of the material flow factor (mff).
As the material flow factor increases, the flow behavior improves. The colored line in the
figure is an example material flow function (mFF). Note that the material flow factor changes
for this material depending on the consolidation stress.

flow factor increases, i.e., the unconfined yield strength decreases for a given consolidation stress,
the flow behavior improves.

8.2. Shear Cell Testing

Shear cell testing is used to determine a material’s flow function (mFF) as well other useful parameters, such
as cohesion and internal friction and wall friction angles. Unlike the uniaxial compaction experiment shown
in Figure 8.2, shear cell testing can be performed on materials with small strength. Another key aspect of
shear cell testing is that the material is tested in a well-defined, repeatable state (i.e., solid fraction). Most
index style measurement devices have ill-defined testing states. For example, filling material into a flow-
through-an-orifice cup does not put the material into a uniform and known solid fraction prior to testing.

Notes:

(1) Shear cells usually measure flow properties at quasi-static conditions, i.e., small shear strain rates,
which may not be representative of the strain rates in actual flowing conditions. Similarly, the
consolidation stresses usually applied in shear cell testing are larger than those encountered at the
free surface of a flowing material.

(2) Shear cells do not directly measure the consolidation stress and unconfined yield strength, but
instead use Mohr’s circle analysis to determine those values.

Several shear cell designs have been proposed. Figure 8.6 shows the shear cell design originally used by
Jenike [2]. The powder is loaded into a split cylindrical testing vessel. The cylinder is split so the top
portion (the ring) can translate over the fixed bottom portion (the base). The base and lid are roughened to
prevent powder slippage against the the vessel surfaces. A vertical load is applied to the lid to consolidate the
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(a) A photograph of the shear cell. (b) A schematic of the shear cell.

Figure 8.6. The Jenike translational shear cell.

material. A shear force is then applied to the side of the ring and the force at which the material begins to
move is recorded. A more detailed description of how a shear cell test is performed is described in a following
section. Since the translation is in a single direction, the shear cell has a limited displacement, less than 10
mm for example. Since the displacement is small, conditioning the material to a consistent repeatable initial
state via shear can be challenging (described in more detail in a following section). The displacement rate
during testing is slow - on the order of 1 mm/min. An ASTM standard [3] provides detailed information on
the Jenike shear cell and its operation.

One of the most common shear cell designs is the annular (aka ring) shear cell (Figure 8.7). In this device, the
material is contained within an annulus (Figure 8.7b), with the lid and base roughened by vertical vanes to
prevent slipping against the cell walls. A vertical load is applied to the lid and the torque required to rotate
the sample base, is recorded. A significant advantage of the annular shear cell over the translational shear
cell is that large shear strains can be applied to the material, which helps in material preparation. Another
advantage of this device is that the measurements are highly automated, minimizing operator bias in the
results. As with the translational shear cell, the shear strain rates are small. Examples of annular shear cells
include ones described at https://www.dietmar-schulze.de/ringschergeraete_e.html and https://

www.brookfieldengineering.com/products/powder-flow-testers/pft-powder-flow-testers. ASTM
standards also exist for annular shear cells, such as the one for the Schulze ring shear tester [4].

The last shear cell device discussed here is the Peschl-style shear cell (Figure 8.8). The Peschl shear cell is
also a rotational shear cell and operates in much the same way as an annular shear cell, but the material is
contained within a cylindrical sample vessel, not an annular vessel. An example of a Peschl-style shear cell
is the one available with the FT4 rheometer. An ASTM standard for operating a Peschl-style shear cell is
also available [5].

Comparisons between shear cell designs have been performed [6]. There is little difference in the results
from different shear cell designs for freely-flowing materials; however, differences are observed for cohesive,
compressible materials. These findings indicate that shear cell design and procedures can have an impact on
the shear cell results. As a final comment, the uncertainty in shear cell measurements and the propagation
of that uncertainty into property measurements is rarely reported in shear cell testing. These uncertainties
would help put the differences in these comparative shear cell tests into perspective as well as establish an
appropriate degree of confidence in property measurements.

8.3. Some Comments on Solid Fraction

Although the material flow function (mFF) is the relationship between the consolidation stress (major prin-
cipal stress) used to compact the powder and the resulting unconfined yield strength, it’s really the powder’s
solid fraction (aka relative density) that governs the powder’s strength. The consolidation stress simply sets
the powder’s solid fraction. Hence, the powder’s solid fraction is monitored during shear cell testing.
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(a) A photograph of the full shear cell device. (b) A photograph of the testing cell base and lid.

Figure 8.7. An annular shear shear cell. The images are from https://www.

dietmar-schulze.com/.

(a) A schematic of the full shear cell device. This figure
is from [6].

(b) A schematic of material movement in the shear cell.
This figure is from [7].

Figure 8.8. A Peschl shear shear cell.

Depending on the powder’s initial configuration, a powder’s solid fraction can change when sheared. A
loosely-packed (aka under-consolidated) powder will densify when sheared at a sufficiently large normal load
whereas a tightly-packed (aka over-consolidated) powder will dilate when sheared for a sufficiently small
normal load. Densification of an under-consolidated powder occurs because the particles start in a loosely-
packed configuration for the given load and then move into a more tightly packed state as the particles move
relative to each other (Figure 8.9a). For a tightly-packed configuration for a given load, the particles must
move over each other, i.e., dilate, when sheared (Figure 8.9b). This dilation is referred to as the Reynolds’
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(a) Particles in an under-consolidated state. (b) Particles in an over-consolidated state.

Figure 8.9. Particles subject to shear in under- and over-consolidated states.

(a) (b)

Figure 8.10. The shear stress required to deform a powder bed and the corresponding
volumetric strain of the powder bed as functions of shear strain for powder beds under- and
over-consolidated at the given normal stress.

Principle of Dilatancy. Powder for which the solid fraction doesn’t change when sheared at a given normal
stress is said to be in its critical state.

Notes:

(1) Videos demonstrating the Reynolds’ Principle of Dilatancy are available at https://www.youtube.
com/watch?v=kzw80pyUI8g and https://www.youtube.com/watch?v=B_qRh5Y-hO8.

(2) The critical state for a powder is independent of the powder’s initial packing configuration. It only
depends on the applied consolidation stress.

(3) A plot of the shear stress required to shear a powder at a given normal stress as a function of shear
strain is shown in Figure 8.10a. Curves are shown for under- and over-consolidated initial states.
Figure 8.10b shows the powder’s volumetric strain (i.e., the relative change in volume) as a function
of shear strain for the same powder. For an under-conolidated powder, increasing shear stress causes
the bed to deform and consolidate until reaching the critical state. For an over-consolidated powder,
the shear shear stress is initially large as the tightly packed particles compress against each other
and consolidate. Eventually a critical shear stress is reached and the particles move over each other
and dilate. The shear stress then decreases and the bed dilates until reaching its critical state for
the given normal stress.

(4) When the material is under-consolidated, it will tend to densify uniformly over the entire bulk of
the bed. However, when the material is over-consolidated, only a narrow region of the material,
approximately 8-10 particle diameters thick, will dilate and yield. This region is known as a shear
band or slip plane (Figure 8.11). Hence, with over-consolidation, dilation and failure tends to be
localized, with regions of un-dilated material on either side.
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Figure 8.11. Formation of a shear band, highlighted by the red dashed line, in a uniaxially
compressed bed of sand. This figure is from http://web.utk.edu/~alshibli/research/

MGM/F75-Ottawa.php.

Another important observation is that when a sufficiently large pressure is applied to a particulate material,
the particles will re-arrange, elastically and plastically deform, and fracture (usually at higher loads). When
the pressure is removed, the elastic deformation of the particles is recovered, but the bulk deformation
due to the other effects remains. Usually the elastic deformation is much smaller than the non-recoverable
deformations and, thus, is often neglected. Hence, we assume that volume changes due to an applied pressure
is irreversible. A common empirical model for powder consolidation is shown in Figure 8.12. In this model,
known as Walker’s equation, the specific volume (v) of a particulate material decreases logarithmically with
increasing pressure (p),

v = v0 − λ ln

(
p

p0

)
, (8.2)

where v0 is the material’s specific volume at a reference pressure p0 and λ is a fitting parameter. Note that
the specific volume is related to the material’s bulk density (ρb), bed porosity (ϵ), and true density (ρtrue)
via,

v =
1

ρb
=

1

(1− ϵ)ρtrue
. (8.3)

As the applied pressure approaches zero, the material’s specific volume approaches its value at incipient
fluidization (vmf ), i.e., when the particles are barely touching each other. Now consider a material that has
been consolidated to specific volume v1 using a pressure p1 (refer to Figure 8.12). As the pressure gradually
increases to p2, the specific volume decreases logarithmically from v1 to v2. When the pressure is removed
(State 3), the specific volume remains at v2 since the consolidation is irreversible. If a new pressure is applied,
but is smaller than the pressure used to consolidate the material to its current state, e.g., p4 < p2, then the
bed specific volume will remain unchanged since the new pressure won’t be enough to further consolidate
the material. The specific volume will remain unchanged if the pressure is removed again (State 5). If a new
pressure is gradually applied, e.g., up to p6, the material’s specific volume will remain constant until reaching
p2. Pressures larger than p2 will result in the specific volume decreasing logarithmically to State 6.

Notes:

(1) Bulk density (or solid fraction) is often measured in a uniaxial compression test, also known as an
oedometer test (Figure 8.13). The height of material in the testing cell (H) should be much smaller
than the cell diameter (D) and the walls should be lubricated so wall shear stresses are negligible.
If the wall shear stresses are zero, then the vertical normal stress will be uniform and the major
principal stress.
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(a) Sketch of a particulate materials volumetric response to different applied pressures.

(b) A plot of the particulate material’s specific volume as
a function of the applied pressure.

Figure 8.12. The Walker model for how a particulate material’s specific volume changes
in response to an applied pressure.

Figure 8.13. A sketch of an oedometer test for measuring a powder’s bulk density as a
function of the consolidation stress.

(2) There have been many empirical fits proposed for how bulk density (ρb) varies with the applied
consolidation stress (σ) [8]. Common fits include:

1

ρb
=

1

ρb,0
− λ ln

(
σ

σ0

)
(Walker equation [9]) (8.4)

ρb
ρb,0

=
1

2β

(
1 +

σ

σ0

)β

(Johanson and Cox [10]) (8.5)
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Figure 8.14. The bulk density of sand as a function of the applied major principal stress.
The data are from Gu et al. [8]. The curve fit is Eq. 8.5.

Figure 8.15. The measured shear stress in a typical shear cell testing procedure as a
function of shear strain or time. In the figure, τ is the shear stress and σ is the normal
stress. Steps 1 through 4 are described in the text.

ρb
ρb,0

=
1

2

[
1 +

(
σ

σ0

)β
]

(Gu et al. [8]) (8.6)

ρb
ρb,0

=

(
σ

σ0

)β

(Jenike [2], for
σ

σ0
≫ 1). (8.7)

In the previous equations, λ and β are fitting parameters and ρb,0 is the bulk density at consolidation
stress σ0. An example fit to experimental data is shown in Figure 8.14.

8.4. Shear Cell Testing Procedures

In this section, a typical shear cell testing procedure is described and typical measurements are presented.
The steps in the procedure are as follows (Figure 8.15):
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Figure 8.16. An incipient yield locus for solid fraction νA.

(1) Apply a normal stress σA to the powder and shear the bed until reaching the critical state for this
normal stress. The corresponding critical state shear stress is τA. The powder solid fraction is now
νA. The powder should start in an under-consolidated state so the entire powder bed is at the same
solid fraction νA (refer to the previous discussion regarding shear band formation). This step is
called the pre-shear step and (σ, τ)A is also called (σ, τ)pre. A key feature of the pre-shear step is
that it puts the bed in a consistent state with a nearly uniform solid fraction. Thus, testing always
starts in a well-defined, uniform state.

(2) Remove the normal stress σA and apply a smaller normal stress σ1. Since σ1 < σA, the bed solid
fraction at the start of the test is still νA. The powder will now be in an over-consolidated state for
normal stress σ1. Shear the bed and record the maximum shear stress during the test, τ1. This is
the shear stress at incipient yield, i.e., when the bed first starts to plastically yield in shear, for the
normal stress σ1 when the bed has solid fraction νA.

(3) Re-prepare the bed at the same initial solid fraction νA following Step 1. Note that the bed is in
an under-consolidated state at the start of pre-shear since σ1 < σA. The material densifies when
sheared during this step.

(4) Follow Step 2, but use an even smaller normal stress σ2 < σ1. Again, the bed will start in an
over-consolidated state at this normal stress. The maximum shear stress at incipient yield is τ2 for
the normal stress σ2 when the bed has solid fraction νA.

(5) Repeat the procedures several times and plot the incipient yield shear stress values as a function of
the applied normal stresses (Figure 8.16). The resulting curve is known as an incipient yield locus.
Note that this curve is generated at the solid fraction νA, which corresponds to the critical-state
for (σ, τ)A. The incipient yield locus is the locus of shear stresses that results in incipient yield of
the powder given an applied normal stress for a powder with a solid fraction νA. The stress state
(σ, τ)A is called the end-point stress state or the termination stress state for this yield locus since
a normal stress larger than σA would result in a solid fraction larger than νA.

(6) Repeat Steps 1 - 5, but with different end-point (or critical-state) normal stresses. The resulting
plot will now show incipient yield loci for different solid fractions (Figure 8.17).

Notes:

(1) In traditional shear cells, it’s challenging to test at small normal stresses. The hydrostatic stress
due to gravity can affect the measurement. Extrapolating properties to smaller normal stresses
has significant uncertainty. One novel shear cell that may provide data at small normal stresses
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Figure 8.17. Incipient yield loci for several different solid fractions.

material bulk density (kg/m3) —
application 0 - 150 150 - 300 300 - 600 600 - 1200 1200 - 2500

container up to 20 L,
dosage of small amounts

0.4 kPa 0.8 kPa 1.6 kPa 2.5 kPa 4 kPa

container up to 100 L,
barrels

0.8 kPa 1.5 kPa 2.5 kPa 5 kPa 10 kPa

Intermediate Bulk
Containers (IBCs), sacks
packed on pallets, small

silos

1.5 kPa 2.5 kPa 5 kPa 10 kPa 20 kPa

medium size and large
silos

3 kPa 7 kPa 12 kPa 25 kPa 50 kPa

Table 8.2. Estimates of the consolidation stresses for different material bulk densities and
vessel sizes. The data in this table comes from Schulze [12].

is the Sevilla Powder Tester [11], which uses fluidizing air to counteract the influence of gravity-
induced hydrostatic stresses. Additional research needs to examine this type of tester to verify its
applicability at small normal stresses.

(2) Typically only three to five points are required to produce an incipient yield locus. The loads used in
the shear cell should reflect the loads anticipated in practice. In general, the consolidating stresses
are typically due to the weight of the material (refer to Chapter 5). Table 8.2 provides estimates of
the consolidation stresses for different material bulk densities and vessel sizes.

(3) In Jenike’s analysis [2], he includes the end point state as part of the incipient yield locus (Fig-
ure 8.18a). Experimentally, there is some evidence that if the material is pre-sheared at the end
point state (σ, τ)A, stopped, then sheared again at normal stress σA as if performing an incipient
yield test, the corresponding incipient yield shear stress is slightly larger than νA. The exact cause
for this behavior isn’t widely agreed upon. Regardless of the cause, it has been suggested that the
end point state should not be part of the incipient yield locus since the solid fraction at the critical
state while the material is moving is slightly smaller than the solid fraction once motion ceases
(Figure 8.18b).

(4) The locus of end point stress states is called the termination locus (Figure 8.19). The termination
locus is often observed to lie on a straight line that passes through the origin. The angle between
the termination locus and the horizontal axis is the angle of kinematic friction, ϕsf . Recall that
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(a) The end point stress state as part of the incipient yield locus.

(b) The end point stress state is not part of the incipient yield locus.

Figure 8.18. Incipient yield loci including and not including the end point stress state.

the end point stresses are at the critical states for different solid fractions. Since the termination
locus passes through the origin, we observe that materials behave effectively like they’re cohesionless
when flowing even if they are cohesive when yielding incipiently.

(5) The internal friction angle (ϕ), cohesion (c), and tensile strength (T ) may be found by fitting a
line to an incipient yield locus (Figure 8.20; refer to Chapter 4). These fitting values would be
specifically for the solid fraction corresponding to the incipient yield locus and incipient yield loci at
other solid fractions may have different values. Note that many incipient yield loci have significant
curvature at small normal stresses and, thus, extrapolation of the line to the vertical axis can have
significant error. Sometimes only a few experimental data points nearest to the origin are used in
the line fitting to account for the curvature and obtain more accurate values for the cohesion and
tensile strength. Rather than using a straight line fit, the Warren-Spring equation (Eq. (4.4)) can
account for the curvature near the origin and has been observed to fit experimental data well.

(6) The incipient yield loci are similar to, but not identical to the internal yield loci in the Ideal
Coulomb material model (Chapter 4). First, the incipient yield loci are a function of the material’s
solid fraction whereas the internal yield loci (in the model) are not a function of the solid fraction.
Second, an incipient yield locus does not extend beyond the end-point stress state whereas an
internal yield locus does. Lastly, the incipient yield loci are the the stress conditions for incipient
yielding of the material. Once the material starts to flow due to shear, the solid fraction decreases
(the Reynolds Principal of Dilatancy) and the material reaches the critical state for the new solid
fraction. The Ideal Coulomb material model does not have this same feature.
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Figure 8.19. The termination locus, which passes through the end point stresses. The
angle of kinematic friction is also shown in the figure.

Figure 8.20. A line fitted to an incipient yield locus. The angle ϕ is the internal friction
angle, c is the cohesion, and T is the tensile strength.

The consolidation stress (σ1) and unconfined yield strength (fc) for a given solid fraction can be found from
the incipient yield loci using Mohr’s circles as shown in Figure 8.21. The consolidation stress is the major
principal stress that sets the solid fraction of the material. Thus, the Mohr’s circle corresponding to the
consolidation stress should pass through the end point state and be tangent to the incipient yield locus
(since a Mohr’s circle extending past the yield locus would have a different solid fraction). If one does not
include the end point stress state in the incipient yield locus (Figure 8.18b), then the convention is to draw
a Mohr’s circle tangent to the incipient yield locus at a normal stress smaller than the end point normal
stress, but includes the end point stress state in the Mohr’s circle (even though it technically corresponds to
a slightly smaller solid fraction). The unconfined yield strength is found from a Mohr’s circle that is tangent
to the incipient yield locus, because the material is yielding, and passes through the origin, since the origin
corresponds to an unconfined surface. As described in Chapter 4, the effective angle of internal friction (δ)
may be found from the consolidation stress Mohr’s circle.

Notes:
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Figure 8.21. A diagram showing how the consolidation stress (σ1) and unconfined yield
strength (fc) are found from an incipient yield locus using Mohr’s circles.

(1) The major principal stress (σ1) is not aligned with the shear cell applied normal stress (σ) as shown
in Figure 8.22a. If the failure plane in the shear cell is assumed to be horizontal as shown in the
figure due to the geometry of the shear cell (the actual failure surface may not be so well defined
according to [1]), then the applied normal stress is normal to the plane and the shear stress at
failure is tangential to the plane. Using the Mohr’s circle shown in Figure 8.22b, the corresponding
consolidation stress will be rotated clockwise from the failure plane by an angle θ in the real-world.

8.5. Wall Friction Shear Cell Testing

A shear cell may also be used to determine the friction angle between the powder and a wall surface. For
this type of measurement, the lower portion of the shear cell is removed and the powder comes into direct
contact with a “coupon” of the wall material (Figure 8.23). The wall material coupons should reflect actual
wall conditions, e.g., the same material, the same surface finish, and the same finish orientation. In practice,
wall properties may change over time due to wear and environmental conditions. These changes should be
considered during testing.

Wall friction tests are often performed at a constant speed, resulting in measurements of the kinematic
wall friction angle. These values are useful for mass flow hoppers where material slides at the walls. In a
kinematic wall friction test, the largest expected normal stress is applied on the shear cell lid and the shear
stress required to move the powder against the wall coupon at steady state is measured (Figure 8.24). The
normal stress is then decreased and the test is performed again. Following this procedure, the wall friction
angle can be measured.

For time consolidation testing, static wall friction angle measurements are usually made since the material
presumably has been at rest against the wall for some period of time. Here, a preparatory-shear normal stress
is applied to the material and the sample is sheared to critical state to obtain a uniform solid fraction bed
(Figure 8.25). Next, a normal stress smaller than the preparatory-shear test is applied to the material, called
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(a) Geometry of the assumed yield surface in the shear cell and corresponding stresses.

(b) Mohr’s circle showing the angle between the failure surface at critical state and the major principal stress.

Figure 8.22. Shear cell yield surface geometry, stresses, and Mohr’s circle.

Figure 8.23. A schematic showing a shear cell designed to measure a wall friction angle.

the pre-shear wall normal stress, and the material is sheared to the critical state. The (σw, τw)pre stress state
corresponds to material flowing at these stress conditions. The shear stress is removed and the material then
sits under the σw,pre wall normal stress for a prescribed period of time to allow for time consolidation of the
sample. At the end of this time, the maximum wall stress required to initiate yielding is recorded. This is
the stress required to re-start movement of material at a hopper wall.

Notes:
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Figure 8.24. (left) The shear stress required to move the powder against a wall coupon
as a function of time as different normal stresses (σw) are applied. (right) The steady state
wall shear stress plotted against normal stress. The wall kinematic friction angle is ϕx in
this figure. Note that these figures are from Schulze [12].

Figure 8.25. A plot showing the procedure for a wall time consolidation shear cell test.
Note that this figure is from Schulze [12].

(1) Rao et al. [13] report that, at least for sand, the incipient yield internal friction angle (ϕinc) and
incipient yield wall friction angle (ϕw,inc) increase with an increase in the particle density. Further-
more, for rounded sang grains, the critical state wall friction angle can be related to the internal
friction angle via,

ϕw,inc

ϕinc
= 1.0− 0.80 exp

[
−15

(
Ra

Dav

)0.54
]
, (8.8)
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where the quantity in the rounded parentheses is the relative roughness of the wall surface with Ra

being the average roughness of the wall surface and Dav the weighted average particle size.

8.6. Summary

Shear cell testing is a key part of designing vessels for storing and transporting powders. A summary of the
important points from this chapter are listed below.

(1) Shear cell testing is commonly used to measure properties needed for bin and hopper design. Mohr’s
circles are used in the analysis of shear cell results to obtain the consolidation stress and unconfined
yield strength.

(2) The significant properties obtained from shear cell testing include bulk density (or solid fraction),
internal friction angle, cohesion, effective internal friction angle, wall friction angle, and the material
flow function. It is difficult to obtain properties at small consolidation stresses.

(3) It is important to understand the concepts of under- and over-consolidation and the critical state
and the powder behavior in these states.

(4) Materials should be tested over the range of anticipated conditions, e.g., time consolidation, loads,
temperature, humidity, different manufacturing conditions, etc. Reliable predictions cannot be
made with inaccurate material properties.

C. Wassgren 169 2024-06-12



 shearcell_03 

Page 1 of 2 

Fit the following shear cell incipient yield locus data using, 
a. an ideal Coulomb material model, 

𝜏 = (tan𝜙)𝜎! + 𝑐, 
where ϕ and c are fitting constants.  Report your values for ϕ and c.  

b. and the Warren-Spring equation, 

,"
#
-
$
= %!

&
+ 1, 

where C, T, and n are fitting constants.  Report your values for C, T, and n. 
c. Plot the data and the two curve fits. 
 

σN [kPa] τ [kPa] 
0.4 1.0 
0.7 1.1 
1.3 1.4 
3.4 2.1 
4.7 2.6 
6.3 3.0 
8.7 3.6 

 
 
SOLUTION: 
Use the Python code at the end of this document to fit the data and create the plot. 

 
Ideal Coulomb material fit values:  (ϕ, c) = (17.694o, 0.952 kPa). 
Warren-Spring fit values:  (C, T, n) = (0.768 kPa, 0.860 kPa, 1.555). 
 

# shearcell_03.py 
 
import matplotlib.pyplot as plt 
import numpy as np 
from scipy.optimize import curve_fit 
 
def IdealCoulomb(sigma_N, phi, c): 
    return(np.tan(phi)*sigma_N + c) 
 
def WarrenSpring(sigma_N, C, T, n): 
    return(C*((sigma_N/T + 1)**(1/n))) 
 
# IYL data values in kPa. 
data = np.array([[0.4, 1.0], 
                 [0.7, 1.1], 
                 [1.3, 1.4], 
                 [3.4, 2.1], 
                 [4.7, 2.6], 
                 [6.3, 3.0], 

Powder Storage and Flow
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                 [8.7, 3.6]]) 
 
# Fit the data with the ideal Coulomb material IYL. 
popt, pcov = curve_fit(IdealCoulomb, data[:,0], data[:,1]) 
phi, c = popt 
print('(phi, c) = (%.3f deg, %.3f kPa)' % (np.degrees(phi), c)) 
 
# Fit the data with the Warren-Spring IYL. 
popt, pcov = curve_fit(WarrenSpring, data[:,0], data[:,1]) 
C, T, n = popt 
print('(C, T, n) = (%.3f kPa, %.3f kPa, %.3f)' % (C, T, n)) 
 
# Plot the data points. 
plt.plot(data[:,0], data[:,1], color='k', marker='o', linestyle='', label='data') 
 
# Plot the corresponding ideal Coulomb material IYL fit. 
sigma_N = np.linspace(0, np.amax(data[:,0]), 100) 
plt.plot(sigma_N, IdealCoulomb(sigma_N, phi, c), color='b', marker='', linestyle='-', label='ideal 
Coulomb') 
 
# Plot the corresponding Warren-Spring IYL fit. 
plt.plot(sigma_N, WarrenSpring(sigma_N, C, T, n), color='r', marker='', linestyle='-', label='Warren 
Spring') 
 
plt.xlabel('normal stress, $\\sigma_N$ (kPa)') 
plt.ylabel('shear stress, $\\tau$ (kPa)') 
plt.legend() 
plt.show() 
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Incipient yield loci (IYL) for an ideal Coulomb material are 
given by, 

𝜏 = 𝜇𝜎 + 𝑐. 
where μ = tanϕ is the internal friction coefficient, ϕ is the 
internal friction angle, and c is the cohesion.  Assume the 
values for ϕ and c, are known values (found from shear cell 
testing, for example).  In addition, assume the end-point 
stress state (σ, τ)EP  is known and is part of the IYL. 
a. Derive an expression (or set of expressions) to find the consolidation stress, σ1, in terms of ϕ, c, and (σ, τ)EP.   
b.  Using your expressions from (a) calculate σ1 when (ϕ, c) = (17.694o, 0.952 kPa) and σEP = 8.7 kPa. 
c. Calculate the effective angle of internal friction for this Mohr’s circle. 
Note that the expressions in (a) need not be explicit for σ1 and numerical methods can be used in (b) and (c). 
 
 
SOLUTION: 
The IYL is given by, 

𝜏 = 𝜇𝜎 + 𝑐. (1) 
Find the slope of this curve, 

!"
!#
= 𝜇. (2) 

 
Write the equation of a Mohr’s circle, 

(𝜎 − 𝑝)$ + 𝜏$ = 𝑅$. (3) 
The slope at any point on the Mohr’s circle is, 

2(𝜎 − 𝑝) + 2𝜏 !"
!#
= 0  =>  !"

!#
= −.#%&

"
/ = &%#

"
. (4) 

 
Substitute Eq. (1) into Eq. (3) since the internal yield locus (IYL) at the end-point state will be a point on the Mohr’s 
circle, 

𝑅 = 0(𝜎'( − 𝑝)$ + (𝜇𝜎'( + 𝑐)$ . (5) 
Also set the slopes the same since the IYL is tangent to the Mohr’s circle, 

&%#!"
"

= 𝜇. (6) 
Substitute Eq. (1) in for the shear stress, 

&%#!"
)#!"*+

= 𝜇  =>  𝑝 = 𝜎'( + 𝜇(𝜇𝜎'( + 𝑐). (7) 

Once the pressure is found, then the radius of the Mohr’s circle may be found using Eq. (6).  The effective angle of 
internal friction is given by, 

sin 𝛿 = ,
&

. (8) 
 
The following Python code is used to solve the previous expressions for the given values of (ϕ, c, σEP) to obtain σ1 = 
13.8 kPa.  The effective angle of internal friction is δ = 23.3o.  Other quantities of interest are (p, R) = (9.89, 3.91) 
kPa. 
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Following is the Python code used for the calculations.   

# shearcell_02.py 
 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy.optimize import fsolve 
 
def IYL(sigma, mu, c):  # incipient yield locus 
    return(mu*sigma + c) 
 
phi = np.radians(17.694)  # given internal friction angle [rad] 
mu = np.tan(phi)  # internal friction coefficient [-] 
c = 0.952  # given cohesion [kPa] 
sigma_EP = 8.7  # given end-point normal stress [kPa] 
tau_EP = IYL(sigma_EP, mu, c) 
 
# Set up the plot. 
fig, axes = plt.subplots() 
 
# Solve for the hydrostatic pressure, the radius, and plot the pressure point. 
p = sigma_EP + mu*(mu*sigma_EP + c) 
R = np.sqrt((sigma_EP - p)**2 + (mu*sigma_EP + c)**2) 
print('(p, R) = (%.3f, %.3f) kPa' % (p, R)) 
plt.plot(p, 0, 'ko') 
plt.annotate('$(p, 0)$', (p, 0), textcoords='offset points', xytext=(0,10), ha='center') 
 
MohrsCircle = plt.Circle((p, 0), R, fill=False)  # make the Mohr's circle 
axes.set_aspect(1)  # set the aspect ratio to one 
axes.add_artist(MohrsCircle)  # add the Mohr's circle to the plot 
 
# Plot the end-point stress state. 
plt.plot(sigma_EP, tau_EP, 'ko') 
plt.annotate('$(\sigma_{EP}, \\tau_{EP})$', (sigma_EP, tau_EP), textcoords='offset points', 
xytext=(30,0), ha='center') 
 
# Plot the consolidation stress. 
sigma_1 = p+R  # Find the consolidation stress. 
print('sigma1 = %.3f kPa' % sigma_1) 
plt.plot(sigma_1, 0, 'ko') 
plt.annotate('$(\sigma_1, 0)$', (sigma_1, 0), textcoords='offset points', xytext=(0,10), ha='center') 
 
# Calculate the effective angle of internal friction. 
delta = np.arcsin(R/p) 
print('delta = %.2f deg' % (np.degrees(delta))) 
plt.plot([0, p], [0, p*np.tan(delta)], color='r', marker='', linestyle='--') 
 
# Plot the IYL. 
# Obtain a series of normal stresses for plotting a smooth line. 
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sigma = np.linspace(0, sigma_EP, 100)  
plt.plot(sigma, IYL(sigma, mu, c), color='b', marker='', linestyle='-') 
 
# Label the axes and set the scale limits. 
plt.xlabel('normal stress, $\\sigma$ (kPa)') 
plt.ylabel('shear stress, $\\tau$ (kPa)') 
plt.xlim([0, 1.05*(p+R)]) 
plt.ylim([0, 1.05*R]) 
plt.show() 

 
 
Running the Python code gives the following output (and the plot): 

>  python3 ./shearcell_02.py 
(p, R) = (9.889, 3.913) kPa 
sigma1 = 13.802 kPa 
delta = 23.31 deg 
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Incipient yield loci (IYL) for an ideal Coulomb material are 
given by, 

𝜏 = 𝜇𝜎 + 𝑐.  
where μ = tanϕ is the internal friction coefficient, ϕ is the 
internal friction angle, and c is the cohesion.  Assume the 
values for ϕ, c, and the end-point stress σEP are known 
values (found from shear cell testing, for example).  In 
addition, assume the end-point stress state (σ, τ)EP is known 
and is part of the IYL.   
a.  Derive an expression (or set of expressions) to find the unconfined yield strength, fC, in terms of ϕ and c.   
b. Using your expressions from (a) calculate fC when (ϕ, c, σEP) = (17.694o, 0.952 kPa, 8.7 kPa). 
Note that the expressions in (a) need not be explicit for σ1 and numerical methods can be used in (b). 
 
 
SOLUTION: 
The IYL is given by, 

𝜏 = 𝜇𝜎 + 𝑐. (1) 
Find the slope of this curve, 

!"
!#
= 𝜇. (2) 

 
Write the equation of a Mohr’s circle, 

(𝜎 − 𝑝)$ + 𝜏$ = 𝑅$. (3) 
The slope at any point on the Mohr’s circle is, 

2(𝜎 − 𝑝) + 2𝜏 !"
!#
= 0  =>  !"

!#
= −.#%&

"
/ = &%#

"
. (4) 

 
Substitute Eq. (1) into Eq. (3) since the internal yield locus (IYL) will be a point on the Mohr’s circle, 

𝑅 = 0(𝜎'() − 𝑝)$ + (𝜇𝜎'() + 𝑐)$. (5) 
Also set the slopes the same since the IYL is tangent to the Mohr’s circle, 

&%#!"#
"

= 𝜇. (6) 
Substitute Eq. (1) in for the shear stress, 

&%#!"#
*#!"#+,

= 𝜇  =>  𝑝 = 𝜎'() + 𝜇(𝜇𝜎'() + 𝑐). (7) 

 
One of the points on the unconfined yield strength Mohr’s circle must go through the origin.  Thus, we know that 
for this Mohr’s circle, 

𝑝 = 𝑅   (since σ2 = p – R = 0). (8) 
With this in mind, we can re-write Eq. (5) as, 

𝑝 = 0(𝜎'() − 𝑝)$ + (𝜇𝜎'() + 𝑐)$. (9) 
Substituting Eq. (7) into this expression gives, 

𝜎'() + 𝜇(𝜇𝜎'() + 𝑐) = 0[𝜇(𝜇𝜎'() + 𝑐)]$ + (𝜇𝜎'() + 𝑐)$, (10) 
[𝜎'() + 𝜇(𝜇𝜎'() + 𝑐)]$ = [𝜇(𝜇𝜎'() + 𝑐)]$ + (𝜇𝜎'() + 𝑐)$, (11) 
𝜎'()$ + 2𝜎'()𝜇(𝜇𝜎'() + 𝑐) + [𝜇(𝜇𝜎'() + 𝑐)]$ = [𝜇(𝜇𝜎'() + 𝑐)]$ + (𝜇𝜎'() + 𝑐)$, (12) 
𝜎'()$ + 2𝜎'()𝜇(𝜇𝜎'() + 𝑐) − (𝜇𝜎'() + 𝑐)$ = 0, (13) 
𝜎'()$ + 2𝜇$𝜎'()$ + 2𝜇𝑐𝜎'() − 𝜇$𝜎'()$ − 2𝜇𝑐𝜎'() − 𝑐$ = 0, (14) 
(1 + 𝜇$)𝜎'()$ − 𝑐$ = 0, (15) 
𝜎'() =

,
-.+*$

. (16) 

Note that this is the normal stress that falls on the IYL as well as the Mohr’s circle for the unconfined yield 
strength.  To find the unconfined yield strength, substitute Eq. (16) into Eq. (7) and multiply by two (since fC = 2p), 

𝑓/ = 2𝑝 = 2[𝜎'() + 𝜇(𝜇𝜎'() + 𝑐)]. (18) 
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The following Python code is used to solve the previous expressions for the given values of (ϕ, c, σN,EP) to obtain fC 
= 2.61 kPa.  Other quantities of interest are p = R = 1.30 kPa and (σ, τ)IYL = (0.907, 1.24) kPa.   
 

 
Following is the Python code used for the calculations. 

# shearcell_02.5.py 
 
import matplotlib.pyplot as plt 
import numpy as np 
from scipy.optimize import fsolve 
 
def IdealCoulomb(sigma, phi, c):  # IYL 
    return(np.tan(phi)*sigma + c) 
 
# Set up the plot. 
figure, axes = plt.subplots() 
 
# Input parameters 
c = 0.952  # kPa, cohesion 
phi = np.radians(17.694)  # rad(deg), internal friction angle 
mu = np.tan(phi)  # -, internal friction coefficient 
sigma_EP = 8.7  # kPa 
tau_EP = IdealCoulomb(sigma_EP, phi, c) 
print('(phi, c, sigma_EP, tau_EP) = (%.3f deg, %.3f kPa, %.3f kPa, %.3f kPa)' % (np.degrees(phi), c, 
sigma_EP, tau_EP)) 
 
# Find the normal stress on the IYL corresponding to the unconfined yield strength. 
sigma_IYL = c/np.sqrt(1 + mu**2) 
tau_IYL = IdealCoulomb(sigma_IYL, phi, c) 
f_C = 2*(sigma_IYL + mu*(mu*sigma_IYL + c)) 
p = R = f_C/2 
print('f_C = %.3f kPa' % f_C) 
print('p = R = %.3f kPa' % p) 
print('(sigma_IYL, tau_IYL) = (%.3f, %.3f) kPa' % (sigma_IYL, tau_IYL)) 
 
# Draw the Mohr's circle for the unconfined yield strength. 
MohrsCircle = plt.Circle((0.5*f_C, 0), 0.5*f_C, fill=False)  # make the Mohr's circle 
axes.set_aspect(1)  # set the aspect ratio to one 
axes.add_artist(MohrsCircle)  # add the Mohr's circle to the plot 
 
# Plot the unconfined yield strength point and label it. 
plt.plot(f_C, 0, 'ko') 

Powder Storage and Flow

C. Wassgren 176 2024-06-12



 shearcell_02.5 

Page 3 of 3 

plt.annotate('$(f_C, 0)$', (f_C, 0), textcoords='offset points', xytext=(0,10), ha='center') 
 
# Plot the pressure point and label it. 
plt.plot(p, 0, 'ko') 
plt.annotate('$(p, 0)$', (p, 0), textcoords='offset points', xytext=(0,10), ha='center') 
 
# Plot the common point on the IYL and Mohr's circle. 
plt.plot(sigma_IYL, tau_IYL, 'ko') 
plt.annotate('$(\\sigma_{IYL}, \\tau_{IYL})$', (sigma_IYL, tau_IYL), textcoords='offset points', 
xytext=(0,10), ha='center') 
 
# Plot the IYL. 
sigma = np.linspace(0, sigma_EP, 100)  #  a bunch of points for a smooth line 
plt.plot(sigma, IdealCoulomb(sigma, phi, c), marker='', linestyle='-') 
 
# Plot the endpoint stress point and label it. 
plt.plot(sigma_EP, tau_EP, 'ko')  
plt.annotate('$(\\sigma_{EP}, \\tau_{EP})$', (sigma_EP, tau_EP), textcoords='offset points', 
xytext=(0,10), ha='center') 
 
# Add plot labels and set the axis limits. 
plt.xlabel('normal stress, $\\sigma$ (kPa)') 
plt.ylabel('shear stress, $\\tau$ (kPa)') 
plt.xlim([0, 1.05*sigma_EP]) 
plt.ylim([0, 1.05*tau_EP]) 
plt.show() 
 

Running the code provides the following output. 
>  python3 ./shearcell_02.5.py 
(phi, c, sigma_EP, tau_EP) = (17.694 deg, 0.952 kPa, 8.700 kPa, 3.728 kPa) 
f_C = 2.606 kPa 
p = R = 1.303 kPa 
(sigma_IYL, tau_IYL) = (0.907, 1.241) kPa 
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A series of shear cell experiments were performed on powdered sugar with the results shown in the following 
figures.  The applied normal stresses are located near the bottom of the figures. 
 
Endpoint (aka pre-shear) stress of 1000 Pa: 

 
Endpoint (aka pre-shear) stress of 2000 Pa: 
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Endpoint (aka pre-shear) stress of 4000 Pa:

 
 
a. Plot the incipient yield loci data points and a linear fit to the data points (extend it to the vertical axis) for each 

end-point stress. 
b. Determine the consolidation stress-unconfined yield strength for each incipient yield locus.  Plot the material’s 

flow function. 
c. Plot the internal friction angle, effective angle of internal friction, and cohesion as functions of the 

consolidation stress. 
 
Hints: 
1. There’ll be uncertainty in reading the plots.  Don’t worry if your values are slightly different than a colleague’s 

values. 
2. A numerical curve fit for fitting the incipient yield loci will be more accurate than plotting by hand.  For 

example, consider using the curve_fit function in the Python scipy.optimize library. 
3. Make use of the derivations given in lecture to obtain the consolidation stress and unconfined yield strength 

from the incipient yield loci. 
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SOLUTION: 
First, determine the yielding shear stress for each applied normal stress for each end-point condition.  These values 
are summarized in the following plots and table.  Note that there will be some uncertainty when reading the plots. 
 
Endpoint (aka pre-shear) stress of 1000 Pa: 

 
Endpoint (aka pre-shear) stress of 2000 Pa: 
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Endpoint (aka pre-shear) stress of 4000 Pa:

 
 

(𝝈, 𝝉)𝑬𝑷 = (1000, 993) Pa (𝝈, 𝝉)𝑬𝑷 = (2000, 1900) Pa (𝝈, 𝝉)𝑬𝑷 = (4000, 3600) Pa 
𝝈 [Pa] 𝝉 [Pa] 𝝈 [Pa] 𝝉 [Pa] 𝝈 [Pa] 𝝉 [Pa] 

561 789 1103 1470 2149 2650 
681 878 1352 1640 2674 3050 
800 926 1600 1760 3200 3350 

 
The data, linear fits to the data of the ideal Coulomb material form (𝜏 = 𝜇𝜎 + 𝑐), and the Mohr’s circles for 
determining the consolidation stress and unconfined yield strength are shown in the following figure.  The 
corresponding numerical data are given in the table following the figure.  The algorithms for consolidation stress 
and unconfined yield strength are taken from the lecture material. 

 
consolidation 

stress, 
𝝈𝟏 [Pa] 

unconfined yield 
strength, 
𝒇𝑪 [Pa] 

internal friction 
angle, 
𝝓 [deg] 

effective angle of 
internal friction, 

𝜹 [deg] 

cohesion, 
𝒄 [Pa] 

2550 1720 24.2 49.3 555 
5030 3090 25.2 47.0 980 
9970 5340 26.9 44.6 1640 
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Following is the material flow function for the powdered sugar using the consolidation stress and unconfined yield 
strength values from the previous table.  Note that a quadratic fit to the data is also included in the plot (but 
wasn’t a required deliverable for this problem). 

 
 
Following are plots of the internal friction angle, effective angle of internal friction, and cohesion as functions of 
the consolidation stress for each yield locus.  The numerical values are given in the previous table. 

 
 
  

very cohesive region 
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The following Python code was used to perform the calculations and generate the plots. 
# shearcell_05.py 
 
import numpy as np 
import matplotlib.pyplot as plt 
import matplotlib.patches as patches 
from scipy.optimize import curve_fit 
 
def IdealCoulomb(sigma, phi_rad, c): 
    # Ideal Coulomb material model incipient yield locus (linear). 
    return(np.tan(phi_rad)*sigma + c) 
 
def Get_Sigma1_fC_delta(phi_rad, c, sigma_EP): 
    # Function to return the consolidation stress, unconfined yield 
    # strength, and effective angle of internal friction assuming a 
    # linear incipient yield locus.  Use the equations derived in 
    # lecture. 
 
    mu = np.tan(phi_rad) 
 
    p = sigma_EP + mu*(mu*sigma_EP + c) 
    R = np.sqrt((sigma_EP - p)**2 + (mu*sigma_EP + c)**2) 
    sigma1 = p + R 
     
    sigma_IYL = c/np.sqrt(1 + mu**2) 
    tau_IYL = IdealCoulomb(sigma_IYL, phi_rad, c) 
    fC = 2*(sigma_IYL + mu*(mu*sigma_IYL + c)) 
 
    delta_rad = np.arcsin(R/p) 
     
    return(sigma1, fC, delta_rad, p, R) 
 
def QuadraticFit(x, c0, c1, c2): 
    # Quadratic curve fit used for the material flow function. 
    return(c0 + c1*x + c2*x**2) 
 
# Specify the shear cell data.  The first datapoint is the end-point 
# stress (sigma_EP, tau_EP).  The remainder are incipient yield data 
# (sigma, tau). 
dataset_1 = [[1000, 993], [561, 789], [681, 878], [800, 926]] 
dataset_2 = [[2000, 1900], [1103, 1470], [1352, 1640], [1600, 1760]] 
dataset_3 = [[4000, 3600], [2149, 2650], [2674, 3050], [3200, 3350]] 
 
# Extract the normal and shear stresses. 
sigma_1 = np.array([item[0] for item in dataset_1]) 
tau_1 = np.array([item[1] for item in dataset_1]) 
sigma_2 = np.array([item[0] for item in dataset_2]) 
tau_2 = np.array([item[1] for item in dataset_2]) 
sigma_3 = np.array([item[0] for item in dataset_3]) 
tau_3 = np.array([item[1] for item in dataset_3]) 
 
# Plot the yield loci. 
figure, axes = plt.subplots() 
plt.scatter(sigma_1, tau_1, color='k') 
plt.scatter(sigma_2, tau_2, color='r') 
plt.scatter(sigma_3, tau_3, color='b') 
plt.xlabel(r'normal stress, $\sigma$ [Pa]') 
plt.ylabel(r'shear stress, $\tau$ [Pa]') 
 
# Fit straight lines to each incipient yield locus to obtain the 
# internal friction angle and cohesion. 
[phi_rad_1, c_1], cov = curve_fit(IdealCoulomb, sigma_1, tau_1) 
print('(phi_1, c_1) = (%.2f deg, %.2f kPa)' % (np.degrees(phi_rad_1), c_1)) 
sigma_range = np.linspace(0, max(sigma_1), 100) 
plt.plot(sigma_range, IdealCoulomb(sigma_range, phi_rad_1, c_1), color='k', linestyle='-') 
[phi_rad_2, c_2], cov = curve_fit(IdealCoulomb, sigma_2, tau_2) 
print('(phi_2, c_2) = (%.2f deg, %.2f kPa)' % (np.degrees(phi_rad_2), c_2)) 
sigma_range = np.linspace(0, max(sigma_2), 100) 
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plt.plot(sigma_range, IdealCoulomb(sigma_range, phi_rad_2, c_2), color='r', linestyle='-') 
[phi_rad_3, c_3], cov = curve_fit(IdealCoulomb, sigma_3, tau_3) 
print('(phi_3, c_3) = (%.2f deg, %.2f kPa)' % (np.degrees(phi_rad_3), c_3)) 
sigma_range = np.linspace(0, max(sigma_3), 100) 
plt.plot(sigma_range, IdealCoulomb(sigma_range, phi_rad_3, c_3), color='b', linestyle='-') 
 
# Find the consolidation stress and unconfined yield strength for each incipient yield locus. 
(sigma1_1, fC_1, delta_rad_1, p_1, R_1) = Get_Sigma1_fC_delta(phi_rad_1, c_1, sigma_1[0]) 
print('(sigma1_1, fC_1) = (%.2f, %.2f) kPa, delta_1 = %.2f deg' % (sigma1_1, fC_1, 
np.degrees(delta_rad_1))) 
(sigma1_2, fC_2, delta_rad_2, p_2, R_2) = Get_Sigma1_fC_delta(phi_rad_2, c_2, sigma_2[0]) 
print('(sigma1_2, fC_2) = (%.2f, %.2f) kPa, delta_2 = %.2f deg' % (sigma1_2, fC_2, 
np.degrees(delta_rad_2))) 
(sigma1_3, fC_3, delta_rad_3, p_3, R_3) = Get_Sigma1_fC_delta(phi_rad_3, c_3, sigma_3[0]) 
print('(sigma1_3, fC_3) = (%.2f, %.2f) kPa, delta_3 = %.2f deg' % (sigma1_3, fC_3, 
np.degrees(delta_rad_3))) 
 
# Plot the corresponding Mohr's circles. 
MohrsCircle = patches.Circle((p_1, 0), R_1, fill=False, color='k') 
axes.add_patch(MohrsCircle) 
plt.text(sigma1_1, 10, '%d' % sigma1_1, color='k', fontsize=8) 
MohrsCircle = patches.Circle((0.5*fC_1, 0), 0.5*fC_1, fill=False, color='k') 
axes.add_patch(MohrsCircle) 
plt.text(fC_1, 10, '%d' % fC_1, color='k', fontsize=8) 
MohrsCircle = patches.Circle((p_2, 0), R_2, fill=False, color='r') 
axes.add_patch(MohrsCircle) 
plt.text(sigma1_2, 200, '%d' % sigma1_2, color='r', fontsize=8) 
MohrsCircle = patches.Circle((0.5*fC_2, 0), 0.5*fC_2, fill=False, color='r') 
axes.add_patch(MohrsCircle) 
plt.text(fC_2, 200, '%d' % fC_2, color='r', fontsize=8) 
MohrsCircle = patches.Circle((p_3, 0), R_3, fill=False, color='b') 
axes.add_patch(MohrsCircle) 
plt.text(sigma1_3, 400, '%d' % sigma1_3, color='b', fontsize=8) 
MohrsCircle = patches.Circle((0.5*fC_3, 0), 0.5*fC_3, fill=False, color='b') 
axes.add_patch(MohrsCircle) 
plt.text(fC_3, 400, '%d' % fC_3, color='b', fontsize=8) 
axes.set_aspect(1) 
axes.set_xlim(left=0) 
axes.set_ylim(bottom=0) 
plt.show() 
 
# Fit the material flow function with a quadratic curve. 
[c0, c1, c2], cov = curve_fit(QuadraticFit, [sigma1_1, sigma1_2, sigma1_3], [fC_1, fC_2, fC_3]) 
 
# Plot the material flow function. 
plt.plot(sigma1_1, fC_1, 'ko') 
plt.plot(sigma1_2, fC_2, 'ro') 
plt.plot(sigma1_3, fC_3, 'bo') 
# Add the quadratic curve fit. 
sigma1_range = np.linspace(sigma1_1, sigma1_3, 100) 
plt.plot(sigma1_range, QuadraticFit(sigma1_range, c0, c1, c2), color='k', linestyle='-') 
# Add flow factor lines. 
ff_values = [1, 2, 4, 10] 
for ff in ff_values: 
    plt.plot([0, sigma1_3], [0, 1/ff*sigma1_3], color='k', linestyle='--') 
    plt.text(sigma1_3, 1/ff*sigma1_3, 'mff = %d' % ff, color='k', fontsize=8) 
plt.xlabel(r'consolidation stress, $\sigma_1$ [kPa]') 
plt.ylabel(r'unconfined yield strength, $f_C$ [kPa]') 
plt.text(0, 9000, r'$f_C = (%0.2e$ Pa$) + (%.2e$ Pa$^{-1})\sigma_1 + (%.2e$Pa$^{-2})\sigma_1^2$' % 
(c0, c1, c2), color='k', fontsize=8) 
plt.show() 
 
# Plot the internal friction angle and effective angle of internal 
# friction as functions of the consolidation stress. 
plt.plot(sigma1_1, np.degrees(phi_rad_1), 'ko') 
plt.plot(sigma1_2, np.degrees(phi_rad_2), 'ro') 
plt.plot(sigma1_3, np.degrees(phi_rad_3), 'bo') 
plt.plot(sigma1_1, np.degrees(delta_rad_1), 'kx') 
plt.plot(sigma1_2, np.degrees(delta_rad_2), 'rx') 
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plt.plot(sigma1_3, np.degrees(delta_rad_3), 'bx') 
plt.xlabel(r'consolidation stress, $\sigma_1$ [kPa]') 
plt.ylabel(r'angle [deg]') 
plt.text(3000, 27, r'internal friction angle, $\phi$', color='k', fontsize=10) 
plt.text(3000, 43, r'effective angle of internal friction, $\delta$', color='k', fontsize=10) 
plt.show() 
 
# Plot the cohesion as a function of the consolidation stress. 
plt.plot(sigma1_1, c_1, 'ko') 
plt.plot(sigma1_2, c_2, 'ro') 
plt.plot(sigma1_3, c_3, 'bo') 
plt.xlabel(r'consolidation stress, $\sigma_1$ [kPa]') 
plt.ylabel(r'cohesion, $c$ [kPa]') 
plt.show() 

 
Running the Python code produces the following text output: 

>> python3 ./shearcell_05.py 
(phi_1, c_1) = (24.19 deg, 554.81 kPa) 
(phi_2, c_2) = (25.21 deg, 979.70 kPa) 
(phi_3, c_3) = (26.87 deg, 1639.31 kPa) 
(sigma1_1, fC_1) = (2551.93, 1715.03) kPa, delta_1 = 49.34 deg 
(sigma1_2, fC_2) = (5028.62, 3088.42) kPa, delta_2 = 46.98 deg 
(sigma1_3, fC_3) = (9968.19, 5337.04) kPa, delta_3 = 44.56 deg 
/opt/miniconda3/lib/python3.8/site-packages/scipy/optimize/minpack.py:828: OptimizeWarning: Covariance 
of the parameters could not be estimated 
  warnings.warn('Covariance of the parameters could not be estimated', 

Note that the warning was generated for the quadratic fit to the material flow function. 
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CHAPTER 9

Hopper Design

The objectives of basic hopper design involve ensuring mass flow within the hopper, which is most affected
by the hopper wall angle, and avoiding cohesive bridging (aka doming), which is controlled by the exit
diameter (Figure 9.1). The methodology for achieving both of these objectives is described in this chapter
for symmetric conical and wedge-shaped hoppers using the approach originally derived by Jenike [1], [2].

Jenike [1], [2] performed a solid mechanics analysis to determine the stress field in symmetric wedge and
conical hoppers. Assuming an ideal Coulomb material, he calculated the maximum wall angle to produce
mass flow in these hoppers and derived the minimum exit diameter required to prevent bridging. Jenike
found that the stresses in a mass flow hopper are a function of:

• the material’s effective angle of internal friction, δ,
• the material-wall friction angle, ϕw, and
• the angle between the hopper wall and the vertical, θ.

The parameters affecting the minimum exit diameter to avoid cohesive bridging are:

• the material’s flow function, mFF,
• the material’s specific weight (bulk density multiplied by gravitational acceleration), and
• the hopper flow factor, hff, which is a function of δ, ϕw, and θ (discussed later in this chapter).

Deriving and solving the equations to generate the conditions required to produce mass flow and prevent
cohesive bridging is beyond the scope of these notes. The analysis involves the Equilibrium Equations from
solid mechanics, Mohr’s circles, and the Method of Characteristics for solving the equations. Fortunately,

Figure 9.1. A photograph of a conical hopper showing the maximum wall half angle from
the vertical θmax for mass flow and the minimum exit diameter to avoid cohesive bridging
Dmin.
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Jenike produced plots that allow one to easily look up the maximum hopper wall half angle from the vertical
to ensure mass flow as well as a simple analysis for determining the minimum exit size. This chapter focuses
on applying Jenike’s results rather than deriving the underlying equations.

9.1. Maximum Hopper Wall Half Angle to Produce Mass Flow

An example of one of Jenike’s design charts is shown in Figure 9.2. This chart is specifically for a conical
hopper and a material with an effective angle of internal friction of δ = 50◦. The vertical axis in the chart is
the wall friction angle (ϕw) and the horizontal axis is the hopper wall half angle from the vertical (θ). The
lower left corner of the figure corresponds to mass flow conditions while the upper right corner is funnel flow.
The black line spanning the figure from the upper-left to the lower-right corresponds to critical conditions
separating the two flow regimes. The curves in the lower left-half of the figure correspond to different hopper
flow factor (hff) values (discussed later in this chapter).

To determine the maximum hopper wall half angle from the vertical to produce mass flow, one first chooses
the correct design chart (in this case, for a conical hopper and an effective angle of internal friction of δ = 50◦),
then draws a horizontal line from the correct wall friction angle on the vertical axis until it touches the black
dividing line, then draws a vertical line downward to the hopper wall half angle on the horizontal axis. The
red lines in the figure provide an example for a wall friction angle of ϕw = 20◦. The maximum wall half
angle from the vertical to produce mass flow in a conical hopper with this material is θmax = 26◦. Note that
this wall angle does not include a safety margin. It’s customary to include a three degree margin for conical
hoppers since the transition between mass flow and funnel flow is abrupt so the maximum hopper wall half
angle should be θmax = 23◦.

Notes:

(1) Decreasing the wall friction angle (ϕw), e.g., through the use of wall liners, increases the critical
wall angle (θmax) required for mass flow. For example, in the previous example, if the wall friction
angle is changed from ϕw = 20◦ to ϕw = 15◦ the maximum hopper wall angle (without a safety
margin) increases from θmax = 26◦ to θmax = 32◦ (Figure 9.3).

(2) Design charts for wedge-shaped hoppers (aka symmetrical slot hoppers) are also available. These
charts assume the hopper depth (L) is at least three times the exit width (B) so the effects from
the front and back walls can be neglected (Figure 9.4). The Jenike charts for wedge hoppers look
similar to those for conical hoppers, but with an important difference: there is an intermediate flow
region separating the mass flow and funnel flow regions (Figure 9.5). The flow in the intermediate
region could be mass flow or funnel flow depending on the material height in the hopper [3]. Thus,
the transition between mass and funnel flow is more gradual than for a conical hopper. As a result,
a safety margin is not typically included for wedge hopper wall angles. To be conservative, Jenike
included a dashed line near the mass flow-intermediate flow boundary which is used to determine
the maximum hopper wall half angle for mass flow. For example, in Figure 9.5, the maximum
hopper wall half angle to produce mass flow is 34◦ for a wedge hopper containing material with an
effective angle of internal friction of δ = 50◦ and a wall friction angle of ϕw = 20◦.

(3) For the same effective internal friction and wall friction angles, the critical mass flow angle for a
wedge hopper is about 10◦ to 12◦ larger than for a conical hopper. The vertical gradient in the
cross-sectional area is smaller for wedge hoppers compared to conical hoppers. Thus, the material
compresses less laterally in a wedge hopper as it flows toward the exit, making it easier for the
material to discharge. The larger critical wall angle means that wedge hoppers are often considered
for new hopper construction as well as for retrofits since wedge hoppers require less head space for
the same material volume.

(4) Additional design charts for conical and wedge hoppers at different effective angles of internal friction
are given at the end of this chapter in Section 9.6.
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Figure 9.2. The Jenike design chart for determining the maximum hopper wall half angle
to produce mass flow for a material with an effective angle of internal friction of δ = 50◦ in
a conical hopper. The red lines in the figure correspond to an example with a wall friction
angle of ϕw = 20◦ giving a critical hopper wall angle of θmax = 26◦ (without a safety margin).
This design chart is from Jenike [2].

(5) Behara et al. [4] provide mathematical expressions for the critical hopper wall half angle,

conical hopper: θmax = 90◦ − 1

2
arccos

(
1− sin δ

2 sin δ

)
− 1

2

[
ϕw + arcsin

(
sinϕw

sin δ

)]
, (9.1)

wedge hopper: θmax =

[
60.5◦ +

1

15.07
arctan

(
50◦ − δ

7.73◦

)][
1− ϕw

42.3◦ + 0.131δ exp(0.06)

]
, (9.2)

where δ is the effective angle of internal friction and ϕw is the wall friction angle, both of which
should be in degrees and not radians. Recall that ϕw ≤ δ (Chapter 4). These expressions do not
include a safety margin. For improved safety, subtract 3◦ from the calculated θmax values for the
conical hopper. For wedge hoppers the transition between mass flow and funnel flow is more gradual
and a safety margin is not needed. Figure 9.6 plots Eqs. (9.1) and (9.2) using the Python code
given in Listing 9.1.

Listing 9.1. Python code to determine the maximum hopper wall half angle to produce
mass flow in conical and wedge hoppers.

def HopperCriticalAngle(delta, phiw, Type):

# angles in radians, returns radians

# Evaluate the critical half angle from the vertical for different

# hopper types to ensure mass flow.
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Figure 9.3. The Jenike design chart for determining the maximum hopper wall half angle
to produce mass flow for a material with an effective angle of internal friction of δ = 50◦ in
a conical hopper. The blue lines in the figure correspond to an example with a wall friction
angle of ϕw = 15◦ giving a critical hopper wall angle of θmax = 32◦ (without a safety margin).
This design chart is from Jenike [2].

Figure 9.4. A schematic of a wedge hopper geometry for which the front and back wall
effects can be neglected.

# Found using the expressions in Arnold and McLean (1976).

sin_delta = np.sin(delta)

sin_phiw = np.sin(phiw)
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Figure 9.5. The Jenike design chart for determining the maximum hopper wall half angle
to produce mass flow for a material with an effective angle of internal friction of δ = 50◦ in
a wedge hopper. The red lines in the figure correspond to an example with a wall friction
angle of ϕw = 20◦ giving a critical hopper wall angle of θmax = 34◦. This design chart is
from Jenike [2].

if (Type == ’Conical’):

# Critical hopper angle for a conical hopper.

return(np.radians(90) - 0.5*np.arccos((1-sin_delta)/(2*sin_delta)) -

↪→ 0.5*(phiw + np.arcsin(sin_phiw/sin_delta)))

elif (Type == ’Slot’):

# Critical angle for a symmetric slot hopper.

return ((np.radians(60.5) + np.arctan((np.radians(50)-delta)/np.radians

↪→ (7.73))/15.07)*(1-phiw/(np.radians(42.3) + 0.131*np.exp(0.06)*

↪→ delta)))

else:

print(’Don\’t␣know␣how␣to␣evaluate␣for␣a␣\’%s\’␣hopper.’ % Type)

quit()

9.2. Minimum Hopper Exit Size to Avoid Cohesive Bridging

If a powder ceases to flow in a hopper (or other device), then an unconfined (aka free) surface exists (Fig-
ure 9.7). In order to ensure that flow continues in the device, the powder must yield at the unconfined surface.
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Figure 9.6. The critical hopper angle to produce mass flow in conical and wedge hoppers.
The curves are plotted using Eqs. (9.1) and (9.2) implemented in the Python code in List-
ing 9.1.

Figure 9.7. A schematic showing an unconfined surface when a cohesive arch forms in a
hopper.

The stresses applied to the powder at the free surface by the walls must exceed the powder’s unconfined yield
strength (fc) at that location. Thus, we need to know the stresses applied to the powder by the walls in
order to determine if the powder will flow.

Jenike found that in a mass flow hopper, the ratio of the consolidation stress acting on the material (σ1) to
the major principal stress applied to the material at the wall (σapp) is a constant, which he defined as the
hopper flow factor (hff),

hff :=
σ1

σapp
. (9.3)

Determining the hff requires solving two simultaneous differential equations, which is beyond the scope of
these notes. The solution is a function of the effective angle of internal friction (δ), the wall friction angle
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Figure 9.8. The hopper design chart for a conical hopper and a material with an effective
angle of internal friction of δ = 50◦. For a wall friction angle of ϕw = 20◦ and a hopper wall
half angle of 23◦, the hopper flow factor is hff ≈ 1.32. This chart is from Jenike [2].

(ϕw), and the wall half angle from the vertical (θ). Typical values for the hff are between 1.1 and 1.7.
Fortunately, Jenike included in his design charts curves allowing one to estimate hopper flow factor values.
For example, referring to Figure 9.8, for a material with an effective angle of internal friction of δ = 50◦

contained within a conical hopper with a wall half angle of 23◦ and a wall friction angle of 20◦, the hopper
flow factor is hff ≈ 1.32. Similarly, the hopper flow factor for a wedge hopper at the same conditions is hff
≈ 1.20 (Figure 9.9).

Notes:

(1) Arnold and McLean [5] provide expressions for calculating the hopper flow factor,

hff = H(θ)
Y (1 + sin δ)

2(X − 1) sin θ
, (9.4)

X =
2m sin δ

1− sin δ

[
sin(2β + θ)

sin θ
+ 1

]
, (9.5)

Y =
{2 [1− cos(β + θ)]}m (β + θ)1−m sin θ + sinβ [sin(β + θ)]

1+m

(1− sin δ) [sin(β + θ)]
2+m , (9.6)

H(θ) =

(
130◦ + θ

65◦

)m(
200◦ + θ

200◦

)1−m

, (9.7)
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Figure 9.9. The hopper design chart for a wedge hopper and a material with an effective
angle of internal friction of δ = 50◦. For a wall friction angle of ϕw = 20◦ and a hopper wall
half angle of 34◦, the hopper flow factor is hff ≈ 1.20. This chart is from Jenike [2].

β =
1

2

[
ϕw + arcsin

(
sinϕw

sin δ

)]
, (9.8)

wherem = 1 for a conical hopper andm = 0 for a wedge hopper. Python functions for evaluating the
function H(θ) and the hopper flow factor (hff) are given in Listing 9.2. Note that these expressions
are slightly different than the values from Jenike.

Listing 9.2. Python code for calculating the function H(theta) and the hopper flow factor
using the expressions in Arnold and McLean (1976).

def H(theta, Type): # theta in radians, return is dimensionless

# Found using the expressions in Arnold and McLean (1976).

if (Type == ’Conical’):

return((130+np.degrees(theta))/65)

elif (Type == ’Slot’):

return((200+np.degrees(theta))/200)

else:

print(’Don\’t␣know␣how␣to␣evaluate␣H(theta)␣for␣a␣\’%s\’␣hopper.’ %

↪→ Type)

quit()

def HopperFlowFactor(delta, phiw, theta, Type): # angles in radians, return is

↪→ dimensionless
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# Found using the expressions in Arnold and McLean (1976).

sin_delta = np.sin(delta)

sin_phiw = np.sin(phiw)

sin_theta = np.sin(theta)

beta = 0.5*(phiw + np.arcsin(sin_phiw/sin_delta))

sin_beta = np.sin(beta)

sin_beta_plus_theta = np.sin(beta+theta)

# Now find the hff for the given hopper angle.

if (Type == ’Conical’):

X = 2*sin_delta/(1-sin_delta)*(np.sin(2*beta+theta)/sin_theta + 1)

Y = ((2*(1-np.cos(beta+theta)))*sin_theta + sin_beta*(

↪→ sin_beta_plus_theta)**2) / ((1-sin_delta)*(sin_beta_plus_theta)

↪→ **3)

elif (Type == ’Slot’):

X = sin_delta/(1-sin_delta)*(np.sin(2*beta+theta)/sin_theta + 1)

Y = ((beta+theta)*sin_theta + sin_beta*sin_beta_plus_theta) / ((1-

↪→ sin_delta)*(sin_beta_plus_theta)**2)

else:

print(’Don\’t␣know␣how␣to␣evaluate␣the␣HopperFlowFactor␣for␣a␣\’%s\’␣

↪→ hopper.’ % Type)

quit()

H_theta = H(theta, Type)

hff = H_theta*Y*(1+sin_delta)/(2*(X-1)*sin_theta)

return(hff)

Recall that in order to ensure that material doesn’t form a bridge, we want the applied stress (σapp) to equal
or exceed the unconfined yield strength of the material (fc), i.e., for flow we should have,

σapp ≥ fc =⇒ 1

hff
σ1 ≥ mFF(σ1). (9.9)

This criterion is shown graphically in Figure 9.10. The critical applied stress (CAS) is where the applied
stress equals the unconfined yield strength. Note that if the material flow function (mFF) is always less than
the 1/hff line, then a cohesive arch will never form. If the material flow function is always greater than the
1/hff line, then gravity alone will not break the arch and some other means of promoting flow must be used.

To determine the required critical applied stress at the hopper exit to ensure flow, we can perform a force
balance on a thin, uniform arch of material as shown in Figure 9.11. For this analysis, assume the only
forces acting on the arch are the applied stress from the walls and the weight of the material in the arch.
Neglecting the weight of the material above the arch serves as a conservative scenario since the weight of
overlying material would help to collapse the arch. During discharge, the major principal stress applied to
the material at the wall acts on a plane that is at an angle β with respect to the wall (refer to Chapter 6).

The upward acting force resulting from the (major principal) applied stress at the wall acts over the perimeter
area of the arch and is given by,

Fup = [f1(θ)rdr]σapp sin(θ − β), (9.10)

where f1(θ) is a function of the arch geometry. Note that the perimeter area is proportional to rdr where
r is the radius from the hopper’s apex. The downward acting force, i.e., the arch weight, is proportional to
the arch volume,

Fdown = ρbg[f2(θ)r
2dr], (9.11)
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Figure 9.10. The critical applied stress (CAS) is the applied stress at which the applied
stress (σapp = σ1/hff) equals the unconfined yield strength (fc = mFF(σ1)). Consolidation
stresses larger than the critical applied stress will result in flow (the applied stress is larger
than the material strength) while consolidation stresses smaller than the critical applied
stress result in no flow.

Figure 9.11. A free body diagram of a thin arch of material at the hopper exit. Two forces
are assumed to act on the arch, the force applied at the walls and the material weight.

where f2(θ) is also a function of the arch geometry. Note here that the volume is proportional to r2dr. Now
determine the exit radius (from the hopper apex), rb, at which the upward and downward acting forces are
equal, ∑

Fz = 0 = Fup − Fdown, (9.12)

0 = [f1(θ)rbdr]σapp sin(θ − β)− ρbg[f2(θ)r
2
bdr], (9.13)

rb =
f1(θ)

f2(θ)

σapp sin(θ − β)

ρbg
. (9.14)

To be conservative, let Fup be as large as possible (more likely to form an arch), which means choosing β
such that sin(θ − β) = 1. Thus, the previous equation becomes,

rb = f3(θ)
σapp

ρbg
(9.15)
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The exit diameter, D, is related to the radius via (Figure 9.11),

D = 2rb sin(θ). (9.16)

In addition, when the arch is just about to yield, the applied stress should equal the critical applied stress,
i.e., σapp = CAS. The hopper diameter for these conditions is the minimum diameter at which the arch will
yield. Thus,

Dmin = H(θ)
CAS

ρbg
, (9.17)

where H(θ) is a function accounting for the arch geometry. An analysis can be performed to determine the
form of H(θ), but is outside the scope of these notes.

Notes:

(1) As discussed in previous chapters, the bulk density is a function of the consolidation stress. It’s
value in Eq. (9.17) should correspond to the consolidation stress at the exit.

(2) The minimum exit width for a wedge hopper (Figure 9.4) is,

Bmin = H(θ)
CAS

ρbg
. (9.18)

(3) Plots for the function H(θ) for various exit geometries are given in Figure 9.12. Several curve fits
have been proposed for H(θ), including the one given in Eq. (9.7) as well as the following [4]:

circular exit: H(θ) = 2.0 +
θ

60◦
, (9.19)

square exit: H(θ) = 1.8 +
θ

70◦
, (9.20)

rectangular exit: H(θ) = 1.0 +
θ

180◦
. (9.21)

For exit dimensions between the rectangular and square shapes, Woodcock and Mason [6] recom-
mend interpolating between the two curves. It’s important to note from Figure 9.12 that circular
exit diameters must be approximately twice the width of rectangular exits to avoid bridging. Thus,
not only can wedge hoppers have larger wall angles than conical hoppers to produce mass flow
(Section 9.1), but the exit openings can be smaller than circular exits to avoid cohesive bridging.

To summarize, the hopper design process involves the following steps:

(1) Determine the wall friction angle, ϕw, effective angle of internal friction (δ), and the material flow
function (mFF) from shear cell testing.

(2) Determine the material bulk density as a function of the consolidation stress, for example from an
oedometer test.

(3) Determine the hopper wall angle for mass flow (θmax) and the hopper flow factor (hff) using the
Jenike design charts.

(4) Calculate the Critical Applied Stress (CAS) using the hff and mFF.
(5) (If the properties vary with σ1, then repeat steps 1 – 4, using the σ1 found in Step 4.)
(6) Calculate the powder bulk density at σ1.
(7) Calculate the minimum outlet diameter.

Note that time consolidation behavior of the material should be considered during the design process.

9.3. Designing to Avoid the Formation of a Rathole

Sometimes funnel flow in a hopper can’t be avoided; however, it’s best to try to at least avoid the formation
of a rathole (aka pipe) due to their potential for damage, safety risks, and exceedingly poor flow behavior.
Ratholes form because the stresses applied to the material by the walls are smaller than the material’s
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Figure 9.12. Plots of the function H(θ) for various hopper exit geometries. This figure is
from Jenike [2].

unconfined yield strength. Ratholes won’t form in mass flow hoppers, but they can form in funnel flow,
especially as the fill level increases since larger consolidation stresses result in increased material strength.

As with hopper design, the detailed analysis for determining the conditions for avoiding rathole formation
are not presented here. The reader is referred to the work by Jenike [1], [2], Johanson [7], and Hill and
Cox [8] for more in-depth analyses. Instead, the final design criterion is presented. To avoid the formation
of a rathole, the minimum exit diameter of the hopper (Drh) should be [2],

Drh = G(ϕ)
fc
ρbg

, (9.22)

where G(ϕ) is a function of the material’s internal friction angle and fc is the unconfined yield strength at
the maximum expected consolidation stress. A plot of G(ϕ) is given in Figure 9.13, but a simple curve fit to
the relation is given by Mehos [9],

G(ϕ) = 4.3 tanϕ. (9.23)

Cohesive bridging will not occur if ratholing doesn’t occur for a circular exit; thus, Drh should be used
as the minimum exit diameter for a circular exit for a funnel flow hopper. For a slot-style exit, the exit
diagonal length,

√
B2 + L2, should be ≥ Drh. To avoid cohesive bridging for a slot exit in funnel flow, the

recommendation is to follow the procedures for sizing Bmin, but using a hopper flow factor of hff = 1.7. The
maximum consolidation stress may be estimated using Janssen’s equation assuming vertical walls over the
entire hopper height (Chapter 5),

σ1 =
ρbgDH

4Ka tanϕw

[
1− exp

(
−4KA tanϕw

z

DH

)]
, (9.24)

with the largest depth z and a hydraulic diameter for the bin, DH (Eq. (5.32)).
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Figure 9.13. A plot of the the rathole function G(ϕ). This figure is from Mehos and
Morgan [10].

9.4. Rules of Thumb for Improving Hopper Flow

Based on the analyses presented in this chapter, several general recommendations can be made for improving
flow behavior in hoppers. These recommendations include the following.

(1) Decrease the hopper wall angle from the vertical (θ), which makes it more more likely that mass
flow occurs in the hopper. Having a small hopper wall angle may not be possible due to space
constraints.

(2) Replace a conical hopper with a wedge-shaped hopper. Wedge-shaped hoppers have a larger critical
wall angle, by about 10◦ to 12◦, than conical hoppers, for the same material and wall properties.

(3) Reduce wall friction angle (ϕw) via the use of liners. Reducing the wall friction angle increases the
critical hopper wall angle for mass flow.

(4) Increase the hopper exit diameter (Dmin or Bmin). Increasing the exit diameter decreases the
likelihood of cohesive bridging.

(5) Change from a circular exit to a rectangular exit. The width of a rectangular exit can be approxi-
mately half the size of a circular exit and still avoid arching.

(6) Decrease the fill height, particularly if the hopper operates in funnel flow. Decreasing the fill height
decreases the maximum consolidation stress and material strength and, thus, reduces the chance of
ratholing.

(7) Add a flow aid such as fumed silica, talc, or stearic acid into the material. Flow aids reduce
the material’s effective internal friction angle, wall friction angle, and unconfined yield strength
by modifying particle-particle interactions. However, adding a flow aid may be expensive or not
allowed due to purity requirements. In addition, the addition of a flow aid requires an additional
blending step, which increases the complexity of processing.
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9.5. Summary

The following list summarizes the major points in the chapter.

(1) The Jenike design procedure can be used to design simple hoppers for mass flow and avoid cohesive
bridging.

(2) For funnel flow hoppers, one should attempt to design the hopper to avoid ratholing.
(3) For details on the testing procedures and analyses used in the Jenike design procedure, refer to

Jenike [1] (aka Bulletin 108) and Jenike [2] (aka Bulletin 123).

9.6. Additional Hopper Design Charts

This section provides additional Jenike hopper design charts.

Figure 9.14. The Jenike design chart for determining the maximum hopper wall half angle
to produce mass flow for a material with an effective angle of internal friction of δ = 30◦ in
a conical hopper. The “ff” in the plot is the hopper flow factor (hff). This design chart is
from Jenike [2].

C. Wassgren 200 2024-06-12



Powder Storage and Flow

Figure 9.15. The Jenike design chart for determining the maximum hopper wall half angle
to produce mass flow for a material with an effective angle of internal friction of δ = 40◦ in
a conical hopper. The “ff” in the plot is the hopper flow factor (hff). This design chart is
from Jenike [2].
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Figure 9.16. The Jenike design chart for determining the maximum hopper wall half angle
to produce mass flow for a material with an effective angle of internal friction of δ = 50◦ in
a conical hopper. The “ff” in the plot is the hopper flow factor (hff). This design chart is
from Jenike [2].
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Figure 9.17. The Jenike design chart for determining the maximum hopper wall half angle
to produce mass flow for a material with an effective angle of internal friction of δ = 60◦ in
a conical hopper. The “ff” in the plot is the hopper flow factor (hff). This design chart is
from Jenike [2].
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Figure 9.18. The Jenike design chart for determining the maximum hopper wall half angle
to produce mass flow for a material with an effective angle of internal friction of δ = 70◦ in
a conical hopper. The “ff” in the plot is the hopper flow factor (hff). This design chart is
from Jenike [2].
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Figure 9.19. The Jenike design chart for determining the maximum hopper wall half angle
to produce mass flow for a material with an effective angle of internal friction of δ = 30◦ in
a wedge hopper. The “ff” in the plot is the hopper flow factor (hff). This design chart is
from Jenike [2].

Figure 9.20. The Jenike design chart for determining the maximum hopper wall half angle
to produce mass flow for a material with an effective angle of internal friction of δ = 40◦ in
a wedge hopper. The “ff” in the plot is the hopper flow factor (hff). This design chart is
from Jenike [2].
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Figure 9.21. The Jenike design chart for determining the maximum hopper wall half angle
to produce mass flow for a material with an effective angle of internal friction of δ = 50◦ in
a wedge hopper. The “ff” in the plot is the hopper flow factor (hff). This design chart is
from Jenike [2].
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Figure 9.22. The Jenike design chart for determining the maximum hopper wall half angle
to produce mass flow for a material with an effective angle of internal friction of δ = 60◦ in
a wedge hopper. The “ff” in the plot is the hopper flow factor (hff). This design chart is
from Jenike [2].
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Figure 9.23. The Jenike design chart for determining the maximum hopper wall half angle
to produce mass flow for a material with an effective angle of internal friction of δ = 70◦ in
a wedge hopper. The “ff” in the plot is the hopper flow factor (hff). This design chart is
from Jenike [2].
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You are contracted to design a conical hopper through which a material with a bulk density of 1700 kg/m3 
and an effective angle of internal friction of 40o can be emptied safely.  The hopper is constructed of a 
material that gives a wall friction angle of 20o.  Four sets of shear tests have been conducted on the material 
and the results for the material flow function are listed in the table below and are shown in the attached 
plot. 
 

consolidation stress [kPa] 1.1 1.75 2.75 3.25 
unconfined yield strength [kPa] 0.9 1.35 1.75 1.95 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a. Determine the maximum hopper wall angle (measured from the vertical) to ensure mass flow. 
b. Determine the minimum hopper exit diameter to avoid bridging. 
 
 
SOLUTION 
Using a design chart (Figure 1) for a conical hopper with an effective angle of internal friction of d = 40° 
and a wall friction angle of fw = 20°, the minimum wall angle to ensure mass flow (including a 3° safety 
factor) is q = 25° .  The hopper flow factor, also read from the design chart, is hff » 1.47. 
 
The minimum hopper exit diameter to avoid bridging is given by: 

 (1) 

where H(q) » 2.39 (found from design chart Fig. 2), rb =  1700 kg/m3, and g = 9.81 m/s2.  The critical 
applied stress (CAS) is found from the intersection of the powder’s flow function and the inverse of the 
hopper flow factor as shown in Fig. 4 Þ  CAS » 1.7 kPa.  Thus, the minimum exit diameter is:   
Dmin = 0.24 m. 
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Figure 1.  Conical hopper design chart for a powder with an effective angle of internal friction of d = 
40°.   
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Figure 2.  Minimum outlet diameter function H(q) design chart. 
 
 

 
Figure 3.  Plot to determine the critical applied stress (CAS). 
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Design a mass flow, slot hopper with a rectangular exit (𝐿 > 3𝐵) for coal with the following testing data and a 
(constant) wall friction angle of 𝜙! = 18°. 
 

σ1 [Pa]  fc [Pa] ρb [kg/m3]  δ [deg] 
3175 2104 717 57 
6541 3719 734 54 
21204 9718 813 49 
36026 14532 853 45 

 
[This example problem was originally developed by K. Jacob and M. Kodam at Dow Chemical.] 
 
 
SOLUTION: 
 
For convenience, fit the mFF (𝑓" as a function of 𝜎#) to a quadratic curve, 

𝑓" = (−2.979 ∗ 10$%)𝜎#& + (4.944 ∗ 10$#)𝜎# + (5.847 ∗ 10&), (1) 
where σ1 and fc are in Pa. 

 
 
Fit the bulk density as a function of the consolidation stress to a power law curve, 

𝜌' = (3.869 ∗ 10&)𝜎#(.*+#∗#-
!"

, (2) 
where ρb is in kg/m3. 
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Lastly, fit the effective angle of internal friction as a function of the consolidation stress using an asymptoting 
exponential curve, 

𝛿 = (40.36° − 58.59°)[1 − exp(−3.719 ∗ 10$.𝜎#)] + 58.59°, (3) 
where δ is in degrees and σ1 is in Pa.  

 
 
Since the properties are functions of the consolidation stress (σ1), an iterative solution will be needed.  The 
following algorithm has been used and implemented in a Python program provided at the end of this solution. 

1. Make an initial guess for the consolidation stress (σ1) corresponding to the critical applied stress (CAS). 
2. Calculate the effective angle of internal friction (δ) using Eq. (3). 
3. Calculate the minimum hopper half angle from the vertical (q) to ensure mass flow. 
4. Calculate the hopper flow factor (hff) 
5. Determine the consolidation stress corresponding to the critical applied stress using, 

𝑚𝐹𝐹(𝜎#) =
#
/00

𝜎#. (4) 
6. Is the σ1 in Step 4 the same as the σ1 in Step 1?  If not, then use the σ1 from Step 4 as the new value for σ1 

and go to Step 2.  If the two values for σ1 are sufficiently close, then proceed to Step 6. 
7. Calculate the critical applied stress (CAS), 

𝐶𝐴𝑆 = 𝑚𝐹𝐹(𝜎#) =
#
/00

𝜎#. (5) 
8. Calculate the bulk density (ρb) corresponding to this σ1 using Eq. (2).  
9. Calculate the function H(q) using, 

𝐻(𝜃) = 1 + 1
#+-°

. (6) 
10. Calculate the minimum exit width to avoid cohesive bridging, 

𝐵345 = 𝐻(𝜃) 678
9#:

. (7) 

 
Using the algorithm, 

σ1 = 1480 Pa, 
CAS = 1310 Pa, 
q = 37.0o, 
δ = 57.6o, 
hff = 1.13, 
ρb = 668 kg/m3, 
H(q) = 1.21 
Bmin = 0.24 m.   

Note that the converged value of σ1 is smaller than the values in the given table.  Thus, we extrapolated parameter 
values, which is not ideal.  It would have been better to obtain experimental data in the table at smaller 
consolidation stresses to improve confidence in the predictions.  
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The following Python code was used to perform the calculations. 
 

# hopper_design_11.py 
 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy.optimize import curve_fit 
from scipy.optimize import fsolve 
 
def H(theta):  # theta in degrees 
    # A function to calculate the pre-factor for the minimum outlet dimension. 
    return(1+theta/180) 
 
def Slot_thetacrit(delta, phiw):  # angles in degrees 
    # Calculate the critical half angle from the vertical for a wedge hopper. 
    # Found using the expressions in Arnold and McLean (1976). 
 
    return(60.5 + np.degrees(np.arctan((50 - delta)/7.73))/15.07)*(1-phiw/(42.3 + 
0.131*np.exp(0.06)*delta)) 
 
def Slot_hff(delta, phiw, theta):  # angles in degrees 
    # Calculate the hopper flow factor for a wedge hopper. 
    # Found using the expressions in Arnold and McLean (1976). 
    m = 0  # slot hopper 
     
    phiw_rad = np.radians(phiw) 
    sin_delta = np.sin(np.radians(delta)) 
    sin_phiw = np.sin(np.radians(phiw)) 
    theta_rad = np.radians(theta) 
    sin_theta = np.sin(theta_rad) 
     
    beta_rad = 0.5*(phiw_rad + np.arcsin(sin_phiw/sin_delta))  
    X = ((2**m)*sin_delta)/(1-sin_delta)*(np.sin(2*beta_rad+theta_rad)/sin_theta + 1) 
    Y = (((2*(1-np.cos(beta_rad+theta_rad)))**m) * ((beta_rad+theta_rad)**(1-m)) * np.sin(theta_rad) + 
np.sin(beta_rad)*(np.sin(beta_rad+theta_rad))**(1+m)) / ((1-
sin_delta)*(np.sin(beta_rad+theta_rad))**(2+m)) 
    H_theta = H(theta) 
     
    hff = H_theta*(Y*(1+sin_delta))/(2*(X-1)*sin_theta) 
    return(hff) 
 
def mFF(sigma1, mFF_c0, mFF_c1, mFF_c2): 
    # The material flow function fit with a quadratic equation. mFF_c0, mFF_c1, and mFF_c2 are fit 
parameters 
    return(mFF_c2*sigma1**2 + mFF_c1*sigma1 + mFF_c0) 
 
def compressibility(sigma1, rhob_c, rhob_n): 
    # The bulk density as a function of the consolidation stress, fit with a power law.  rhob_c and 
rhob_n are fit parameters. 
    return(rhob_c*sigma1**rhob_n) 
 
def eff_friction(sigma1, delta0, delta_inf, delta_beta): 
    # The effective friction angle as a function of the consolidation stress, fit with an asymptoting 
exponential function.  delta_0, delta_inf, and delta_beta are fit parameters. 
    return((delta_inf-delta0)*(1-np.exp(-delta_beta*sigma1))+delta0) 
 
def CAS_fcn(sigma1, mFF_c0, mFF_c1, mFF_c2, hff): 
    # The function for finding the critical applied stress:  mFF = sigma1/hff 
    return(mFF(sigma1, mFF_c0, mFF_c1, mFF_c2) - sigma1/hff) 
 
g = 9.81  # gravitational acceleration [m/s^2] 
phiw = 18  # the given wall friction angle [deg] 
# The given data:  sigma1 [Pa], fc [Pa], rhob [kg/m^3], delta [deg] 
data = np.array([[3175, 2104, 717, 57], 
                 [6541, 3719, 734, 54], 
                 [21204, 9718, 813, 49], 
                 [36026, 14532, 853, 45]]) 
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# Obtain single arrays for each parameter. 
sigma1 = data[:,0] 
fc = data[:,1] 
rhob = data[:,2] 
delta = data[:,3] 
 
# First, find the fitting parameters for the mFF. 
popt, pcov = curve_fit(mFF, sigma1, fc) 
mFF_c0, mFF_c1, mFF_c2 = popt 
print('mFF fit parameters: (mFF_c0, mFF_c1, mFF_c2) = (%.3e, %.3e, %.3e)' % (mFF_c0, mFF_c1, mFF_c2)) 
 
# Now find the fitting parameters for the compressibility. 
popt, pcov = curve_fit(compressibility, sigma1, rhob) 
rhob_c, rhob_n = popt 
print('compressibility fit parameters: (rhob_c, rhob_n) = (%.3e, %.3e)' % (rhob_c, rhob_n)) 
 
# Lastly, find the fitting parameters for the effective internal friction angle. 
popt, pcov = curve_fit(eff_friction, sigma1, delta, p0=(delta[0], delta[-1], 1e-4))  # make an initial 
guess based on the end points of the data 
delta0, delta_inf, delta_beta  = popt 
print('effective friction angle fit parameters: (delta0, delta_inf, delta_beta) = (%.3e, %.3e, %.3e)' 
% (delta0, delta_inf, delta_beta)) 
 
# Plot the given data and curve fits. 
sigma1_fit = np.linspace(np.amin(sigma1), np.amax(sigma1), 100)  # sigma1 values to make the fitting 
curve smooth 
plt.plot(sigma1, fc, color='k', marker='o', linestyle='') 
plt.plot(sigma1_fit, mFF(sigma1_fit, mFF_c0, mFF_c1, mFF_c2), color='k', marker='', linestyle='-') 
plt.xlabel('consolidation stress, $\sigma_1$ [Pa]') 
plt.ylabel('unconfined yield strength, $f_c$ [Pa]') 
plt.show() 
 
plt.plot(sigma1, rhob, color='k', marker='o', linestyle='') 
plt.plot(sigma1_fit, compressibility(sigma1_fit, rhob_c, rhob_n), color='k', marker='', linestyle='-') 
plt.xlabel('consolidation stress, $\sigma_1$ [Pa]') 
plt.ylabel('bulk density, $\\rho_b$ [kg/m^3]') 
plt.show() 
 
plt.plot(sigma1, delta, color='k', marker='o', linestyle='') 
#delta0, delta_inf, delta_beta = [57, 45, 0.0001] 
plt.plot(sigma1_fit, eff_friction(sigma1_fit, delta0, delta_inf, delta_beta), color='k', marker='', 
linestyle='-') 
plt.xlabel('consolidation stress, $\sigma_1$ [Pa]') 
plt.ylabel('effective angle of internal friction, $\delta$ [deg]') 
plt.show() 
 
# Iterate to find the consolidation stress. 
sigma1_new = 1000  # Make an initial guess for the consolidation stress [Pa]. 
sigma1 = 0  #  Set the 'old' sigma1 so we go through the following loop at least once. 
 
while (not np.isclose(sigma1, sigma1_new, rtol=1e-3)):  # Are the old and new sigma1 values 
significantly different? 
    sigma1 = sigma1_new 
    # Calculate the effective friction angle. 
    delta = eff_friction(sigma1, delta0, delta_inf, delta_beta) 
    # Calculate the critical hopper angle. 
    theta = Slot_thetacrit(delta, phiw) 
    # Calculate the hopper flow factor. 
    hff = Slot_hff(delta, phiw, theta) 
    print('(sigma1, delta, theta, hff) = (%.3f Pa, %.3f deg, %.3f deg, %.2f)' % (sigma1, delta, theta, 
hff)) 
     
    # Find the consolidation stress at the critical applied stress. 
    sigma1_new = fsolve(CAS_fcn, x0=sigma1, args=(mFF_c0, mFF_c1, mFF_c2, hff))  # use sigma1 as an 
initial guess 
    print('sigma1_new = %.3f Pa' % sigma1_new) 
 
# We now have a converged consolidation stress.  Calculate the critical applied stress. 
print('Converged values:') 
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CAS = mFF(sigma1_new, mFF_c0, mFF_c1, mFF_c2) 
print('(sigma1_new, CAS) = (%.3f, %.3f) Pa' % (sigma1_new, CAS)) 
# Calculate the critical wall angle. 
theta = Slot_thetacrit(delta, phiw) 
print('theta = %.3f deg' % theta) 
# Calculate the effective angle of internal friction. 
print('delta = %.3f deg' % eff_friction(sigma1_new, delta0, delta_inf, delta_beta)) 
# Calculate the hopper flow factor. 
hff = Slot_hff(delta, phiw, theta) 
print('hff = %.3f' % hff) 
# Calculate the bulk density. 
rhob = compressibility(sigma1_new, rhob_c, rhob_n) 
print('rhob = %.3f kg/m^3' % rhob) 
# Calculate the function H(theta) 
H_theta = H(theta) 
print('H(theta) = %.3f' % H_theta) 
# Calculate the minimum exit opening. 
Bmin = H_theta*CAS/(rhob*g)  
print('Bmin = %.3f m' % Bmin) 

 
Running the Python code produces the following output: 

>> python3 ./hopper_design_11.py 
mFF fit parameters: (mFF_c0, mFF_c1, mFF_c2) = (5.847e+02, 4.944e-01, -2.979e-06) 
compressibility fit parameters: (rhob_c, rhob_n) = (3.869e+02, 7.481e-02) 
effective friction angle fit parameters: (delta0, delta_inf, delta_beta) = (5.859e+01, 4.036e+01, 
3.719e-05) 
(sigma1, delta, theta, hff) = (1000.000 Pa, 57.927 deg, 36.925 deg, 1.13) 
sigma1_new = 1468.828 Pa 
(sigma1, delta, theta, hff) = (1468.828 Pa, 57.624 deg, 36.956 deg, 1.13) 
sigma1_new = 1480.596 Pa 
(sigma1, delta, theta, hff) = (1480.596 Pa, 57.616 deg, 36.956 deg, 1.13) 
sigma1_new = 1480.894 Pa 
Converged values: 
(sigma1_new, CAS) = (1480.894, 1310.327) Pa 
theta = 36.956 deg 
delta = 57.616 deg 
hff = 1.130 
rhob = 667.980 kg/m^3 
H(theta) = 1.205 
Bmin = 0.241 m 

 

Powder Storage and Flow

C. Wassgren 216 2024-06-12



 hopper_design_12 

Page 1 of 5 

A wedge hopper with outlet dimensions of (B, L)exit = (0.5, 1.5) m has a half wall angle from the vertical of 45o.  The 
rectangular bin section above the hopper has cross-sectional dimensions (B, L)bin = (1, 1.5) m.  The hopper is used 
to store coal with the following properties.  Assume the system has a constant wall friction angle of 𝜙! = 18° and 
a constant internal friction angle of ϕ = 35o.  
 

σ1 [Pa]  fc [Pa] ρb [kg/m3]  δ [deg] 
3175 2104 717 57 
6541 3719 734 54 
21204 9718 813 49 
36026 14532 853 45 

 
Use the following empirical fits to the table data, 

𝑓" = (−2.979 ∗ 10#$)𝜎%& + (4.944 ∗ 10#%)𝜎% + (5.847 ∗ 10&)  [σ1 and fc are in Pa], 
𝜌' = (3.869 ∗ 10&)𝜎%(.*+%∗%-

!"
  [ρb is in kg/m3]. 

 
a. Show that the hopper produces funnel flow. 
b. Verify that the hopper outlet dimensions are sized to prevent cohesive bridging. 
c. Calculate the maximum fill height of the hopper to ensure a rathole does not form. 
 
 
SOLUTION: 
First, check to see if the hopper wall angle results in mass flow or funnel flow.  Calculate the critical hopper half 
angle for this wedge hopper using the following plot. 

 
 
We observe that over the range δ = 40o – 60o the critical hopper wall half angle for mass flow in a wedge hopper is 
between 37o and 40o.  Since the given hopper wall half angle is 45o, we conclude that the current wedge hopper 
produces funnel flow. 
 
Since we have funnel flow, calculate the minimum exit dimension to avoid cohesive bridging.  For funnel flow, 
assume a hopper flow factor of hff = 1.7.  The consolidation stress and corresponding critical applied stress for this 
hopper flow factor and the given material flow function is, 

18o 

37o 

Bexit 
L  
 

Bbin 

H 

q 
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𝑚𝐹𝐹(𝜎%) =
%
.//

𝜎%  =>  σ1 = 5329 Pa, (1)  

𝐶𝐴𝑆 = %
.//

𝜎%  =>  CAS = 3135 Pa, (2) 

Calculate the corresponding bulk density at this consolidation stress using the given compressibility expression, 
𝜌' = 735.2 kg/m3. 

Calculate the function H(q) for a slot exit, 
𝐻(𝜃) = 1 + 0

%+-°
  =>  H(q) = 1.25. (3)  

Calculate the minimum exit dimension to avoid cohesive bridging in this funnel flow hopper, 
𝐵234,6738 = 𝐻(𝜃) 9:;

<#=
  =>  Bmin,exit = 0.543 m. (4) 

Since the given hopper exit has Bexit < Bmin,exit, we conclude that cohesive bridging will not occur. 
 
Now determine the maximum fill level to avoid the formation of a rathole.  Note that for the given bin dimensions, 

𝐷>,?34 =
*:$%&
@$%&

= *A$%&B$%&
&(A$%&DB$%&)

  =>  DH,bin = 1.200 m. (5) 

In addition, the exit diagonal dimension is, 
𝐷F3GH,6738 = @𝐵6738& + 𝐿6738&   =>  Ddiag,exit = 1.581 m. (6) 

 
Determine the consolidation stress that gives, 

𝐷F3GH,6738 = 𝐷I. = 𝐺(𝜙) /'
<#=

  =>  σ1 = 6951 Pa, fc = 3877 Pa, and ρb = 749.9 kg/m3,   (7) 

where fc = mFF(σ1) and ρb = fcn(σ1) are the functions given in the problem statement and, 
𝐺(𝜙) = 4.3 tan𝜙. (8) 

Use a numerical method to find this consolidation stress. 
 
Now solve for the depth Hmax corresponding to this consolidation stress and bulk density (Eq. (7)) using the 
following Janssen equation,   

𝜎% =
<(=J),$%&
*K+ 8G4L,

F1 − exp J−4𝐾: tan𝜙!
>-./
J),$%&

LM  =>  Hmax = 1.21 m, (9) 

where DH,bin is given in Eq. (5) and KA = 0.4.  Although this function can be solved analytically, a numerical algorithm 
was used here to solve it. 
 
Thus, to avoid the formation of rathole, the hopper should be filled to a depth of no more than Hmax = 1.21 m.  
Note that there may be other iterative schemes that can be used to determine this maximum depth. 
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The following Python code was used to perform the calculations. 
# hopper_design_12.py 
 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy.optimize import fsolve 
 
def H(theta):  # theta in degrees 
    # A function to calculate the pre-factor for the minimum outlet dimension. 
    return(1+theta/180) 
 
def Slot_thetacrit(delta, phiw):  # angles in degrees 
    # Calculate the critical half angle from the vertical for a wedge hopper. 
    # Found using the expressions in Arnold and McLean (1976). 
 
    return(60.5 + np.degrees(np.arctan((50 - delta)/7.73))/15.07)*(1-phiw/(42.3 + 
0.131*np.exp(0.06)*delta)) 
 
def Slot_hff(delta, phiw, theta):  # angles in degrees 
    # Calculate the hopper flow factor for a wedge hopper. 
    # Found using the expressions in Arnold and McLean (1976). 
    m = 0  # slot hopper 
     
    phiw_rad = np.radians(phiw) 
    sin_delta = np.sin(np.radians(delta)) 
    sin_phiw = np.sin(np.radians(phiw)) 
    theta_rad = np.radians(theta) 
    sin_theta = np.sin(theta_rad) 
     
    beta_rad = 0.5*(phiw_rad + np.arcsin(sin_phiw/sin_delta))  
    X = ((2**m)*sin_delta)/(1-sin_delta)*(np.sin(2*beta_rad+theta_rad)/sin_theta + 1) 
    Y = (((2*(1-np.cos(beta_rad+theta_rad)))**m) * ((beta_rad+theta_rad)**(1-m)) * np.sin(theta_rad) + 
np.sin(beta_rad)*(np.sin(beta_rad+theta_rad))**(1+m)) / ((1-
sin_delta)*(np.sin(beta_rad+theta_rad))**(2+m)) 
    H_theta = H(theta) 
     
    hff = H_theta*(Y*(1+sin_delta))/(2*(X-1)*sin_theta) 
    return(hff) 
 
def mFF(sigma1): 
    # The material flow function fit with a quadratic equation. 
    # consolidation stress in [Pa] 
    # return fc in [Pa] 
    return((-2.979e-6)*sigma1**2 + (4.944e-1)*sigma1 + (5.847e2)) 
 
def compressibility(sigma1): 
    # The bulk density as a function of the consolidation stress. 
    # consolidation stress in [Pa] 
    # returns bulk density in [kg/m^3] 
    return((3.869e2)*sigma1**(7.481e-2)) 
 
def eff_friction(sigma1):   
    # The effective friction angle as a function of the consolidation stress. 
    # consolidation stress in [Pa] 
    # returns delta in [deg] 
    return((-18.23)*(1-np.exp((-3.719e-5)*sigma1))+58.59) 
 
def CAS_fcn(sigma1, hff): 
    # The function for finding the critical applied stress:  mFF = sigma1/hff 
    # consolidation stress in [Pa] and hff is dimensionless 
    # returns the CAS in [Pa] 
    return(mFF(sigma1) - sigma1/hff) 
 
def G(phi): 
    # The pre-factor for the critical rathole diameter calculation. 
    # phi in [deg] 
    # returns a dimensionless value 
    return(4.3*np.tan(np.radians(phi))) 
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def D_rh_fcn(sigma1, D_diagexit, G_phi): 
    # The function for finding the consolidation stress to satisfy:  D_rh = D_diagexit. 
    # sigma1 in [Pa], D_diagexit in [m], G_phi is dimensionless 
    fc = mFF(sigma1)  # calculate the unconfined yield strength 
    rhob = compressibility(sigma1)  # calculate the bulk density 
    return(G_phi*fc/rhob/g - D_diagexit) 
     
def Janssen_fcn(z, sigma1, D_Hbin, phiw, K_A): 
    # Calculate the consolidation stress using an active Janssen expression. 
    # z in [m], sigma1 in [Pa], D_H in [m], phiw in [deg], K_A is dimensionless 
    rhob = compressibility(sigma1)  # calculate the bulk density 
    tan_phiw = np.tan(np.radians(phiw))  # calculate the wall friction coefficient 
    return(sigma1 - rhob*g*D_Hbin/4/K_A/tan_phiw*(1-np.exp(-4*K_A*tan_phiw*z/D_Hbin))) 
 
g = 9.81  # gravitational acceleration [m/s^2] 
theta = 45  # the given hopper wall half angle from vertical [deg] 
phiw = 18  # the given wall friction angle [deg] 
phi = 35  # the given material internal friction angle [deg] 
B_exit = 0.5  # exit short dimension [m] 
L_exit = 1.5  # exit long dimension [m] 
B_bin = 1.0  # bin short dimension [m] 
L_bin = 1.5  # bin long dimension [m] 
 
# First determine the minimum exit dimension to prevent cohesive bridging. 
# Find the consolidation stress and corresponding critical applied stress using a hopper flow factor 
of hff = 1.7 for funnel flow. 
hff = 1.7 
sigma1 = fsolve(CAS_fcn, x0=(5000), args=(hff)) 
CAS = mFF(sigma1) 
 
# Calculate the minimum dimension pre-factor. 
H_theta = H(theta) 
 
# Calculate the bulk density. 
rhob = compressibility(sigma1) 
 
# Calculate the minimum dimension to avoid cohesive bridging. 
B_minexit = H_theta*CAS/rhob/g 
print('(sigma1, CAS, H(theta), rhob) = (%.3f, %.3f) Pa, %.3f, %.3f kg/m^3' % (sigma1, CAS, H_theta, 
rhob)) 
print('B_minexit = %.3f m' % B_minexit) 
 
# Calculate the bin hydraulic diameter. 
D_Hbin = 4*(B_bin*L_bin)/(2*(B_bin+L_bin)) 
# Calculate the exit diagonal dimension. 
D_diagexit = np.sqrt(B_exit**2 + L_exit**2) 
print('(D_Hbin, D_diagexit) = (%.3f, %.3f) m' % (D_Hbin, D_diagexit)) 
 
G_phi = G(phi) 
print('G(phi) = %.3f' % G_phi) 
 
# Determine the consolidation stress corresponding to when D_rh = D_diagexit. 
sigma1 = fsolve(D_rh_fcn, x0=(1000), args=(D_diagexit, G_phi)) 
fc = mFF(sigma1) 
rhob = compressibility(sigma1) 
print('(sigma1, fc, rhob) = (%.3f Pa, %.3f Pa, %.3f kg/m^3)' % (sigma1, fc, rhob)) 
 
# Determine the depth corresponding to this consolidation stress using a Janssen relation. 
K_A = 0.4 
H_max = fsolve(Janssen_fcn, x0=(1), args=(sigma1, D_Hbin, phiw, K_A)) 
print('H_max = %.3f m' % H_max) 

 
Running the Python code produces the following output: 

>> python3 ./hopper_design_12.py 
(sigma1, CAS, H(theta), rhob) = (5329.425, 3134.956) Pa, 1.250, 735.177 kg/m^3 
B_minexit = 0.543 m 
(D_Hbin, D_diagexit) = (1.200, 1.581) m 
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G(phi) = 3.011 
(sigma1, fc, rhob) = (6917.039 Pa, 3861.953 Pa, 749.658 kg/m^3) 
H_max = 1.208 m 
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CHAPTER 10

Mass Flow Rate from a Bin or Hopper

In this chapter we examine the discharge rate from a hopper. First, a simple dimensional analysis is performed.
Next, analytical models for the flow rate are presented. Finally, the mass flow rate for fine (i.e., small) particles
where fluid effects are significant is presented.

10.1. Dimensional Analysis

Consider the discharge of a deep bed of coarse (> 400 µm, so fluid effects are negligible), cohesionless particles
from a conical hopper. The parameters expected to influence the mass flow rate of material from the hopper
(W , with dimensions of mass over time, i.e., M/T ) include the bulk density of material (ρb, with dimensions
of M/L3, where L is length), the acceleration due to gravity (g, with dimensions of L/T ), the hopper exit
diameter (D, with dimensions of L), the hopper wall angle from the vertical (θ, with no dimensions), the
material effective angle of internal friction (δ, with no dimensions), the wall friction angle (ϕw, with no
dimensions), and the particle size (d, with dimensions of L),

W = f1(ρb, g,D, θ, δ, ϕw, d), (10.1)

where f1 is an unknown function. Note that the height of material in the hopper doesn’t play a role since,
according to Janssen’s analysis, the stresses in the powder are independent of the height for sufficiently large
heights. Applying the Buckingham-Pi Theorem,

Π = Nd −Np = 8− 3 = 5, (10.2)

where Π is the number of dimensionless terms that can be used to describe the original equation (Eq. (10.1)),
Nd is the number of terms in the original dimensional equation (W , ρb, g, D, θ, δ, ϕw, d), andNp is the number
of reference dimensions required to describe these parameters (M , L, T ). The hopper wall angle, effective
angle of internal friction, and wall friction angle are already dimensionless, which leaves two remaining Π
terms. Using ρb, g, and d as repeating variables, these two remaining terms are,

Π1 =
W

ρbg1/2D5/2
, (10.3)

Π2 =
D

d
. (10.4)

Thus, the original dimensional relation (Eq. (10.1)) may instead be written in dimensionless form as,

W

ρbg1/2D5/2
= f2

(
D

d
, θ, δ, ϕw

)
. (10.5)

Note that the function f2 is different than the function f1, in general. Neither of these functions can be
determined from dimensional analysis alone and instead must be found either through experiments or other
analysis.

Notes:

(1) Consider a simple model known as the free fall arch in which we assume particles fall with zero initial
speed from a spherical arch located at the hopper exit (Figure 10.1). The speed of the particles
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Figure 10.1. A sketch of the Free Fall Arch concept.

Figure 10.2. A sketch of a vertical cylindrical bin with a centered circular orifice – the
Beverloo correlation geometry.

passing the exit plane is V =
√
2g(1/2D) =

√
gD (balancing potential and kinetic energies). Thus,

the mass flow rate from the hopper is,

W ∝ ρbV D2 = ρbg
1/2D5/2, (10.6)

which is consistent with the result from the dimensional analysis (Eq. (10.5)).

10.2. Beverloo’s Correlation

Beverloo et al. [1] observed that mass flow rate experimental data for coarse, cohesionless particles from a
cylindrical bin with a circular outlet (Figure 10.2) is fit well by the empirical relation,

W

ρbg1/2D5/2
= c

[
1− k

(
d

D

)]5/2
, (10.7)

or, in dimensional form,

W = cρbg
1/2 (D − kd)

5/2
. (10.8)

In the previous equations, c and k are fit parameters. These equations are known as the Beverloo Correlation.
Note that Beverloo’s correlation is consistent with the dimensional analysis performed in the previous section.

Notes:

C. Wassgren 224 2024-06-12



Powder Storage and Flow

Figure 10.3. A sketch of the empty annulus concept.

(1) The bulk density should be the bulk density of the flowing material at the discharge plane. Since
this value isn’t typically known a priori, the loosely-filled, i.e., poured, bulk density is usually used.
The predicted mass flow rate is typically within 5% of the measured value using this assumption [2].

(2) The constant c is reasonably approximated as c ≈ 0.58, although very low friction materials may
have larger values of c. There has been work on analytically deriving this constant, but it’s outside
the scope of these notes.

(3) The factor D−kd accounts for the fact that the effective exit diameter through which particles flow
is slightly smaller than the actual diameter due to the finite size of the particles. No particles can
flow in the region located less than a particle radius next to the exit wall (Figure 10.3). In addition,
the bulk density of the material is likely smaller near the exit edges due to dilation of the material
at the walls. These phenomena are known as the empty annulus concept.
The parameter k depends on the geometry of the exit and the particle shape [3]. For spheres, a
value of k = 1.6 should be used while for irregular shapes, a value of k = 2.4 is more appropriate.

(4) The Beverloo correlation is for coarse, cohesionless material that is unaffected by the surrounding
fluid. A good rule of thumb is that the correlation can be used for particle sizes > 400 µm.

(5) Mechanical arches can form at the exit (non-cohesive arches) if the exit diameter is less than
approximately 8 – 12 particle diameters.

(6) The Beverloo correlation (Eq. (10.8)) is specifically for symmetric, flat-bottom bins with circular
exits. For rectangular exits (L > 3B), Beverloo’s correlation is,

W = 1.03ρbg
1/2(L− kd)(B − kd)3/2. (10.9)

Similar Beverloo correlation expressions for other geometries are listed in Table 10.1. Note that the
expression for a rectangular exit in the table is equal to Eq. (10.9) in the limit as L ≫ B.

(7) Although the Beverloo correlation is specifically for a flat-bottomed cylindrical bin, the expression
can be modified to also work for symmetric hoppers. In these cases the constant c in the Beverloo
correlation is a strong function of the hopper wall half angle measured from the vertical (θ). Rose
and Tanaka [5] suggested the modified empirical correlation,

W = WBeverlooF (θ, ϕd), (10.10)

where WBeverloo is the regular Beverloo correlation (Eq. (10.8)) and,

F (θ, ϕd) =

{
(tan θ)−0.35 θ ≤ 90◦ − ϕd (mass flow),

[tan(90◦ − ϕd)]
−0.35 θ > 90◦ − ϕd (funnel flow)

(10.11)
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Table 10.1. Beverloo correlation style relations for estimating the mass flow rate through
orifices of different geometries. This table is from Dhodapkar et al. [4].

The quantity ϕd is the angle between the stagnant zone boundary and the horizontal (Figure 10.4).
Unfortunately, this angle typically needs to be determined experimentally. Nedderman [2] recom-
mends using ϕd = 45◦ if no information is available so the previous expression becomes,

F (θ, ϕd) =

{
(tan θ)−0.35 θ ≤ 90◦ − ϕd (mass flow),

1 θ > 90◦ − ϕd (funnel flow)
(10.12)

(8) Schulze and Schwedes [6] proposed a correlation for the mass flow rate from a vertically oriented
outlet (Figure 10.5) similar to Beverloo’s expression,

W = CSρbg
1/2(dSC − kd)5/2. (10.13)

In this equation, the effective circular orifice diameter is,

dSC = cosα(dS − s tanα), (10.14)

where dS is the actual diameter of the outlet, s is the vertical wall thickness, and α is the angle
between the upper free surface of the flowing material and the horizontal portion of the outlet. A
summary of the measured constants k, CS , and α for the materials they tested is given in Table 10.2.
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Figure 10.4. A sketch showing how the angle ϕd is defined in the Rose and Tanaka corre-
lation.

Figure 10.5. The geometry used in the empirical mass flow rate correlation for a vertically-
oriented outlet. This figure is from Schulze and Schwedes [6].

Material k CS α (◦)
plastic pellets 1.7 0.298 28
brown coal coke 2.6 0.262 34

limestone 2.7 0.290 32
glass beads 1.5 0.345 22

rubber pellets 1.7 0.290 28

Table 10.2. Experimental values used in the empirical correlation for the mass flow rate
through a vertically-oriented, circular outlet (Eq. (10.13)). These data are from Schulze and
Schwedes [6].

10.3. Analytical Models

In addition to the empirical expressions developed by Beverloo and Rose and Tanaka, several researchers
have also derived analytical models for the mass flow rate through a hopper. Several of these models are
presented in this section.
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Figure 10.6. The geometry used in the Johanson [7] hopper flow rate analysis.

10.3.1. Johanson’s Cohesionless Model

Johanson [7] developed an analytical model for a coarse, cohesive powder flowing through a hopper. The
derivation for a cohesionless powder in a conical hopper (assuming the particle size is much smaller than the
exit size) is given here, but the derivation for a cohesive powder is presented later in this section.

Apply Newton’s Second Law in the vertical direction to a one-dimensional material element at the exit of
a hopper (assume one-dimensional, uniform flow, Figure 10.6). Assume no forces act on the element other
than weight since the powder is assumed to be in free fall at the exit,∑

Fz = ma = −mg =⇒ a = −g. (10.15)

From calculus, the acceleration of the material element may be written in terms of its speed as,

a =
dv

dt
=

dv

dz

dz

dt
= v

dv

dz
. (10.16)

Substituting this expression into the force balance,

v
dv

dz
= −g. (10.17)

From Conservation of Mass, assuming a constant bulk density,

ρbvA = constant =⇒ v
dA

dz
+A

dv

dz
= 0 =⇒ dv

dz
= − v

A

dA

dz
. (10.18)

Substituting into the previous expression,

v
v

A

dA

dz
= g. (10.19)

For a conical hopper with a wall half angle from the vertical of θ,

tan θ =
D/2

z
=⇒ D = 2z tan θ or z =

D

2 tan θ
, (10.20)

A =
π

4
D2 =

π

4
(2z tan θ)2 =⇒ dA

dz
= 2πz tan2 θ =⇒ 1

A

dA

dz
=

2

z
=

4 tan θ

D
. (10.21)

Substitute these expressions into Eq. (10.19),

v2 =
gD

4 tan θ
. (10.22)

Thus, the mass flow rate at the hopper exit (indicated by the subscript ‘e’) is,

W = ρbveAe = ρb

√
gDe

4 tan θ

π

4
D2

e =⇒ W

ρbg1/2D
5/2
e

=
π

8

1

tan1/2 θ
. (10.23)

Notes:
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Figure 10.7. The geometry used in the Brown [8] and Carleton [9] hopper flow rate anal-
yses.

(1) One could use De − kd in place of De if particle size effects are significant.
(2) Johanson’s analytical expression (Eq. (10.23)) is similar to the Beverloo/Rose and Tanaka empirical

expressions (Eqs. (10.8) and (10.12)), except that in Beverloo’s expression the leading constant is
c = 0.58 while the Johanson’s expression π/8 ≈ 0.39 and the exponent in Rose and Tanaka’s
correlation is −0.35 while Johanson’s exponent is −0.5.

10.3.2. Brown and Carleton’s Cohesionless Models

Brown [8] and Carleton [9] developed analytical models similar to Johanson’s, but assumed radial flow rather
than purely vertical flow (Figure 10.7). For this model, assume a conical hopper, cohesionless particles and
steady, incompressible, and radial flow toward the hopper apex. Also assume the particle size is much smaller
than the exit size. From Conservation of Mass applied to a differential volume element,

ρbv(2πr
2 sinϕdϕ) = ρb(v + dv)

[
2π(r + dr)2 sinϕdϕ

]
, (10.24)

vr2 = (v + dv)
[
r2 + 2rdr + (dr)2

]
, (10.25)

vr2 = vr2 + 2vrdr + v(dr)2 + r2dv + 2rdvdr + dv(dr)2, (10.26)

0 = 2vrdr + r2dv, (10.27)

dv

dr
= −2v

r
. (10.28)

The (radial) acceleration of a material element may be written as,

dv

dt
=

dv

dr

dr

dt
=

dv

dr
v = −2v2

r
, (10.29)

where the previous equation has been used. Since the net (radial) force on a material element is equal to the
mass times the acceleration,

dFnet = (dm)
dv

dt
= −(dm)

2v2

r
, (10.30)

where dm = ρbdV is the small mass in the small spherical cap volume element dV . Assuming only a net
gravitational force acts in the radial direction at the exit (Figure 10.8),

− (dm)
2v2re
re

= −(dm)g cosϕ, (10.31)

2v2re
re

= g cosϕ =⇒ vre =

√
1

2
gre cosϕ. (10.32)

The exit diameter is,

De = 2r2 sin θ =⇒ re =
De

2 sin θ
. (10.33)
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Figure 10.8. The exit geometry used in the Brown [8] and Carleton [9] hopper flow rate
analyses.

Thus, the radial speed in the vicinity of the exit is,

vre =

√
gDe cosϕ

4 sin θ
. (10.34)

Note that experimental measurements show that this predicted velocity is inaccurate but, surprisingly, the
predicted mass flow rate is reasonably predicted.

It is at this point the Brown [8] and Carleton [9] derivations diverge. Carleton assumed that ϕ is sufficiently
small for mass flow to assume cosϕ ≈ 1. Thus, the mass flow rate is,

W = ρbvre
π

4
D2

e , (10.35)

We

ρbg1/2D
5/2
e

=
π

8

1

sin1/2 θ
. (10.36)

This expression is similar to the one derived by Johanson [7] except Carleton has a
√
sin θ while Johanson

has a
√
tan θ. These trigonometric functions are similar, however, when θ is small.

In Brown’s derivation, he found the mass flow rate by integrating the radial speed over the exit area taking
into account the variation in ϕ,

W =

ˆ θ

0

ρbvre2πr
2
e sinϕdϕ =

ˆ θ

0

ρb

√
gDe cosϕ

4 sin θ
2π

(
De

2 sin θ

)2

sinϕdϕ, (10.37)

W =
π

4

ρbg
1/2D

5/2
e

(sin θ)5/2

ˆ θ

0

√
cosϕ sinϕdϕ, (10.38)

W

ρbg1/2D
5/2
e

=
π

6

[
1− (cos θ)3/2

(sin θ)5/2

]
. (10.39)

Notes:

(1) Brown reported his expression as,

W

ρbg1/2D
5/2
e

=
π

4

[
1− (cos θ)1/2√

2(sin θ)3/2

]
. (10.40)

This expression is numerically nearly identical to Eq. (10.39) but technically the two expressions
are different. This author (Wassgren) is not sure how Eq. (10.40) was determined.

(2) Brown also derived an expression for a wedge-shaped hopper and found,

Wwedge

ρbg1/2L(B − kd)3/2
=

θ1/2√
2 sin θ

. (10.41)

Comparisons of the various mass flow rate expressions presented in this chapter for coarse, cohesionless
material in a conical hopper are shown in Figure 10.9. The analytical expressions are all nearly equal
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Figure 10.9. Plots of the dimensionless mass flow rate for a coarse, cohesionless ma-
terial in a conical hopper as a function of the hopper half angle from the vertical for
the Beverloo/Rose-Tanaka correlations (Eqs. (10.8) and (10.12)), the Johanson model
(Eq. (10.19)), the Carleton model (Eq. (10.36)), and the two Brown expressions (Eqs. (10.39)
and (10.40)). Note that the two Brown expressions overlap each other.

and only begin to deviate at large hopper wall half angles, which is where the mass flow assumption is
more likely to become inaccurate. The Beverloo/Rose-Tanaka expression remains larger than the analytical
expressions over the range of hopper wall half angles, although less so at smaller angles. The Beverloo/Rose-
Tanaka expression is likely to be more accurate than the derived expressions since it is an empirical fit to
experimental data with no derivation assumptions. There are additional mass flow rate analyses that make
other assumptions and include the effects of stresses (refer to Nedderman [2] for an overview).

10.3.3. Johanson’s Cohesive Model

The Johanson ([7]; partially re-derived by Mehos [10]) proposed a derivation for predicting the mass flow
rate of cohesive (and non-cohesive) powders from hoppers with circular and rectangular exit geometries. The
derivation is similar to the one used to predict the minimum bridge diameter to avoid cohesive bridging.
Following is the derivation for a conical hopper, but a similar approach can be used for wedge hoppers. The
derivation presented here has differences from Johanson’s original work, which will be highlighted.
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Figure 10.10. A drawing of the material element and geometry used in the Johanson [7]
powder mass flow rate model.

Apply Newton’s Second Law in the vertical direction to a thin element of material with vertical thickness dz
located at the (conical) hopper outlet, ∑

Fz = ma = Fup − Fdown. (10.42)

The upward acting force is due to the applied major principal stress σa acting at the hopper walls, which
acts at an angle β inclined from the hopper wall (similar to what was described in Chapter 9.2),

Fup = [2π(r sin θ])dz cos(θ − β)]σa sin(θ − β) = σa2π(r sin θ)dz sin(θ − β) cos(θ − β), (10.43)

where the quantity is square brackets is the element perimeter area. Johanson neglected the arch curvature
when writing the perimeter area. The downward acting force is due to the weight of the material element,

Fdown = ρbg
[
π(r sin θ)2dz

]
, (10.44)

where the quantity in square brackets is the element volume (neglecting the arch curvature). Substitute the
forces into Newton’s Second Law and simplify,

ρb
[
π(r sin θ)2dz

]
a = σa2π(r sin θ)dz sin(θ − β) cos(θ − β)− ρbg

[
π(r sin θ)2dz

]
, (10.45)

ρba =

(
2

r sin θ

)
σa sin(θ − β) cos(θ − β)− ρbg. (10.46)

To be conservative, let θ−β = 45◦ so sin(θ−β) cos(θ−β) = 1
2 to maximize the upward force. For convenience,

let D := 2r sin θ be the outlet diameter. Divide the entire equation by the consolidation stress (σ1) at the
outlet and re-arrange,

ρba

σ1
=

(
2

D

)
σa

σ1
− ρbg

σ1
, (10.47)

a = g

[(
2σ1

ρbgD

)
σa

σ1
− 1

]
. (10.48)

Since the material is yielding, assume σa = fc, where fc is the unconfined yield strength of the material.
Note that the ratio σ1/fc is the material flow factor (mff) at the consolidation stress. Thus, the previous
equation may be written as,

a = g

[(
2σ1

ρbgD

)
1

mff
− 1

]
. (10.49)
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Now re-write the consolidation stress term. Recall from the previous chapter that the critical exit diameter
to avoid cohesive bridging is,

D = H(θ)
CAS

ρbg
, (10.50)

where,

CAS =
1

hff
σ1, (10.51)

which gives,

D =
H(θ)

hff

σ1

ρbg
=⇒ σ1

ρbgD
=

hffc

H(θ)
, (10.52)

where the subscript “c” is included on the hopper flow factor to signify that its value assumes the critical case.
Note that Johanson used H(θ) = 2 in his derivation. Substituting into the expression for the acceleration,

a = g

[
2

H(θ)

hffc

mff
− 1

]
. (10.53)

Note again that Johanson’s derivation had H(θ) = 2.

The remainder of the derivation is identical to the previously presented one for cohesionless materials (Sec-
tion 10.3.1). The final expression is,

Wconical = ρb
π

4
D2

√
gD

4 tan θ

(
1− 2

H(θ)

hffc

mff

)
. (10.54)

Notes:

(1) Johanson’s [7] expression for a conical bin is,

Wconical = ρb
π

4
D2

√
gD

4 tan θ

(
1− hffc

mff

)
. (10.55)

His expression for a wedge-shaped bin is,

Wwedge = ρbBL

√
gB

2 tan θ

(
1− hffc

mff

)
. (10.56)

(2) As a reminder,
• hffc is the hopper flow factor at the critical exit diameter, i.e., the minimum exit diameter at

which arching can occur, Bmin or Dmin = H(θ)CAS/(ρbg). Note that Johanson used Bmin or
Dmin = 2(CAS)/(ρbg).

• The parameter mff is the material flow factor at the consolidation stress.
• Ideally, ρb should be evaluated at the actual consolidation stress.

(3) For a non-cohesive material, hffc = 0 since the critical exit diameter is zero. As a result, the term in
parenthesis is equal to one and the prior Johanson expression for a cohesionless material is obtained.

(4) Another mass flow rate expression for cohesive materials was developed by Anand et al. [11]. They
used discrete element method (DEM) computer simulations to predict the discharge rate of (liquid
bridge) cohesive, spherical particles from a flat-bottomed bin. Recall from Eq. (10.9) that the
Beverloo correlation for non-cohesive materials through a slot exit is,

W = 1.03ρbg
1/2(L− kd)(B − kd)3/2. (10.57)

For these cohesive materials, Anand et al. suggest using the following simulation-determined corre-
lation for the shape factor k, presumably to account for the increase in effective particle shape due
to agglomeration,

k = 1.9 exp(0.39Bo), (10.58)
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Figure 10.11. A plot comparing the mass flow rate from a wedge hopper from DEM simu-
lations and the modified Beverloo model (Eqs. (10.57) and (10.58)) as functions of the Bond
number (Eq. (10.59)). Results from two different dimensionless slot widths are shown.

where Bo is the Bond number, which is the ratio of a characteristic particle liquid bridge cohesive
force to the particle weight,

Bo :=
Fcoh

W
=

2πRγ
4
3πR

3ρpg
=

3γ

2R2ρpg
. (10.59)

In the previous expression, γ is the liquid’s surface tension, R is the particle radius, ρp is the
particle density, and g is the acceleration due to gravity. A plot comparing the model mass flow
rate predictions to DEM simulation results is shown in Figure 10.11.

10.4. The Mass Flow Rate for Fine Powders

The previous correlations are not accurate for fine powders (< 400 µm) due to the influence of the surrounding
fluid. Pressure gradients, permeability, and drag all act to modify the mass flow rate. For fine particles, the
flow rate can be written with an effective gravitational acceleration as,

W = cρb

(
g +

1

ρb

dp

dr

)1/2

(D − kd)5/2, (10.60)

where dp/dr is the pressure gradient near the outlet. Determining the pressure gradient requires knowledge
of the bed properties, gas properties, and geometry. It’s a non-trivial calculation. There are many papers on
this topic and won’t be discussed further in these notes.

A powder bed’s permeability is a measure of the ease with which a fluid, e.g., air, flows through a powder
bed. A larger permeability means that a smaller pressure gradient is required to produce a given flow rate.
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(a) Permeability at the poured bulk density
(b) Poured bulk density

Figure 10.12. (A) The permeability of different grades, i.e., particle sizes, of milled lactose
powder at the poured bulk density. (B) The poured bulk density of the same lactose powder.

Darcy’s Law provides a relationship between the pressure gradient and volumetric flow rate,

Q = −KA

µ
∇p, (10.61)

where Q is the volumetric flow rate (dimensions of L3/T and a vector quantity) of the fluid, K (dimensions
of L2) is the bed’s permeability, A (dimensions of L2) is the bed’s cross-sectional area, which includes the
fluid and particle area, µ (dimensions of M/(LT )) is the fluid’s dynamic viscosity, and p (dimensions of
M/(LT 2)) is the pressure in the fluid. As the permeability increases, the volumetric flow rate also increases.
One expression for estimating a particle bed’s permeability is the Carman-Kozeny Equation,

K ∝ d2SV

ϵ

180(1− ϵ)2
, (10.62)

where dSV (dimensions of L) is the particle equivalent sphere surface area-to-volume diameter and ϵ (dimen-
sionless) is the bed’s void fraction (aka porosity). As the bulk density increases for a given material, the
bed porosity decreases and the permeability decreases. Similarly, as the particle’s equivalent sphere surface
area-to-volume diameter decreases, the permeability decreases. Thus, tightly packed beds consisting of small
particles will generally have small permeability and a larger pressure gradient is needed to obtain a given
volumetric flow rate of fluid through the bed.

Notes:

(1) Figure 10.12 shows permeability experimental measurements for different grades, i.e., particle sizes,
of milled lactose powder at their poured bulk densities (note the small magnitude of the perme-
ability). In Figure 10.12a the permeability increases as the particle size decrease, which appears
to contradict the Carmen-Kozeny Equation (Eq. (10.62)). However, Figure 10.12b shows that the
poured bulk density decreases as the particle size decreases. This behavior occurs because as particle
size decreases, the powder becomes more cohesive and the bed becomes more porous. Thus, there
are two counter-acting effects: a decreasing particle size but increasing void fraction. Evidently the
increase in void fraction results in an increase in the bed permeability with decreasing particle size
at the poured bulk density in this case.

An illustration of a low permeability powder discharging through a hopper is shown in Figure 10.13. The
stresses acting on the powder decrease approaching the hopper exit (Chapter 6). As the stresses decrease,
the powder bed dilates resulting in a decrease in the local air pressure. The negative (gage) pressure at the
hopper exit results in an influx of air into the powder bed, primarily through the hopper exit. The flow of
incoming air will slow the discharging powder flow rate. The smaller the bed permeability, the larger the exit
pressure gradient will be since air cannot rapidly fill the void left by the particles (refer to the Carmen-Kozeny
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Figure 10.13. An illustration of a low permeability powder discharging from a hopper.

Equation, Eq. (10.62)), and the smaller the powder mass flow rate from the hopper. The reader can refer to
Dhodapkar et al. [4] for additional detail.

Notes:

(1) A video showing mass flow of fine powder with air effects can be viewed at: http://www.youtube.
com/watch?v=UKLQwOxFSaU.

To estimate the particle speed at the hopper outlet including air effects, Carleton [9] assumed a radial flow
field in a conical hopper and applied a force balance to an individual particle (no neighbors) including the
particle inertia, weight, and fluid drag (relative to stationary air - a poor assumption). The resulting analysis
gives an equation implicit in the particle speed (V0),

4V 2
0 sin θ

D
+

15ρ
1/3
F µ

2/3
F V

4/3
0

ρSd5/3
= g, (10.63)

where θ is the hopper wall half angle from the vertical, D is the hopper exit diameter, d is the particle
diameter, ρF and ρP are the fluid and particle densities, respectively, µF is the fluid dynamic viscosity, and
g is the acceleration due to gravity.

Notes:

(1) Equation (10.63) can be solved numerically for the particle speed. Alternately, Carleton provided
a nomograph (Figure 10.14) for determining the particle speed.

(2) The volumetric flow rate from the hopper (Q) may be estimated using Q = V0
π
4D

2. Note that
Carleton’s analysis does not provide a method for estimating the bulk density.

Air pressure differences can also be used to increase the mass flow rate from a hopper. Nedderman [2] states
that the mass flow rate in the presence of a positive applied gage pressure above the powder bed in a hopper
(∆p), assuming a narrow, smooth conical hopper and an incompressible powder and fluid, is,

W = W0

√
1 + f(Ree)

∆p

ρbgre
, (10.64)

where W0 is the mass flow rate in the absence of pressure effects, ρb is the powder bulk density, g is the
acceleration due to gravity, and re is the radius from the hopper apex to the actual exit location. The
function of Reynolds number at the exit (Ree) is,

f(Ree) =
150 + 5.25Ree
150 + 1.75Ree

, (10.65)

where,

Ree =
ρF vere
µF

, (10.66)
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Figure 10.14. The particle speed nomograph provided by Carleton [9]. An example is
given in this figure in which the hopper has a θ = 15◦ wall angle, D = 10 cm exit diameter
and the particles have a d = 100µm diameter and ρS = 1.5 g/ml density. Room temperature
air and a gravitational acceleration of g = 9.81 m/s are assumed. The resulting particle exit
speed is V0 = 35 cm/s.

and ve is the particle speed at the exit and ρF and µF are the fluid density and dynamic viscosity, respectively.

Notes:

(1) The most accurate approach to predicting the outlet mass flow rate in the presence of a fluid
involves applying Conservation of Mass and the Linear Momentum Equation to differential material
elements and then solving for the stress and velocity fields. This approach would include the
gravitational, material, and fluid forces acting on the material elements. The resulting equations
could be solved analytically, given sufficient assumptions, or numerically. Refer, for example, to the
work by Lamptey and Thorpe [12] or Gu [13] for additional details.

(2) Methods for improving the flow of low permeability powders include:
(a) Using a dual hopper arrangement to provide ventilation (Figure 10.15a). This technique de-

creases the pressure gradient near the hopper outlet [13].
(b) Increasing the outlet size, resulting in a larger area through which air can flow.
(c) Decreasing the fill level of the material in the hopper, which increases the pressure gradient for

downward air flow from the upper free surface resulting in more air entering the powder bed
from the top and reducing the air flow from the bottom.

(d) Injecting a small amount of air into the powder bed near the exit, which decreases pressure
gradient there (Figure 10.15b). The air flow rate should not be so large as to cause flooding,
however.

(e) Installing a standpipe at the hopper outlet (Figure 10.15c), ensuring that there are no voids
in the standpipe, which decreases the pressure gradient at the exit which in turn decreases the
upward flow of air [13].

(f) Increase the air pressure at the top of the powder bed to increase the mass flow rate (refer to
Eq. (10.64)).
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(a) A dual hopper arrangement (b) Injecting air into the powder bed
(c) Adding a standpipe to the hopper
exit

Figure 10.15. Methods for increasing the mass flow rate of low permeability powders from
a hopper.

10.5. Measurement of Mass Flow Rate

Measurements of a powder’s mass flow rate are often needed during manufacturing in order to control the
process. Two methods for determining mass flow rate are described in this section: (1) methods relying on
force or torque measurements, and (2) methods relying on the attenuation of radiation passing through the
powder. Other methods exist and the reader is referred to [14] for additional detail.

Force measurements can be used with a linear momentum or moment of momentum analysis to determine
a powder stream’s mass flow rate. In devices such as the impact plate, diverting chute, and centripetal flow
meter, a powder stream impacts or is diverted and the resulting force is measured. Applying the Linear
Momentum Equation in the x-direction to the control volume surrounding the powder stream impacting the
plate shown in Figure 10.16, gives,

d

dt

ˆ
CV

uxρbdV +

ˆ
CS

ux(ρburel · dA) = FB,x + FS,x, (10.67)

where,

d

dt

ˆ
CV

uxρbdV = 0 (assuming steady flow), (10.68)

ˆ
CS

ux(ρburel · dA) = (V2 cos θ)ṁ (assuming a uniform speed), (10.69)

FB,x = 0 (no body forces in the x direction), (10.70)

FS,x = Fx (the measured force). (10.71)

Substituting and simplifying,

ṁ =
Fx

V2 cos θ
. (10.72)

The speed V2 can be found via calibration or measured using an optical or Doppler shift method, for example.

If the Linear Momentum Equation is applied to the same control volume in the y direction,

d

dt

ˆ
CV

uyρbdV +

ˆ
CS

uy(ρburel · dA) = FB,y + FS,y, (10.73)
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Figure 10.16. The control volume and free body diagram for an impact plate linear mo-
mentum analysis.

where,

d

dt

ˆ
CV

uyρbdV = 0 (assuming steady flow), (10.74)

ˆ
CS

uy(ρburel · dA) = (−V1)(−ṁ) + (−V2 sin θ)(ṁ) (assuming uniform speeds), (10.75)

FB,y = −mg (material weight in the control volume), (10.76)

FS,y = Fy (the measured force in the y direction). (10.77)

Substituting and simplifying,

ṁ(V1 − V2 sin θ) = −mg + Fy. (10.78)

Now substitute in for V2 using Eq. (10.72),

ṁ

(
V1 −

Fx

ṁ cos θ
sin θ

)
= −mg + Fy, (10.79)

ṁV1 − Fx tan θ = −mg + Fy, (10.80)

ṁ =
−mg + Fy + Fx tan θ

V1
. (10.81)

If the material weight can be estimated or neglected, then the mass flow rate can be determined knowing the
measured horizontal and vertical impact forces, the plate angle, and the impact speed.

Analysis for a rotary disk flow meter (aka Coriolis flow meter) is similar to that for the impact plate, but
the Moment of Momentum Equation is used in place of the Linear Momentum Equation. Consider a powder
stream that falls vertically onto a rotating disk and is then thrown off laterally as shown in Figure 10.17. From
the Moment of Momentum Equation applied in the z direction to a control volume enclosing the material
entering and exiting the spinning plate,

d

dt

ˆ
CV

(r× u)zρbdV +

ˆ
CS

(r× u)z(ρburel · dA) = TB,z + TS,z, (10.82)
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Figure 10.17. A moment of momentum analysis for a rotary disk used to determine a
powder stream’s mass flow rate.

where,

d

dt

ˆ
CV

(r× u)zρbdV = 0 (assuming steady flow), (10.83)

ˆ
CS

(r× u)z(ρburel · dA) = [Rêr × (Vrêr +ΩRêθ)]ṁ = ΩR2ṁ (10.84)

(assuming the particles’ tangential speeds equal the disk tangential speed),

TB,z = 0 (no body torques in the z direction), (10.85)

TS,z = T (the measured torque). (10.86)

Substituting and simplifying,

ṁ =
T

ΩR2
. (10.87)

Thus, measurements of the torque and rotational speed can be used to predict the mass flow rate.

The last method discussed in this section for measuring a powder stream’s mass flow rate involves radiation
attenuation. Often, x-rays or microwaves are used. The radiation is emitted with intensity Iemitted, passes
through a powder stream of well-defined thickness x as shown in Figure 10.18, and is received with intensity
Irecieved. The bulk density of the powder stream (ρb) is related to the radiation intensities via,

Ireceived
Iemitted

= exp

(
− µ

ρb
x

)
, (10.88)

where µ is a calibrated material-specific attenuation coefficient. The speed of the powder stream V can
be found using cross-correlation from the receiver measurements at two known streamwise distances. The
Doppler shift in a reflected signal could also be used to determine the stream’s speed. The resulting mass
flow rate is,

ṁ = ρbV A, (10.89)

where A is the cross-sectional area of the powder stream and is related to x via the integration of path
lengths. One example of an x-ray radiation attenuation device for measuring mass flow rate is given at:
https://www.enurga.com/flowmeter.htm.

10.6. Summary

Summarizing the main points from this chapter:

• The mass flow rate from a hopper is independent of the material height for sufficiently large heights
(a Janssen effect) (W ∝ D5/2).
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Figure 10.18. An illustration for how radiation attenuation through a flowing powder
stream can be used to estimate a powder’s bulk density. The bottom figure is from Ganesh
et al. [15].

• A finite particle size results in the “empty annulus” effect (D − kd).
• There are many estimates for predicting the mass flow rate of cohesionless particulates from a
hopper, e.g., Beverloo/Rose-Tanaka, Brown, Carleton, Johanson, ...

• For cohesive powder mass flow rate, use the Johanson relation.
• The flow of fine powders is affected by the surrounding fluid. Often the flow rate is diminished as
fluid flows counter to the powder during discharge.

• Various methods exist for measuring powder mass flow rate.

10.7. Related Standards

• ASAE D274.1, 2008, “Flow of grain and seeds through orifices”, American Society of Agricultural
and Biological Engineering.

• ASTM B964-23, 2023, “Standard test methods for flow rate of metal powders using the Carney
funnel”, ASTM Standards.

• ASTM B213-20, 2020, “Standard test methods for flow rate of metal powders using the Hall flowme-
ter funnel”, ASTM Standards.
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A particulate material consisting of spherical particles of diameter 400 µm has a bulk density of 800 kg/m3.   
a. Estimate the mass flow rate through an orifice of 25 mm diameter in the base of a wide cylindrical, flat-

bottomed bin. 
b. Estimate the mass flow rate through a 25 mm diameter orifice in the base of a conical hopper of half-angle 20° 

from the vertical.  The hopper is observed to be in mass flow. 
c. Estimate the mass flow rate through a 40 mm x 15 mm rectangular orifice in the base of a wide cylindrical bin.  
 
SOLUTION: 
For part (a), estimate the mass flow rate using the Beverloo correlation, 

𝑊 = 0.58𝜌!𝑔"/$(𝐷 − 𝑘𝑑)%/$  =>  W = 0.14 kg/s. (1) 
where ρb = 800 kg/m3, g = 9.81 m/s2, D = 0.025 m, k = 1.6 (for spheres), and d = 400*10-6 m.  
 
For part (b), several models can be used to estimate the mass flow rate, 

Beverloo (1961) with Rose-Tanaka (1959):  𝑊 = 0.58𝜌!𝑔"/$(𝐷 − 𝑘𝑑)%/$(tan 𝜃)&'.)%  =>  W = 0.19 kg/s. (2) 

Brown (1961):  𝑊 = *
+
𝜌!𝑔"/$(𝐷 − 𝑘𝑑)%/$ 3

"&(-./0)!/#

(/23 0)$/#
4  =>  W = 0.16 kg/s. (3) 

Carleton (1972):  𝑊 = *
4
𝜌!𝑔"/$(𝐷 − 𝑘𝑑)%/$(sin 𝜃)&"/$  =>  W = 0.16 kg/s. (4) 

Johanson (1965):  𝑊 = *
4
𝜌!𝑔"/$(𝐷 − 𝑘𝑑)%/$(tan 𝜃)&"/$  =>  W = 0.15 kg/s. (5) 

The Beverloo/Rose-Tanaka relation is likely the best predictor since it is an empirical fit to experimental data 
whereas the other expressions come from analytical derivations.  
 
For part (c), use the Beverloo correlation for a rectangular outlet, 

𝑊 = 1.03𝜌!𝑔"/$(𝐿 − 𝑘𝑑)(𝐵 − 𝑘𝑑))/$  =>  W = 0.18 kg/s, (6) 
using L = 40 mm and B = 15 mm.  Note that previous expression assumes L > 3B, which doesn’t strictly hold here 
(L/B = 2.67).  An expression where the L/B requirement is relaxed is given in Dhodapkar et al. (2016), 

𝑊 = 5
*
𝐶𝜌!𝑔"/$(𝐵 − 𝑘𝑑)(𝐿 − 𝑘𝑑)=

$(6&78)(9&78)
(6&78):(9&78)

  =>  W = 0.23 kg/s, (7) 

where C is interpolated from the Dhodapkar et al. (2016) recommendations as, 
𝐶 = >'.4)&'.;"

5&$
? (2.67 − 2) + 0.91  =>  C = 0.88. (8) 

 
Reference:   

Dhodapkar, S., Jacob, K., and Kodam, M., 2016, “Determining the discharge rates of particulate solids”, 
Chemical Engineering Progress, Vol. 5, pp. 50 – 61. 
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Estimate the mass flow rate of iron ore powder from the wedge hopper shown below. The powder has the 
measured properties given in the figures. Assume the hopper is constructed of new steel plate, which has a 
measured wall friction angle of 25o.  (This example is inspired by the one in Johanson, J.R., 1965, “Method of 
calculating the rate of discharge from hoppers and bins,” Transactions of the Society of Mining  
Engineers, Vol. 232, p. 69 – 80.) 
 

  
 
SOLUTION: 
First, determine the critical hopper flow factor (hffc) using the Jenike design chart for a wedge hopper, assuming an 
initial guess for the consolidation stress of 𝜎1,c = 600 lbf/ft2.  For this consolidation stress, the corresponding 
material properties are 𝛿 = 60° and 𝛾 = 𝜌b𝑔 = 153 lbf/ft3 (red lines in the following figure). 

 
  

 

600 383 

153 

63 

240 
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Using the Jenike design chart for a wedge hopper (see below) and 𝛿 = 60°, we obtain hffc = 1.1.  The critical applied 
stress to avoid cohesive bridging at the exit is,  

𝐵!"# = 𝐻(𝜃) $%&
'!(

  =>  𝐶𝐴𝑆 = 𝜎),+ =
'!(,"#$
-(/)

. (1) 

Recall that the hopper flow factor is defined as, 
hff1 ≔

2%,'
2(,'

  =>  𝜎3,+ = (hff1)𝜎),+. (2) 

 
 
Using the assumed and given data, 

𝜌4𝑔 = 153 lbf/ft3,  Bmin = 2.5 ft, H(q = 20o) = 1.1 (refer to the following plot), 
=>  sa,c = 348 lbf/ft2 (Eq. (1))  =>  s1,c = 383 lbf/ft2 (Eq. (2)). 

 

 

1.1 
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Return to the material properties plots for 𝜎1,c = 383 lbf/ft2.  For this consolidation stress, the corresponding 
material properties are 𝛿 = 63° and 𝛾 = 𝜌b𝑔 = 153 lbf/ft3 (blue lines in the plot).  Since the new value for 𝛿	is close to 
𝛿	= 60° and our plots for determining hff are coarse, we'll continue to use the value of hffc = 1.1.  Recalculating 
using Eqs. (1) and (2) gives 𝜎1,c = 355 lbf/ft2.  This value gives nearly the same material properties as 𝜎1,c = 383 
lbf/ft2 and, thus, we'll use 𝛾 = 𝜌b𝑔 = 153 lbf/ft3. From the plot we also obtain 𝑓c = 240 lbf/ft2. 
 
The actual material flow factor is, 

mff = 2%,)
5'

  =>  mff = 1.48. (3) 

 
Now make use of Johanson's mass flow rate expression for cohesive powders in a hopper with a rectangular exit, 

𝑊 = 𝜌4𝐵𝐿7
,(

6 78#/
81 − 3

-(/)
9::)
!::
;  =>  W = 18 300 lbm/s. (4) 

Here, 𝜌4𝑔 = 153 lbf/ft3 (𝜌4 = 142 lbm/ft3, g = 32.2 ft/s2), B = 2.5 ft, L = 8 ft, 𝜃 = 20o, 𝐻(𝜃) = 1.1, hffc = 1.1, and mff = 
1.48. 
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CHAPTER 11

Discharge Devices

Often at the outlet of a hopper there’s a device used to control the discharge rate. Common devices include
conveyors, feeders (feeders control the flow more precisely than conveyors), or rotary valves. Rotary valves
are also commonly used to block air flow between the hopper and a pneumatic conveying line. To obtain the
desired flow rate, the hopper exit must be at least as large as the unobstructed exit flow rate found in the
previous chapter, and typically even larger.

Exit device dynamics can significantly affect the flow pattern within the hopper. For example, asymmetric
discharge may occur due to improper exit feeder design (Figure 11.1) or off-center filling. Asymmetric
discharge can result in eccentric loading of the hopper. Unless properly designed to account for eccentric
loading, structural failure of the hopper may occur [1], [2].

Notes:

(1) Discharge belts and screws cannot control flooding, but rotary valves can.
(2) Some bins/hoppers may have multiple outlets, which are more difficult to design in terms of structure

and flow.
(3) Slide valves (Figure 11.2) are common at the exit of a hopper. These valves are used for maintenance

purposes and should either be fully open during operation or fully closed.

11.1. Screw Feeders and Conveyors

Screw feeders and conveyors (aka augers) consist of a housing (aka trough or barrel), a screw, an inlet, an
outlet, and a motor that turns the screw (Figure 11.3a). The screw (Figure 11.3b) is comprised of a shaft
(aka core) about which the screw (aka flights) is attached. The distance between neighboring flights is called
the screw “pitch”. Material from a hopper falls into the empty volume between the screw flights and then is
conveyed downstream as the screw turns until reaching the outlet at which point the material falls out.

Notes:

(1) A “standard pitch” screw is one where the screw pitch is equal to the screw diameter (Figure 11.4a).
Standard pitch is commonly used for conveying material horizontally or at slight inclines. A “half

Figure 11.1. (left) Asymmetric discharge of a hopper into a screw feeder. (right) The
radial stress distribution on a hopper’s walls due to the presence of an asymmetric flow
channel at the right side of the hopper.
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Figure 11.2. A photograph looking up at a slide valve located at the outlet of a hopper.
A video of an operating slide value is available at: https://www.youtube.com/watch?v=

bS9JNIK0qMk.

pitch” screw has a pitch equal to half the screw diameter (Figure 11.4b). Half pitch screws are used
to convey material at large or vertical inclines.

(2) “Double flight” screws have two helical flights 180◦ out of phase (Figure 11.4c). Double flights are
used to produce more uniform flow of the material.

(3) There are many screw flight designs. For example, some screws have cut-outs (“cut flights”) and
protruding sections (“cut and folded flights”). These various designs are optimized for handling
materials with different properties as well as for controlling mixing during conveying. If the powder
has a tendency to flood, then a screw with a core should be used, as opposed to a coreless screw,
which is better for feeding cohesive materials.

(4) A screw feeder operates in much the same way as a screw conveyor. The primary difference is that
feeders control the mass flow rate more precisely using closed loop control. One common method of
feeder control relies on monitoring the material weight in the feed hopper, referred to as “gravimetric
mode” or “loss-in-weight” feeding. When there is no closed loop control, the feeder is operating in
“volumetric mode”, relying on consistent filling of the screw flights to maintain a desired flow rate.

(5) If the hopper exit must be large to prevent bridging or ratholing, multiple feed screws might be
used in a slot opening beneath the hopper (aka a “live bottom” screw feeder, Figure 11.5).

(6) A shroud covering the screw is typically used just downstream of the inlet to prevent a flooding
material from overflowing the feeder.

(7) Feed screws typically aren’t used in applications where there’s an air pressure gradient between the
hopper and outlet since there is no air lock or seal in the screw.

(8) Active cooling of the screw or barrel may be needed due to heat build up caused by the work on
the material during operation.

(9) The effort required to clean a feed screw should not be underestimated. In general, cleaning proce-
dures for any unit operation should be part of the overall system design.

(10) Screw flights should not be run further than the discharge opening to avoid potentially plugging
the region near the end of the screw.

(11) The mass flow rate (ṁ) for a feed screw (aka “capacity”) is equal to the material bulk density (ρb)
multiplied by the material average speed (v) and the cross-sectional area of the material (A),

ṁ = ρbvA. (11.1)

The cross-sectional area is,

A = α
π

4
(D2

f −D2
s), (11.2)

where 0 ≤ α ≤ 1 is the fraction of the open screw volume/area that is filled with material (α = 1
corresponds to a completely filled flight volume/area) and Df and Ds are the diameters of the
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(a) Screw conveyor components

(b) Screw Parts

Figure 11.3. A schematic of a simple screw conveyor design. These figures are from https:

//www.screw-conveyors.com/screw-conveyor-design/.

screw flights and shaft, respectively. The speed at which material moves downstream in one screw
revolution is,

v =
L

T
=

ηP

2π/ω
, (11.3)

where L is the distance the material moves in one screw revolution and T is the time required for one
revolution. The material moves a distance L = ηP where P is the screw pitch length and 0 ≤ η ≤ 1
is the conveying efficiency of the screw, which is a complex function of the screw characteristics,
material properties, and screw inclination angle. Lastly, ω is the rotational speed of the screw (with
dimensions of 1/T ). Substituting the expressions for the area and speed into the mass flow rate
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(a) A standard pitch screw (b) A half-pitch screw (c) A double flight screw

Figure 11.4. Illustrations of various screw designs. These figures are from https://www.

screw-conveyors.com/screw-conveyor-design/.

Figure 11.5. A photograph of a “live bottom” screw feeder to be located at the bottom of
a hopper with a large exit area. This photograph is from http://www.conveyoreng.com/

products/screw-feeders-live-bottoms/?v=868f8823ca02.

expression,

ṁ =
1

8
ρbηωαP (D2

f −D2
s). (11.4)

When locating a screw feeder/conveyor at the exit of a hopper, the screw should be designed so the hopper
discharges uniformly rather than producing an asymmetric flow channel. If a constant pitch, constant shaft
diameter screw in a constant area barrel is used, such as the one illustrated in Figure 11.1, then the flight
volume on the upstream side of the screw will fill first with material from the hopper. As that material
is conveyed downstream, no new material from the hopper enters the screw since the screw flight volume
is already full. Thus, an asymmetric flow channel will form located at the upstream side of the screw. To
discharge the hopper uniformly, the volume in the screw must increase gradually underneath the hopper to
accommodate new material over the entire hopper exit. Of course, the screw spanwise width should also
match the hopper’s spanwise width.

Three common methods for increasing the screw fill volume are shown in Figure 11.6. The first approach
involves increasing the screw pitch moving downstream (Figure 11.6a). In the second method, the screw
shaft diameter decreases moving downstream (Figure 11.6b). Lastly, the trough/barrel diameter can be
increased moving downstream (Figure 11.6c). Sometimes combinations of these three techniques are used
simultaneously.

Notes:

(1) These increasing-volume screw design features are best suited for for slot-type hopper exits.
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(a) A variable pitch screw

(b) A tapered screw core

(c) A tapered barrel

Figure 11.6. Three different screw designs for increasing the available volume into which
material can flow from the hopper. These figures are from http://www.conveyoreng.com/

products/screw-feeders-live-bottoms/. A video showing the discharge dynamics using
a tapered shaft and variable pitch screw geometry is available at https://www.youtube.

com/watch?v=ZjKbSnVESDc. A computer simulation of a variable pitch screw may be viewed
at https://www.youtube.com/watch?v=PQi9U8_GAVQ.

(2) To determine area gradient in the streamwise direction to ensure uniform discharge from the hopper
at a specified volumetric flow rate, apply Conservation of Mass to the control volume shown in
Figure 11.7. This control volume surrounds a differentially small streamwise length of material
discharging from the hopper into the feed screw. From Conservation of Mass, assuming steady
state flow,

ρbvA+ ρb

(
QH

BL

)
(Bdx) = ρbvA+ d (ρbvA) , (11.5)

where QH is the (total) volumetric flow rate from the hopper, B is the distance into the page, L
is the streamwise length of the hopper exit, v is the streamwise speed of the material, A is the
cross-sectional screw area, and x is the downstream direction. Assuming a constant bulk density
and constant streamwise speed,

ρb

(
QH

L

)
(dx) = ρbvdA, (11.6)

dA

dx
=

1

v

(
QH

L

)
. (11.7)
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Figure 11.7. The control volume used in the Conservation of Mass analysis for determining
the area gradient in the streamwise direction to ensure uniform discharge from a hopper.

Figure 11.8. A schematic of a belt conveyor. This figure is from http://feeco.com/

belt-feeders/.

For more information on feed screw design and interfacing with hoppers, the reader should refer to https:

//www.kwsmfg.com/wp-content/themes/va/pdf/Screw-Conveyor-Engineering-Guide-pt1.pdf, https:
//www.iqsdirectory.com/articles/screw-conveyors.html, Roberts [3], and Bates [4].

11.2. Belt Feeders and Conveyors

Belt feeders/conveyors (Figure 11.8) are also commonly used to control the flow at the exit of a hopper. A
belt conveyor uses a looped belt with a width at least as big as the hopper width mounted on a set of pulleys
at either end with the one on the discharge end being motorized to drive the belt. In between the end pulleys,
the belt rests on rollers (aka idlers). Material from the hopper falls onto the moving belt and is conveyed
downstream.

Notes:

(1) Belt conveyors are well suited for long, wide slot-style hopper exits and can handle large discharge
loads. Belt conveyors can handle higher feed rates than screw conveyors and can convey material
long distances.

(2) The belt mass flow rate (aka capacity, ṁ) is given by,

ṁ = ρbV A, (11.8)

where V is the belt speed and A is the cross-sectional area of the material on the belt. Many
belts have a trough-style cross section (Figure 11.9) to keep the material contained laterally on the
belt. For this configuration, three idlers guide the belt at each streamwise support location with
one idler under the bottom of the belt and an idler supporting each trough wall. The maximum
cross-sectional area of material on the belt (A) is modeled as the sum of a trapezoidal area (AT )
and the area of a circular segment (ACS),

A = AT +ACS , (11.9)
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Figure 11.9. (left) A cross-sectional schematic of a trough-style belt. (right) The geometry
used to calculate the circular segment cross-sectional area.

Material Surcharge angle, λ (◦) Material Surcharge angle, λ (◦)
ammonium sulphate 10 Portland cement 25

graphite 10 gravel (pebbles) 10
iron ore (crushed fine) 20 limestone (3 mm) 10

potash ore 10 sand (foundry) 30
sugar (granulated) 10 talc (powdered) 10

Table 11.1. Surcharge angle values for various materials. This data is from https:

//pdhonline.com/courses/m344/m344content.pdf. More surcharge angle values are avail-
able at https://www.engineeringtoolbox.com/bulk-material-conveyor-capacity-d_

1558.html.

where,

AT = Ww sinλ+ 2

[
1

2
(w cosλ)(w sinλ)

]
= Ww + w2 cosλ sinλ, (11.10)

and,

ACS =
(2β)

2
R2︸ ︷︷ ︸

Asector

− 2

[
1

2
(R sinβ)(R cosβ)

]
︸ ︷︷ ︸

Atriangle

= R2 (β − sinβ cosβ) . (11.11)

where W is the horizontal portion belt width, w is the length of a trough wall, λ is the trough angle
with respect to the horizontal, β is the “surcharge angle” of the material, and,

2R sinβ = W + 2w cosλ =⇒ R =
W + 2w cosλ

2 sinβ
. (11.12)

Typical trough angles are λ = 20◦, 35◦, and 45◦. Values for the surcharge angle for various materials
are given in Table 11.1. Typically, material is filled to less than 80% of the maximum area.

(3) Belt conveyors exert little shear on the discharging material and, thus, there is little heat generation
during feeding. Belt conveyors are good for large, fragile, or cohesive materials.

(4) Materials prone to flooding, dust generation, or are adhesive are not well suited for belt feeding.
(5) Like screw feeders, belt feeders can be combined with weight sensors to monitor and control the

mass flow rate from the hopper (gravimetric feeding).
(6) Belt conveyors are easier to clean than screw conveyors.
(7) Belt wear and associated maintenance should be monitored, especially when conveying abrasive

materials.
(8) As with screw conveyors, the filling volume beneath the hopper exit should increase moving down-

stream on the belt in order to discharge the hopper uniformly (Figure 11.10).
(9) For more information on belt conveyor design, refer to https://pdhonline.com/courses/m344/

m344content.pdf.
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Figure 11.10. An illustration showing that a belt conveyor should be tilted to increase the
fill volume moving downstream in order to discharge a hopper uniformly.

Figure 11.11. Illustrations of a rotary feeder/valve. The left figure is from http:

//www.fqindustry.com/news/What-is-a-rotary-feeder-4.html and the right figure is
from Thomson [5].

11.3. Rotary Feeders/Valves

Rotary feeders/valves are often used to feed material into an environment with a different surrounding
pressure. Screw and belt conveyors don’t provide a seal between upstream and downstream environments,
but rotary feeders do.

A rotary feeder consists of a housing within which a shaft with vanes or pockets rotates (Figure 11.11).
Material in the hopper falls into an open cavity between neighboring shaft vanes. As the shaft rotates, the
open cavity seals against the housing as the vanes move out of hopper discharge zone. At the bottom of the
rotary feeder, the cavity opens again and material falls out into the discharge region.

Notes:

(1) Rotary valves are good for feeding floodable materials, but are not well suited for cohesive materials,
which may not fill the cavity efficiently.

(2) Rotary valves are typically used for circular or square hopper exits.
(3) A simulation example of a rotary valve can be viewed at https://www.youtube.com/watch?v=

rXOlotxOGmU.
(4) Material will preferentially fill the rotary valve cavities on the upstream side of the valve, i.e.,

where the cavity first opens up underneath the hopper. As a result, the hopper will discharge
asymmetrically. To discharge the hopper more uniformly, a standpipe should be installed between
the hopper and the rotary valve, as shown in Figure 11.12. The engineering rule of thumb is that
the standpipe length should be at least twice the exit diameter. An example simulation showing
the impact of a standpipe is available at https://www.youtube.com/watch?v=zun389BPTKc.

The flow rate through the feeder (Q) is governed largely by the rotor speed (ω). The relationship is not exactly
linear since the speed with which powder falls into the cavity is governed by gravitational acceleration. The
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Figure 11.12. Illustrations of hopper flow without (left) and with (right) a standpipe be-
tween the hopper exit and a rotary valve. The figures are from Marinelli [6].

ratio of the characteristic time for material to fall into the cavity (Tfall) to the period of rotation (Trotate) is
a Froude number (Fr), (

Tfall

Trotate

)2

∝

(√
R/g

1/ω

)2

=
ω2R

g
= Fr, (11.13)

where R is the radius of the rotary feeder and g is the acceleration due to gravity. When Fr ≪ 1, then
Tfall ≪ Trotate, i.e., material falls into the open cavity before the cavity can rotate very much, and the flow
rate will be nearly proportional to the rotational speed, i.e., Q ∝ ω. However, as the Froude number increases,
the open cavity volume may not fill completely since the cavity rotates quickly out of the filling zone. As a
result, the flow rate increases at a rate that is less than linear with the rotational speed.

Notes:

(1) Typical rotary feeder rotational speeds are between 5 and 40 rpm.
(2) Typical volume fill efficiencies range between approximately 50 and 85%, depending on the material

and rotational speed.
(3) The flow rate from the rotary valve will be periodic due to the opening and closing of cavities.
(4) If the hopper exit is large, the flow rate through the rotary valve can be reduced by using shallow

pockets, thereby decreasing the volume of the pocket (Figure 11.13).

Rotary valves are well suited for feeding material into an environment with a different pressure, such as
a pneumatic conveying line. When used in such applications, the gap between the rotating vanes and the
housing must be small to prevent air leakage through the valve. Unfortunately, particles can get jammed in
this small clearance, particularly just downstream of the filling zone (Figure 11.14a). To prevent jamming,
an offset feed region can be used along with a flow control gate, as shown in Figure 11.14b. Particles are
unlikely to get caught in the gap just downstream of the gate overhang. In addition to a flow control gate,
rotary valves used in pressurized environments also incorporate a vent on the return side of the housing
(Figure 11.14a). The vent is used to equalize the pressure in the open cavity before reaching the filling
region.

Notes:

C. Wassgren 255 2024-06-12



Powder Storage and Flow

Figure 11.13. Illustration of a rotary valve with shallow pockets, which can be used to
decrease the flow rate. This figure is from Thomson [5].

(a) vent (b) flow control gate

Figure 11.14. Illustrations of a flow control gate and a vent in a rotary valve. These figures
are from Thomson [5].

Figure 11.15. Illustration of a rotary valve feeding into a conveying line. The valve should
be oriented to discharge material on the downstream side of the exit.

(1) Over time there will be increased air leakage through the vane/housing clearance due to abrasive
wear of the valve vanes.

(2) If feeding into a pneumatic conveying line, a rotary valve should be oriented to discharge material
at the downstream side of the exit to maintain a “clean” flow from the valve (Figure 11.15).

C. Wassgren 256 2024-06-12



Powder Storage and Flow

Figure 11.16. A wall vibrator attached to a hopper wall. This figure is from http://www.

shake-it.com/product-line/mt-fast-hopper-trailer-vibrator/.

11.4. Discharge Aids

Often discharge aids, such as wall vibrators, vibrating dischargers, air injectors, and air cannons, are used to
aid in the discharge of material from funnel flow hoppers. These devices are almost always added after the
hopper has been installed and flow problems are observed. The type, location, and operation of discharge
aids is almost always found empirically. There has been little research focused on providing design rules for
discharge aids.

A wall vibrator is typically an unbalanced motor that is operated either electrically or pneumatically (Fig-
ure 11.16). Often the vibration frequency and amplitude can be controlled. The vibrator is usually attached
to a wall against which material stagnates with the intention of inducing flow. Unfortunately, vibration,
especially for compressible materials at small amplitudes and high frequencies, can sometimes cause material
to pack more densely, exacerbating flow problems. Wall vibrators tend to be more effective at promot-
ing flows in chutes, which have a free surface. A video showing a wall vibrator in action is available at
https://www.youtube.com/watch?v=zsiIu4ZwggY. Another video that promotes the use of vibration is
available at https://www.youtube.com/watch?v=T_HYfCsOXAI. This dramatic video doesn’t actually show
vibration in action, but it does show the dangerous situations people may be put in when flow problems
exist.

Vibrating dischargers (aka bin activators) also use vibration in an attempt to improve flow from a hopper.
As opposed to being attached to a hopper wall, the discharger is an insert installed at the hopper exit
(Figure 11.17). The discharger vibrates the material as opposed to the hopper walls. As with a wall vibrator,
material may pack more densely with a discharger if the material is compressible. An illustration of an
operating discharger is available at https://www.youtube.com/watch?v=wuK8LUvfucU.

In addition to vibration, air is often injected into stagnant material in an effort to induce flow; however, air
should not be used with materials prone to flooding. An air cannon (Figure 11.18) impulsively injects a fixed
volume of air at hopper walls, usually at large pressures and speeds, and is particularly useful for breaking
up time consolidated material. Often multiple air cannons are used in different regions of a hopper and are
timed to go off in such a way as to keep material in motion. For more information on air cannons, please
refer to https://www.youtube.com/watch?v=XsYoB_dvMjo.

Aeration pads (Figure 11.19) also inject air into the material at a wall in order to induce flow, but the air
is at a lower pressure and speed than with an air cannon. The air from an aeration pad effectively reduces
the wall friction angle and aerates the material near the wall, often leading to mass flow conditions. In some
cases, the aeration pad design can also cause the hopper wall to vibrate, which also helps to improve flow
conditions. An example video showing the installation and a demonstration of one type of aeration pad is
available at https://youtu.be/1v4__fDyGyE?si=xGAx1A1WwnDYZuWT.

C. Wassgren 257 2024-06-12

http://www.shake-it.com/product-line/mt- fast-hopper-trailer-vibrator/
http://www.shake-it.com/product-line/mt- fast-hopper-trailer-vibrator/
https://www.youtube.com/watch?v=zsiIu4ZwggY
https://www.youtube.com/watch?v=T_HYfCsOXAI
https://www.youtube.com/watch?v=wuK8LUvfucU
https://www.youtube.com/watch?v=XsYoB_dvMjo
https://youtu.be/1v4__fDyGyE?si=xGAx1A1WwnDYZuWT


Powder Storage and Flow

Figure 11.17. A vibrating discharger, which would be located at a hopper exit.
This figure is from http://www.grainsilo.com/grain-silo-system/grain-handling/

vibrating-discharger.html.

Figure 11.18. A photograph showing the installation of multiple (orange) air can-
nons on a hopper. This figure is from https://www.martin-eng.com/content/product_

subcategory/491/air-cannons-products.

11.5. Hopper Level Sensors

In addition to discharging material effectively from a hopper or bin, one often needs to know how much
material remains within the vessel. For small hoppers and bins, the entire device may placed on load cells
to measure the weight of the device. This approach is often used in gravimetric feeding applications, e.g.,
loss-in-weight feeders. For large bins and hoppers, level detectors are often used to determine the location of
the material free surface. Many designs have been proposed for detecting the free surface height.

Point-level detection relies on direct contact with the material at a fixed location within the hopper. This
type of device determines if material exists at the sensor location and is most often located at the vessel
wall. Examples of such devices include capacitance and pressure diaphragm sensors, rotary paddles, tilt
switches, and vibrating rods (Figure 11.20 shows vibrating rod sensors installed in hopper). A capacitance
sensor checks for disruptions in the sensor’s local electric field caused by the presence of material. In a
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(a) Aeration pads installed in a hopper. This fig-
ure is from https://techflow.net/installations/

components-spares/aeration-pad.

(b) Close up of one type of aeration pad design.
This figure is from https://www.prospare.co.uk/

product-categories/aeration/.

Figure 11.19. Aeration pads in a hopper.

Figure 11.20. An illustration of multiple vibrating rod point-level sensors installed
in a hopper. Point-level sensors detect if material is present at the sensor loca-
tion. This figure is from http://www.tjvega.com.cn/cn-en/Level_switch_vibration_

Measuring-principle.htm.

pressure diaphragm sensor, the normal stress generated by the material activates a switch in the sensor.
Rotary paddles and vibrating rods operate by detecting the change in power required to rotate or vibrate a
rod when submerged in a material (refer to https://www.youtube.com/watch?v=pQIiFTuzIuU and https:

//www.youtube.com/watch?v=TfljWiwlMOs for example videos). A tilt switch hangs vertically when no
material is present, but tilts and triggers a switch then it rests on the material surface (refer to https:

//www.youtube.com/watch?v=brYJbhagucw for an illustration of the operation). One deficiency of wall-
mounted sensors is that they will give inaccurate readings of the volume of material in funnel flow and rat-
holed conditions since material at the walls remains stagnant, but material in the core may have discharged.

Continuous-level sensors can determine the height of the material free surface, not just whether or not material
is present at a particular location as is provided by a point-level sensor. Continuous-level sensors usually
involve remote sensing. Examples of such sensors include plumb-bob, ultrasonic, laser, and radar sensors.
These sensors are typically mounted at the top of the vessel. A plumb-bob sensor (Figure 11.21a) operates
by dropping a weight attached to a cable spooled from a pulley. When the weight contacts the material free
surface, the torque on the pulley decreases and the length of unspooled cable can be used to measure the free
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(a) An illustration of a plumb-bob level sensor. (b) An illustration of a radar level sensor.

Figure 11.21. Examples of continuous-level sensors. Both figures are from https://www.

azosensors.com/article.aspx?ArticleID=558.

surface height. Ultrasonic, laser, and radar sensors operate by directing sound, light, or radar waves onto the
material free surface and timing the return of the reflected waves (Figure 11.21b). Knowing the wave speed
and return wave time, the distance to the free surface can be determined.

11.6. Summary

The following bullet points summarize the major topics in this chapter:

(1) Discharge devices such as a screw feeder, belt feeder, or rotary valve are located at the hopper outlet
to control the discharge rate.

(2) Discharge devices must be carefully designed to prevent asymmetric discharge from the hopper.
Increasing the feeder volume in the downstream direction is needed for uniform discharge. The use
of a vertical standpipe below the hopper exit can be helpful for isolating feeder dynamics from the
hopper.

(3) Discharge aids such as vibrators, air cannons, and aeration pads are often used in an attempt to
remedy flow problems. These devices are often applied via trial-and-error and may worsen flow
problems.

(4) Various level sensor designs can be used to determine the fill level in a hopper. Funnel flow or
ratholing can result in misleading measurements.
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Calculate the mass flow rate for the conveying screw shown in the following figure.  The screw has pitch length 𝑃, 
a screw flight diameter of 𝐷!, a screw shaft diameter 𝐷", and rotates at a speed 𝜔 (e.g., in rad/s).  The material has 
a bulk density of 𝜌#.  Assume the fraction of the screw volume filled with material is 𝛼 (0 ≤ 𝛼 ≤ 1) and the 
conveying efficiency, i.e., the ratio of the axial distance the material moves in one screw revolution to the pitch 
length, is 𝜂 ((0 ≤ 𝜂 ≤ 1). 
 

 
 
SOLUTION: 
The cross-sectional area of material in the screw is, 

𝐴 = 𝛼 $
%
.𝐷!& −𝐷"&0. (1) 

Note that the fraction of area filled with material is equal to the fraction of volume filled, 𝛼.  The speed at which 
this material moves downstream in one screw revolution is, 

𝑣 = '
(
= )*

&$ +⁄
, (2) 

where 𝐿 is the distance moved in one screw rotation (= 𝜂𝑃) and 𝑇 is the time require for one revolution (= 2𝜋 𝜔⁄ , 
where 𝜔 is in rad/s).  The mass flow rate is then, 

𝑚̇ = 𝜌#𝑣𝐴  =>  𝑚̇ = 𝜌# 9
)*

&$ +⁄
: ;𝛼 $

%
.𝐷!& −𝐷"&0<  =>  𝑚̇ = -

.
𝜌#𝜂𝑃𝛼.𝐷!& −𝐷"&0𝜔. (3) 

𝑃 

𝐷! 

𝐷" 

𝜔 
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Derive the required tilt angle 𝜏 for a belt conveyor to uniformly discharge a hopper at a belt speed of 𝑣.  Assume 
the volumetric flow rate from the hopper is 𝑄, the streamwise length of the hopper exit is 𝐿, and the spanwise 
width of the hopper exit (and belt width) is 𝐵. 
 
 
 
 
 
 
 
SOLUTION: 
From the analysis given in the course notes, 

!"
!#
= $

%!
'&
'
(, (1) 

where A is the cross-sectional area in the streamwise direction and vs is the speed in the streamwise direction (not 
the inclined speed v).  The cross-sectional area in the streamwise direction is, 

𝐴 = 𝐵(𝑥 tan 𝜏)  =>  !"
!#
= 𝐵 tan 𝜏.  (2) 

The inclined speed v and streamwise speed vs are related via, 
𝑣( = 𝑣 cos 𝜏. (3) 

Substituting Eqs. (2) and (3) into Eq. (1) and re-arranging, 
𝐵 tan 𝜏 = $

% )*+ ,
'&
'
(, (4) 

tan 𝜏 cos 𝜏 = $
%
' &
-'
(, (5) 

sin 𝜏 = $
%
' &
-'
(. (6) 

 
 

𝐿 

𝜏 

𝑄 
hopper and belt have 
width 𝐵 into the page 

𝑣 

𝑥 

𝜏 𝑥 tan 𝜏 

𝑣 

𝑣( = 𝑣 cos 𝜏 
𝜏 
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CHAPTER 12

Chute Design

Chutes are used to transfer material from one unit operation to the next (Figure 12.1). They also help reduce
material spillage and provide dust control. Unfortunately chute design is often overlooked since for fluids,
transferring fluid between locations is much less problematic. Indeed, in manufacturing process drawings,
chutes and other transfer hardware are usually just lines on a flow sheet. Poor flow in chutes can result in
flow stoppages, small flow rates, degraded material, surface wear, dust generation, and conveyor belt abrasion
(Figure 12.2). Thus, some care should be taken in proper chute design.

(a) Photo from https://forum.bulk-online.com/showthread.

php?28819-Case-study-Transfer-Chute-Redesign-with-EDEM-BulkSim%C2%

AE-Simulation.
(b) Photo from https://www.martin-eng.com/content/article/982/

engineered-transfer-chutes-help-superior-midwest-energy-terminal-maintain-high-volume.

Figure 12.1. Photographs of chutes in manufacturing processes.

C. Wassgren 264 2024-06-12

https://forum.bulk-online.com/showthread.php?28819-Case-study-Transfer-Chute-Redesign-with-EDEM-BulkSim%C2%AE-Simulation
https://forum.bulk-online.com/showthread.php?28819-Case-study-Transfer-Chute-Redesign-with-EDEM-BulkSim%C2%AE-Simulation
https://forum.bulk-online.com/showthread.php?28819-Case-study-Transfer-Chute-Redesign-with-EDEM-BulkSim%C2%AE-Simulation
https://www.martin-eng.com/content/article/982/engineered-transfer-chutes-help-superior-midwest-energy-terminal-maintain-high-volume
https://www.martin-eng.com/content/article/982/engineered-transfer-chutes-help-superior-midwest-energy-terminal-maintain-high-volume


Powder Storage and Flow

(a) Photo showing build-up of material in a chute. (b) Another photo of material build-up in a chute.

Figure 12.2. Examples of problems encountered in particulate material transfer chutes.
For an example of poor hood design on a chute, refer to https://www.youtube.com/watch?

v=tTNDllS2QYg.

Figure 12.3. The control volume and free body diagram used in the linear momentum
analysis of material impacting a chute. Note that VU and VD indicate the upstream and
downstream speeds, respectively.

12.1. Preventing Flow Stoppages at Impact

To prevent material build-up, surfaces should be sufficiently steep and smooth to prevent material build-up,
particularly after free fall of the material, but not so steep that material speeds and surface wear are excessive.
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To analyze the speed of material after impact on a chute (Figure 12.3), apply the Linear Momentum Equation
in the X and Y directions to a control volume surrounding the material (note that much of the analysis in
this chapter comes from Dick and Royal [1]). Assume the material does not bounce on the surface, the system
is at steady state, the material weight in the control volume is negligible, and the tangential force applied to
the material is a Coulomb sliding friction force (i.e., FT = FN tanϕw). In the Y direction,

d

dt

ˆ
CV

uY ρdV +

ˆ
CS

uY (ρurel · dA) = FB,Y + FS,Y , (12.1)

where,

d

dt

ˆ
CV

uY ρdV = 0 (steady conditions), (12.2)

ˆ
CS

uY (ρurel · dA) = (−VU sinβ)(−ṁ), (12.3)

FB,Y = 0 (neglecting material weight), (12.4)

FS,Y = FN . (12.5)

Substituting,

ṁVU sinβ = FN . (12.6)

Note that ṁ = ρbVUA. Similarly, in the X-direction,

d

dt

ˆ
CV

uXρdV +

ˆ
CS

uX (ρurel · dA) = FB,X + FS,X , (12.7)

where,

d

dt

ˆ
CV

uXρdV = 0 (steady conditions), (12.8)

ˆ
CS

uX (ρurel · dA) = (VU cosβ)(−ṁ) + (VD)(ṁ), (12.9)

FB,X = 0 (neglecting material weight), (12.10)

FS,X = −FT = −FN tanϕw. (12.11)

Substituting,

ṁ (−VU cosβ + VD) = −FN tanϕw. (12.12)

Combining Eqs. (12.6) and (12.12),

ṁVU sinβ = − ṁ

tanϕw
(−VU cosβ + VD) , (12.13)

sinβ tanϕw = cosβ − VD

VU
, (12.14)

VD

VU
= cosβ − sinβ tanϕw. (12.15)

Note that for VD/VU to remain positive, i.e., no reverse flow and no stopping,

cosβ − sinβ tanϕw > 0 =⇒ tanβ tanϕw < 1. (12.16)

Thus, to ensure that materials flows downstream after impact,

β + ϕw < 90◦. (12.17)

Note that the average normal impact stress is estimated to be (refer to Figure 12.3 and Eq. (12.6)),

σN =
FN

A/ sinβ
= ρbV

2
U sin2 β. (12.18)
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Figure 12.4. The geometry and free body diagram for a small element of material on a
curved chute.

12.2. Preventing Flow Stoppages on Curved Chutes

Curved chutes are generally better at directing the flow of material rather than allowing material to free fall
or using straight chutes with abrupt angle changes. To analyze material flow on a curved chute, consider
the material element shown in Figure 12.4. Applying Newton’s Second Law to the material element in the
streamwise (s) direction,

mas = m
dV

dt
= m

dV

ds

ds

dt
= mV

dV

ds
= mg sin θ − Ff = mg sin θ −N tanϕw. (12.19)

A force balance in the radial direction (towards the center of curvature) gives,

mar = m
V 2

R
= −mg cos θ +N. (12.20)

Combining these two relations,

V
dV

ds
= g sin θ −

(
V 2

R
+ g cos θ

)
tanϕw. (12.21)

This differential equation can be integrated with respect to the location s using the boundary condition
V (s = 0) = V0, keeping in mind that the chute angle and radius of curvature can vary with s, i.e., θ = θ(s)
and R = R(s). The method of integration will depend on the form of θ(s) and R(s) and may require
numerical methods.

Notes:

(1) Consider a flow with an initial speed V0 turned by some angle from the vertical using a constant
radius chute. The flow speed at the end of the chute is found by solving Eq. (12.21),

V
dV

ds
= g sin

(π
2
− α

)
−
[
V 2

R
+ g cos

(π
2
− α

)]
tanϕw, (12.22)

V

gR

dV

dα
= cosα−

(
V 2

gR
+ sinα

)
tanϕw, (12.23)

F ′2V ′ dV
′

dα
= cosα− (F ′2V ′2 + sinα) tanϕw, (12.24)

where F ′ := V0/
√
gR and V ′ := V/V0. The previous differential equation is subject to the boundary

condition V ′(α = 0) = 1. Plots of the dimensionless speed as a function of angle for different values
of F ′ and ϕw are given in Figure 12.5. From the plot, we observe that as F ′ = V0/

√
gR decreases
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Figure 12.5. Plots of dimensionless material speed V ′ = V/V0 on a chute with constant
radius of curvature R plotted as a function of angle α for different values of the dimensionless
initial speed F ′ = V0/

√
gR and wall friction angle ϕw.

Figure 12.6. Circular and U-shaped chute cross sections.

(at a given wall friction angle), the dimensionless final speed, V ′, increases. Thus, for a given inlet
speed, V0, increasing the radius of curvature, R, which decreases F ′, results in a larger outlet speed.
Thus, large radius of curvature turns are typically desired to maintain flow speed.

(2) Methods for controlling the flow on the chute include the following:
(a) Use curved chute cross-sections, e.g., circular pipes and U-shaped troughs, to help center the

load (Figure 12.6). Keeping the flow consistently in a particular region helps to reduce material
buildup in the chute.

(b) Minimize the use of rectangular cross-sectioned chutes. Often, square or rectangular sections
are used since they’re easy to fabricate and install, but these sections are more likely to disperse
the material, entrain air, and result in a build up of material in the chute corners.

(c) If material enters the chute with spanwise momentum, then rubber curtains, chains, and ribs
in the chute can reduce the spanwise momentum to center the flow (Figure 12.7).

(d) When transitioning from a chute to a belt, accelerating the material to the belt speed and
loading tangentially onto the belt (to reduce the impact stress) can significantly reduce belt
wear and minimize dusting (Figure 12.8).
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Figure 12.7. Circular and U-shaped chute cross sections.

Figure 12.8. Matching the material speed at the end of a chute to a conveyor’s belt speed.

12.3. Chute Fill Area

For an enclosed chute, which is often used to help contain dust, it is important that the chute not plug with
material. A design rule-of-thumb to avoid plugging is to keep the material height in the chute (H) to less
than one-third of the chute’s diameter (D) at the minimum speed (assuming a circular cross-section), i.e.,

H <
1

3
D. (12.25)

Consider the circular cross-section shown in Figure 12.6 through which material flows at volumetric flow rate
Q,

Q = V A = V
D2

8
(α− sinα), (12.26)

where V is the material speed and, from trigonometry,

α− 2 cos−1

(
1− 2H

D

)
. (12.27)

Notes:

(1) For H/D = 1/3, α = 141◦ and Q = 0.23V D2.
(2) Although the bulk density of the material may change as it flows along a chute due to changes

in velocity, centripetal acceleration, and material thickness (hydrostatic stress), it is reasonable to
assume that these changes are small as long as the material doesn’t become fluidized.

12.4. Reducing Chute Wear

For abrasive materials, it is important to minimize chute wear. From Archard’s Wear Law, the wear volume
on a surface (V ) is given by,

V ∝ N∆s

H
, (12.28)
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Figure 12.9. The geometry of a circular cross-sectioned chute of diameter D filled to height
H.

Figure 12.10. Illustration of spanwise ribs within a chute to reduce surface wear of the
chute.

where N is the normal load acting on the surface, ∆s is the sliding distance, and H is the surface hardness of
the softer material. Thus, to reduce wear, one should design the chute curvature such that the normal force
is small. Referring to Figure 12.4, the normal force on the chute is,

N =
V 2

R
+mg cos θ. (12.29)

Decreasing the material speed on the chute (V ), increasing the chute’s radius of curvature (R), decreasing
the mass of material on the chute (m), and increasing the chute angle from the horizontal (θ) will all act to
decrease the normal force and wear.

Notes:

(1) An alternate approach for reducing wear is to use spanwise, abrasion-resistant ribs so the flowing
material only contacts the chute surface at the rib surfaces (Figure 12.10). Nearly static material
will build up between the ribs and, thus, flowing material mostly only contacts the stagnant material
between the ribs. This approach is only recommended for large, non-cohesive materials, otherwise
significant material build-up can occur.

(2) “Rock boxes” may be used at transfer points to reduce wear at junction points. A rock box is a
transfer location where material accumulates so incoming material impacts accumulated material
rather than the chute surface (Figure 12.11). Rock boxes are not good for for cohesive materials
since significant build-up may occur and also friable materials since material breakage and dusting
may occur. A discrete element method (DEM) simulation showing a rock box may be viewed at
https://www.youtube.com/watch?v=QgVNvYZb3pI.

(3) Replaceable liners may also be used on the chute surface to reduce wear of the chute. However, use
of liners can result in potential contamination of the material, the surface finish of the liner will
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Figure 12.11. Illustration of a “rock box”.

change over time, and fasteners used to hold the liner in place and protruding into the flow may
result in material build-up sites.

(4) Methods for minimizing dust generation include:
(a) enclosing the chute,
(b) reducing air entrainment and material attrition by keeping the material in contact with the

chute surface, concentrating the material stream, keeping impact angles small to avoid sudden
dilation of the material, minimizing changes in the material velocity, and matching material
and belt velocities at transfer points.

12.5. Chutes Used to Fill Hoppers

When filling a hopper from a chute, one should try to minimize or at least be aware of potential segregation
issues. For example, consider the chute used to fill three hoppers as shown in Figure 12.12. If the material in
the chute is prone to shear-induced percolation segregation whereby smaller particles tend to preferentially
fall through the gaps between larger particles when the material is sheared as it flows down the chute surface,
then the first hopper filled from the chute will have a larger concentration of smaller or fine particles. The
last hopper to be filled will tend to have a larger concentration of larger or coarse particles.

Another potential source of filling non-uniformity occurs if the material is prone to elutriation segregation.
As material enters the hopper from above, air is displaced and moves upwards. Fine particles will remain
suspended in the air longer and will settle on the bed surface. Thus, there will tend to be a layer of
fine particles on the bed free surface within the hopper while coarse particles are deeper within the bed
(Figure 12.13). To avoid this phenomenon, the hopper should be filled using a tangential inlet so the material
swirls around the hopper walls while settling rather than falling directly from above as would be the case for
a central inlet.

12.6. Summary

Following is a summary of the important points from this chapter:

(1) Design impact points to avoid flow stoppages.
(2) Use large radius chutes to maintain stream speed.
(3) Don’t fill chutes more than one-third full.
(4) Use curved chute cross-sections to concentrate the flow.
(5) Design the chute to minimize wear and dusting.
(6) Be aware of potential segregation during filling of hoppers and bins.
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Figure 12.12. Illustration of a chute used to fill three hoppers. Due to segregation in
the chute, the first hopper to be filled will tend to have more fine material while the last
hopper will tend to have more coarse material. This figure is slightly modified from the ones
presented in Marinelli [2] and Carson et al. [3].

Figure 12.13. Illustration of elutriation segregation caused by a central filling port at the
top of the hopper (left) versus using a tangential entry inlet (right), which reduces elutriation
segregation. This figure is from Marinelli [2].
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Page 1 of 1 

Material falls vertically from rest a distance of 2 m. The material impacts a flat plate that directs the flow at an 
angle of 40o from the horizontal. The friction angle between the material and wall is 20o.  
a. What is the speed at which the material impacts the plate?  
b. What is the material speed down the plate immediately after impacting the plate?  
c. What is the maximum turning angle of the flow to prevent material build-up?  
d. What will be the material’s speed a distance 2 m downstream of the impact location?  

 
 
 
SOLUTION: 

 
 
The speed just before impacting the plate (VU) is, 

𝑉! = #2𝑔𝐻  (equating kinetic and potential energies). (1) 
 
The speed immediately after impacting the plate (VD) is, 

"!
""
= cos𝛽 − sin𝛽 tan𝜙#. (2) 

 
The maximum turning angle to prevent flow stoppages is, 

𝛽$%& = 90° − 𝜙#. (3) 
 
To find the speed a distance L down the surface, solve the following differential equation, 

𝑉 '"
'(
= 𝑔 sin 𝜃 − 5"

#

)
+ 𝑔 cos 𝜃7 tan𝜙#, (4) 

Subject to the boundary condition V(s = 0) = VD.  Note that for this case, q is a constant and R is infinite.  Thus, Eq. 
(4) becomes, 

∫ 𝑉𝑑𝑉"$
"!

= (𝑔 sin 𝜃 − 𝑔 cos 𝜃 tan𝜙#) ∫ 𝑑𝑠*
+ , (5) 

,
-
(𝑉*- − 𝑉.-) = (𝑔 sin 𝜃 − 𝑔 cos 𝜃 tan𝜙#)𝐿, (6) 

𝑉* = #𝑉.- + 2𝑔𝐿(sin 𝜃 − cos 𝜃 tan𝜙#). (7) 
 
Substituting the given values, 

VU = 6.3 m/s, 
VD = 2.3 m/s, 
bmax = 70o, 
VL = 4.41 m/s. 

g = 9.81 m/s2 
H = 2 m 
L = 2 m 
q = 40o 

b = 50o 
fw = 20o 
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Page 1 of 2 

You are asked to design a constant radius chute to transfer material with a wall friction coefficient of 15o from a 
vertical speed of 1 m/s to a horizontal belt conveyor with a speed of 2 m/s.  What radius of curvature should be 
used? 
 
 
 
 
 
  
 
SOLUTION: 
From the course notes, the differential equation governing the material movement on the chute is, 

𝐹!"𝑉! #$
!

#%
= cos𝛼 − (𝐹!"𝑉!" + sin𝛼) tan𝜙&, (1) 

where 𝑉!(𝛼 = 0) = 1, 𝐹! ≔ 𝑉' 4𝑔𝑅⁄ , and 𝑉! ≔ 𝑉 𝑉'⁄ .  In this case, 𝑉' = 1 m/s, 𝑔 = 9.81 m/s2, 𝜙& = 15o, and 
𝑉(𝛼 = "

#) = 2 m/s  =>  𝑉′(𝛼 = "
#) = 2.  Note that 𝑅 is currently unknown which means that 𝐹! is also unknown. 

 
To find the value for 𝐹! that gives the target of 𝑉′(𝛼 = "

#) = 2, iteratively solve the differential equation in Eq. (1) 
until the target chute exit speed is found.  Performing these calculations computationally (Python code given at the 
end of this solution) gives the result:  𝐹! = 0.471  =>  𝑅 = 0.46 m. 
 
A plot of the material speed on the chute as a function of the angle 𝛼 is given below. 

 
 
  

g 

1 m/s 

2 m/s 
R = ? 

𝛼 
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The Python code used to perform the calculations follows. 
# chute_02.py 
 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy.integrate import odeint 
from scipy.optimize import fsolve 
 
def ode(V_prime, alpha, phiw, F_prime): 
    # The ode used to calculate the dimensionless material speed on 
    # the chute as a function of the angle alpha. 
    cos_alpha = np.cos(alpha) 
    sin_alpha = np.sin(alpha) 
    tan_phiw = np.tan(phiw) 
 
    dV_prime_dalpha = (cos_alpha - (F_prime**2 * V_prime**2 + 
sin_alpha)*tan_phiw)/(F_prime**2 * V_prime) 
    return(dV_prime_dalpha) 
 
def DimensionlessFinalSpeed(F_prime, V0_prime, Vf_target_prime, phiw, alpha): 
    # Function used to find the difference between the dimensionless 
    # final speed on the chute and the target dimensionless final 
    # speed. 
    V_prime = odeint(ode, V0_prime, alpha, args=(phiw, F_prime))  # speed on chute 
    Vf_prime = V_prime[-1]  # dimensionless final speed on the chute 
    return(Vf_prime - Vf_target_prime) 
 
# Initialize variables. 
V0 = 1  # initial speed [m/s] 
g = 9.81  # gravitational acceleration [m/s^2] 
phiw = np.radians(15)  # wall friction angle [rad] 
alpha = np.linspace(0, np.pi/2, 100)  # range of chute angles [rad] 
V0_prime = V0/V0  # dimensionless initial speed 
Vf_target = 2  # target final speed [m/s] 
Vf_target_prime = Vf_target/V0 
 
# Pick an initial guess for the chute radius. 
R = 1  # [m] 
F0_prime = V0/np.sqrt(g*R) 
 
# Iterate to find when the DimensionlessFinalSpeed function is zero, 
# i.e., the final speed on the chute matches the target final speed. 
F_prime = fsolve(DimensionlessFinalSpeed, F0_prime, args=(V0_prime, Vf_target_prime, phiw, 
alpha)) 
 
print('F_prime = %.3f' % F_prime) 
R = ((V0/F_prime)**2)/g  # This is the desired chute radius. 
print('R = %.3f m' % R) 
 
# Calculate the speed on the chute for this F_prime value so we can 
# plot it. 
V_prime = odeint(ode, V0_prime, alpha, args=(phiw, F_prime)) 
 
# Plot the data using two axes 
fig, ax = plt.subplots() 
ax.set_xlabel(r'angle from horizontal, $\alpha$ [deg]') 
ax.set_ylabel(r'speed, $V$ [m/s]') 
ax.plot(np.degrees(alpha), V0*V_prime, color='k', marker='', linestyle='-') 
plt.show() 
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Page 1 of 1 

A chute is to be designed to handle a mass flow rate of 10,000 lbm/h with a bulk density of 50 lbm/ft3. The 
material’s free fall height onto the chute is 2 ft, the material wall friction angle is 20o, and the chute angle from the 
vertical is 20o.  
a. Show that the material flow on this chute? 
b. What is the recommended minimum (circular) chute diameter?  
(Note that this example is originally from K. Jacob and M. Kodam.) 
 

 
 
SOLUTION: 

 
 
First check the flow/no-flow chute angle criterion:		𝛽 + 𝜙! < 90° in order to flow.  Here, 𝛽 = 20° and 𝜙w = 20°  =>  
𝛽 + 𝜙! = 40° < 90° and, thus, the material should flow on this chute. 
 
The impact speed of material on the chute is, 

𝑉" = ,2𝑔𝐻, (1) 
where g = 32.2 ft/s2 and H = 2 ft, which gives VI = 11.3 ft/s.  The speed after impact is, 

𝑉# = 𝑉"(cos 𝛽 − sin𝛽 tan𝜙!), (2) 
which results in VD = 9.3 ft/s. 
 
The minimum chute diameter at the given mass flow rate is found from, 

𝑚̇ = 𝜌$𝑉#𝐴%& = 𝜌$𝑉#
#!

'
(𝛼 − sin𝛼), (3) 

where Acs is the chute cross-sectional (circular) area, D is the circle diameter, and a is the total angle out to the 
material surface (refer to the figure).   Using the given values of 𝑚̇ = 10 000 lbm/h, rb = 50 lbm/ft3, an angle of a = 
141.1o, which corresponds to H/D = 1/3, and the calculated value for VD, the recommended minimum chute 
diameter is D = 0.16 ft. 
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CHAPTER 13

Influence of Particle and Environmental Properties on Powder
Bulk Properties

This chapter describes the influence that particle properties and environmental conditions have on a powder’s
bulk density and flow behavior. In particular, the following particle-level properties are examined:

• particle size and size distribution,
• particle shape and roughness,
• particle density,
• inter-particle friction, and
• inter-particle cohesion.

The environmental conditions examined here include:

• temperature,
• humidity,
• external loads, and
• storage duration.

13.1. Particle Size and Size distribution

The forces that act to keep a particle in motion are either an inertial force or the particle weight, both of
which are proportional to the particle mass, which in turn is proportional to the cube of the particle size,
x3. The forces acting to resist a particle’s movement include frictional and cohesive forces, which act at
the particle’s surface. Thus, these forces are proportional to the particle’s surface area, which in turn is
proportional to the square of the particle size, x2. The ratio of the characteristic resistance force to the
characteristic movement force is known as a Bond number, Bo, which is related to the particle size by,

Bo :=
characteristic resistance force

characteristic movement force
∝ x2

x3
=

1

x
. (13.1)

As the particle size (x) decreases, i.e., as the Bond number increases, the resistance force becomes increasingly
significant compared to the movement force and the particle doesn’t move as easily. Thus, we expect a
powder’s flow behavior to generally become worse as the particle size decreases. Examples demonstrating
the influence of particle size on powder flow behavior are shown in Figure 13.1.

Notes:

(1) Various researchers have developed empirical expressions relating the particle size to bulk flow
properties. For example, Köhler and Schubert [3] proposed the following material flow function
(mFF) expression for free-flowing alumina powders,

fc = b0 + b1d
−b2
50 σ1, (13.2)

where d50 is the median particle diameter of the particle size distribution and bi > 0 are fitting
parameters. As the median particle size decreases, the bulk strength increases. Podczeck and
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(a) The Hausner Ratio of different size fractions of ibupro-
fen. As the particle size decreases, the flow behavior be-
comes worse. This figure is from Liu et al. [1].

(b) The material flow factor (mff) of different size frac-
tions of lubricated ibuprofen. As the size decreases, the
flow behavior worsens. This figure is from Liu et al. [1].

(c) The material flow functions (mFFs) of different size
fractions of maltodextrin. As the size decreases, the ma-
terial strength increases and the flow behavior worsens.
This figure is from Wolfson [2].

Figure 13.1. Examples demonstrating that powder flow behavior becomes worse as particle
size decreases.

Miah [4] developed an expression for the internal friction angle of unlubricated pharmaceutical
powders,

ϕ = b0 + b1 exp (AR)− b2 ln dvs, (13.3)

where AR is the particle aspect ratio, dvs is the weighted mean of the surface area distribution, and
bi > 0 are fitting parameters. As the particle size increases, the internal friction angle decreases.

Powders comprised of smaller particles also tend to pack in more porous configurations (Figure 13.2). The
relatively large resistance forces allow particles to pack in stable configurations that have significant void
regions. These voids would collapse for particles with weak cohesive or frictional forces. Note that as
previously discussed in Chapter 2, the more compressible the powder, the worse the flow behavior.

The wall friction angle also increases as particle size decreases. Figure 13.3 plots the wall friction angle as
a function of the wall normal stress for two different particle sizes of gypsum against a mild steel wall. The
smaller particles have a a larger wall friction angle for the same normal stress.

In general, a broader particle size distribution (PSD) results in more efficient packing of particles, but the
relationship can be complex. Particles of different size can pack with small porosity since small particles can
fit into the voids between the large ones, as shown in Figure 13.4. In this figure, the porosity of a binary
blend of spheres is shown as a function of the fraction of large particles for different size ratios. A minimum

C. Wassgren 279 2024-06-12



Powder Storage and Flow

(a) A plot of the critical state bulk density from a shear
cell test for different sizes of coal particles. Bulk den-
sity decreases as particle size decreases. Plot from Liu et
al. [5].

(b) The poured solid fraction of simulated particle size dis-
tributions (different curves) as a function of Bond number.
As Bond number increases due to a decrease in particle
size, the packing fraction decreases. Plot from Ely [6].

Figure 13.2. Experimental and simulation data showing how packing fraction decreases as
particle size decreases.

Figure 13.3. Wall friction angle as a function of wall normal stress for two different particle
sizes of gypsum against a mild steel wall. The smaller particle size has a larger wall friction
angle. This figure is from Schulze [7].

bed porosity is observed, which is a function of the fraction of large particles and the particle size ratio. Note
that for free flowing mixtures containing particles of different size, the particles may segregate and, thus, the
packing fraction may change during handling.

In general, as the width of the PSD increases, flow behavior becomes worse. Figure 13.5 shows the material
flow functions (mFFs) of limestone powder with different particles size distributions. The three size distri-
butions highlighted in the figure have similar median particle sizes, but the distribution widths are different.
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(a) Ratio of the mixture bed porosity to the porosity of
a bed of uniform spheres as a function of the fraction of
large particles for different size ratios. The bed porosity
of the mixture is always smaller than the porosity of the
uniform spheres.

(b) The minimum bed porosity as a function of the par-
ticle size ratio. As the difference in size increases (smaller
ratio in the figure), the minimum bed porosity decreases.

Figure 13.4. The packing of binary blends of spheres. Both plots are from Dias et al. [8].

Figure 13.5. Material flow functions (mFFs) for limestone powder with different particle
size distributions. Powders Fr. 6, 7, and 8 have similar median sizes, but the breadth of
PSDFr. 6 > PSDFr. 7 > PSDFr. 8. Thus, increasing PSD breadth results in a stronger powder.
This figure is from Kurz and Münz [9].

As the PSD width increases, the mFF values are larger, i.e., the powder becomes stronger, and the flow
behavior worsens. Conceptually, the broader the size distribution, the more efficiently the particles can pack
and, consequently, the harder it is to shear the material.

Notes:

(1) Empirical fits to experimental bulk flow properties that incorporate the particle size distribution
have been proposed [10], [11]. For example, Leyva and Mullarney [10] developed the following
empirical expression, which works best for single component pharmaceutical powders,

mff = exp (b0 + b1 ln d10 + b2 ln d50 + b3 ln d90 + b4 ln d[4, 3]) , (13.4)
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(a) Plot of the internal friction angle as a function of
solid volume fraction for cylindrical rods, both smooth and
bumpy (comprised of glued-spheres), with various aspect
ratios. Also included in the plots are trends for spheres
and predictions from kinetic theory.

(b) Discrete element method computer simulations of
short aspect ratio (left) and long aspect ratio (right) cylin-
ders in a shear flow. The high aspect ratio cylinders pack
more tightly and flow better than the small aspect ratio
cylinders.

Figure 13.6. DEM simulations of spheres and cylinders in a shear flow. At small solid
fractions, spheres have smaller internal friction than cylinders. At larger solid fractions, long
cylinders can align and, as a result, have smaller internal friction.

where mff is the material flow factor and the d10, d50, d90, and d[4, 3] (the volume mean diameter)
are obtained from the particle size distribution measured using laser diffraction. The bi are fitting
parameters. Unfortunately, the exact consolidation stress at which the mff was determined was not
reported.

13.2. Particle Shape and Roughness

Particle shape can also have a significant influence on bulk solids packing and flow. In general, irregularly
shaped particles have larger bed porosity and poorer flow behavior, but a general statement can’t be made
regarding the influence of shape. Indeed, some particle shapes, such as elongated rods, may pack inefficiently
and flow poorly when oriented randomly, yet pack very efficiently and flow well when aligned (Figure 13.6).

Figure 13.7 plots the bed voidage (i.e., porosity) for particles of different sphericity (a sphere has a sphericity
of one). As particles become more spherical, they pack more tightly. However, as shown in Figure 13.8,
sphero-cylindrical particles with a length twice their radius pack even more efficiently than spheres. Even
ellipsoidal particles can pack more tightly than spheres as shown by the M&M candies in Figure 13.9. These
examples demonstrate that the exact geometry of the particles matter.
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Figure 13.7. Bed voidage (i.e., porosity) on the horizontal axis and particle sphericity on
the vertical axis. As particles become more spherical, they pack more tightly. This figure is
from Crosby [12].

Figure 13.8. The porosity of beds comprised of sphero-cylinders with different aspect ra-
tios. In this work, an aspect ratio of zero corresponds to a sphere. A minimum bed porosity
occurs at an aspect ratio of 0.5. This figure is from Abreu et al. [13].
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Figure 13.9. The packing fraction of ellipsoids, M&M candies, and spheres contained
within a sphere plotted as a function of the inverse of the containing sphere radius. El-
lipsoids pack more tightly than M&Ms, which in turn pack more tightly than spheres. This
figure is from Man et al. [14].

The surface roughness on a particle is also important, but as with particle shape, the details matter. Fig-
ure 13.10 shows that increasing surface roughness increases the porosity of a powder bed since the roughness
increases the effective friction between particles, allowing the particles to rest in configurations that are stable
with fewer contacts. Increasing wall roughness also increases wall friction angle as shown in Figure 13.11.
However, for small particles with flat surfaces, adding surface roughness can reduce cohesion, increasing
the packing fraction and improving flow (Figure 13.12). The surface roughness prevents particle surfaces
from coming into close contact and, thus, reduces van der Waals cohesive forces, which vary inversely with
the square of the separation distance. A video illustrating just how significant a small amount of surface
roughness can be is available at https://www.youtube.com/watch?v=MM5lWf6pl6c.

13.3. Particle Density

Increasing particle density improves flow behavior. Recall that the Bond Number, Bo, is the ratio of a
characteristic resistance force, e.g., van der Waals or liquid bridge cohesion, to a characteristic movement
force, e.g., the particle’s weight or inertial force. Resistance forces are independent of particle density while
the weight and inertial force are proportional to density. Thus, the Bond number is inversely proportional
to the particle density and increasing the density improves flow behavior.
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Figure 13.10. Increasing particle surface roughness increases the particle bed’s void frac-
tion. This figure is from Crosby [12].

Figure 13.11. Increasing particle surface roughness increases the wall friction angle. This
figure is from Schulze [7].
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Figure 13.12. (top) Photographs of micron-sized particles with different amounts of much
smaller, nano-sized particles on their surfaces. (bottom) A model demonstrating how the
van der Waals force decreases due to the presence of a small bump, which acts to separate
the particle from a surface. These figures are from Meyer and Zimmermann [15].

13.4. Inter-particle Friction and Cohesion

The effects of inter-particle friction and cohesion can be difficult to isolate from other effects such as particle
shape or surface roughness. However, discrete element method (DEM) computer simulations can be used
for such studies. In simulations of spherical particles with varying inter-particle and particle-wall friction
(Figure 13.13), the bulk internal friction coefficient and bulk wall friction angle increase as particle-level
friction increases up to a particle-particle and particle-wall friction coefficient of approximately 0.5. For larger
values of the friction coefficients, particles rotate against each other rather than slide and the bulk friction
angles remain nearly constant. For non-rolling particles, which are more representative of real particles with
irregular shape, the bulk internal friction angle and bulk wall friction angle increase as particle-level friction
increases.

As inter-particle cohesion increases, the Bond number increases and the bulk porosity increases (Figure 13.2b)
and the flow behavior worsens (Figure 13.14). This behavior was discussed previously in Section 13.1.

There are several sources of inter-particle cohesion including van der Waals interactions, electrostatics, liquid
bridges, and solid bridges. Van der Waals forces result from the (nearly always) attractive forces between
molecules resulting from dipole moments caused by permanent or momentary imbalances in electron clouds
and, as such, are much weaker than covalent or ionic bonds. The magnitude of a van der Waals force
is a function of the particle geometry and material properties, but the force is short range, resulting in
negligible cohesion when particle surfaces are separated by more than approximately 100 nm. As described
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Figure 13.13. (top) Bulk internal friction angle as a function of the particle-particle friction
coefficient and (bottom) bulk wall friction angle as a function of the particle-wall friction
coefficient. Data and fitting curves are shown for spherical particles that can rotate or cannot
rotate. Included in the figures are simulations and experiments from various authors. These
figures are from Ketterhagen et al. [16].

in Section 13.2, adding a small amount of roughness to flat particle surfaces can be enough to separate the
surfaces and greatly weaken the van der Waals forces.

Electrostatic forces can develop through tribocharging, which involves the transfer of electrons when dissimilar
surfaces are in contact, or through the deposition of ions on particle surfaces. The distribution of charge
on a particle’s surface depends on the charge mobility. For insulating materials, the charge isn’t mobile on
the surface but on conductors the charge can move on the surface in response to surrounding electric fields.
For example, charge can re-distribute as particles approach one another and tends to collect at asperities.
The presence of a conductive liquid on a particle’s surface, e.g., water resulting from high humidity, can
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Figure 13.14. The specific energy required to rotate an FT4 rheometer blade downward
through a bed of powder as a function of the powder mixture’s Bond number. The larger
the specific energy, the more difficult it is to move the blade through the powder. This figure
is from Pasha et al. [17].

Figure 13.15. A sketch of a pendular liquid bridge between two spherical particles. There
is a cohesive force between the two particles resulting from pressure and surface tension
forces in the liquid bridge.

result in charge mobility and dissipation as excess charge finds a path to ground. Many pharmaceutical
manufacturing facilities are held at a relative humidity of approximately 40% in order to reduce electrostatic
forces (by increasing charge mobility on surfaces), while still being low enough to avoid liquid bridging
(discussed in the following paragraph).

Liquid bridges on a particle’s surface can result in cohesion due to surface tension and capillary pressure
forces [18]. Small volumes of liquid, e.g., less than 13.6% by volume for equal sized spheres [19], result in
strong, pendular liquid bridges (Figure 13.15) while large volumes of liquid can lead to total or near total
immersion of the particles, which have weak or zero strength cohesive forces. Liquid bridge forces can be
significantly stronger than van der Waals or electrostatic forces.

Solid bridges (Figure 13.16) are much stronger and more permanent than liquid bridges. Solid bridges can
form from a variety of mechanisms, including:

• Polymeric bridges: A liquid solution with a polymer binder forms a liquid bridge. The liquid
evaporates leaving behind a solid, polymeric bridge. Polymeric bridges are frequently used in wet
granulation manufacturing processes.

• Saturated solution bridges: Here, a solvent dissolves some of the particle material creating a liquid
bridge. When the solvent evaporates, the material re-crystallizes to form a solid bridge. Note that
the material may re-crystallize into a different polymorphic form.
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Figure 13.16. A photograph of a solid bridge that formed between two tablets. The bridge
has been cut in half and the cross sections are shown. This figure is from Bika et al. [20].

• Solid binder bridges: A finely ground solid binder chemically reacts with any liquid present on the
particle surface to produce a solid bridge.

• Melting/freezing: If the material melts, a liquid bridge may form. When the material cools, it can
form a solid bridge.

• Sintering: When a bulk material is subject to stress and heat, it may melt at particle-particle
contacts then resolidify to form a solid bridge.

13.5. Glass Transition Temperature

The glass transition temperature, Tg, is the temperature above which an amorphous material undergoes a
reversible transition from a hard, “glassy” state into a soft, “rubbery” state. When the temperature is greater
than Tg, the rubbery material can significantly deform, resulting in increased contact area between surfaces
and a larger cohesive force.

Notes:

(1) The transition to a rubbery state occurs over a range of temperatures related to the molecular
degrees of freedom of the material, but is usually reported as the single temperature, Tg.

(2) Glass transition is not a phase transition. Glass transition occurs at a temperature lower than the
melting point, i.e., Tg < Tmelting.

(3) The glass transition temperature typically decreases with increasing moisture content.

13.6. Critical Relative Humidity (CRH)

The Critical Relative Humidity (CRH), a material property, is the relative humidity (RH) at which a salt
begins to absorb moisture from the atmosphere. The CRH decreases with increasing temperature for most
salts (refer to [21] for a model used to predict the CRH). If the RH > CRH, then the material absorbs moisture
and dissolves, yielding a saturated solution. If RH < CRH (due to a change in RH or temperature), then
the solution can recrystallize and form a solid bridge. The CRH for mixtures or materials with impurities
is smaller than the CRH for the individual components. Values for CRH for various materials are listed in
Table 13.1.

13.7. Moisture Content

As discussed previously, external moisture can alter a powder bed’s porosity and flow due to the presence
of liquid bridge cohesive forces. At low moisture contents, as surface moisture increases, cohesion increases
resulting in decreasing porosity and poorer flow behavior. Figure 13.17 shows results from discrete element
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Salt CRH @ 30 °C
calcium nitrate 46.7

ammonium nitrate 59.4
sodium nitrate 72.4

urea 72.5
ammonium chloride 77.2

diammonium phosphate 82.0
potassium chloride 84.0
potassium nitrate 90.5

monoammonium phosphate 91.6
monocalcium phosphate 93.6

potassium sulfate 96.3

Table 13.1. Critical Relative Humidity (CRH) values for various salts at a tempera-
ture of 30 °C. This data is from https://en.wikipedia.org/wiki/Critical_relative_

humidity.

method (DEM) computer simulations, which include liquid bridges forces, and corresponding experiments of
uniform spheres at different moisture contents. As the moisture content increases up to a critical value (≈1-
10% by mass), the bed becomes more porous due to the increased cohesivity of the liquid bridges. Beyond
this critical point, the moisture content has little influence on the bed, at least up to a moisture content of
approximately 20%.

Figure 13.17 shows experimental data for the material flow factor (mff) and bulk density of moist sand as the
moisture content changes. Unlike the previously discussed DEM simulations, the sand’s porosity reaches a
maximum at a moisture content near 2%, but then decreases with increasing moisture content. The material
flow factor decreases rapidly (worse flow behavior) up to the same moisture content of 2%, but then stabilizes
at larger moisture contents. Figure 13.18 shows similar flow behavior for wetted, fine sand. The sand rapidly
gains strength in going from zero moisture content to 3% moisture content, but then the strength stabilizes
at larger moisture contents up to approximately 12%. Figure 13.20 demonstrates that the wall friction angle
dependence on moisture content depends on the wall material. For gypsum against a mild steel wall, the
wall friction angle increases with increasing moisture content. However, for gypsum against an ultrahigh
molecular weight polyethylene wall, the wall friction angle decreases with increasing moisture content.

Caking, i.e., the undesirable agglomeration of material, due to moisture effects often starts at the surface of
the material where it is exposed to humidity and temperature cycling. Over time, moisture may propagate
deeper into the bed, especially since caking typically causes the material to contract and form cracks through
which moisture can propagate.

13.8. Temperature

A powder’s strength tends to increase as temperature increases due to the previously described influence
of the glass transition temperature and critical relative humidity. Figure 13.21 plots the unconfined yield
strength and material flow factor (mff) of sulfur as a function of temperature after storage for two weeks.
The material strength increases rapidly with temperatures above 40 °C. Figure 13.22 shows similar behavior
with temperature, but for a powder containing fat. In this figure, the material flow function (mFF) gains
strength as temperature increases and the critical arching diameter increases rapidly for temperatures above
20 °C.

13.9. Applied Load

Larger applied loads, especially for materials that are static, increase a powder’s bulk density and increase
the powder’s strength, as has been described in Chapters 2 and 8. The increase in strength is readily
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Figure 13.17. (top) Figures from discrete element method computer simulations of uniform
spheres with liquid bridges formed at different moisture contents. As moisture content
increases, porosity increases. (bottom) A plot of the bed porosity as a function of moisture
content. This figure is from Yang et al. [22].

observed in material flow functions (mFF) which plot the powder’s unconfined yield strength as a function of
consolidation stress. In addition, large loads can not only cause particle re-arrangement within the bulk, but
can also increase the contact area between particles through plastic deformation or fracture, which increases
the bonding force between particles and worsens flow behavior.

If the material is under an applied load for an extended period of time and is viscoelastic, then the particles
may creep, resulting in an increase in the contact area over time and further strengthening of the bulk.
As described previously in Chapter 8, time consolidation testing of materials is essential for characterizing
material flow behavior.

The effects of applied load can often be observed in bulk bags of powder. Caking due to pressure often is
observed at the bottom of the bag where the pressure is the largest. It’s usually recommended that materials
that are sensitive to caking not be stacked one on top of another, but instead be stored on shelving so the
loads on the material are not too great.
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Figure 13.18. The (left axis) material flow factor (mff) and (right axis) bulk density of
wet sand plotted as functions of the moisture content. This figure is from Schulze [7].

Figure 13.19. Material flow functions (mFFs) for dry and moist fine sand at different
moisture contents. This figure is from Wolfson [2].
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Figure 13.20. The wall friction angles between a gypsum powder and mild steel and ultra
high molecular weight polyethylene walls plotted as a function of the moisture content. This
figure is from Schulze [7].

Figure 13.21. The (left axis) unconfined yield strength and (right axis) material flow factor
(mff) for sulfur as a function of temperature. This figure is from Schulze [7].
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(a) The material flow function (mFF) at different tem-
peratures.

(b) The critical arching dimension in a hopper as a func-
tion of temperature.

Figure 13.22. The influence of temperature on the flow behavior of a fatty powder. These
figures are from Wolfson [2].

C. Wassgren 294 2024-06-12



Powder Storage and Flow

Bibliography

[1] L. Liu, I. Marziano, A. Benthan, J. Litster, E. White, and T. Howes, “Effect of particle properties on
the flowability of ibuprofen powders,” International Journal of Pharmaceutics, vol. 362, pp. 109–117,
2008.

[2] T. W. Centre, Flow properties and design principles, Storage and Flow of Bulk Solids short course
notes, Kansas State University, Nov. 2016.
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