
NETWORK INTRUSION DETECTION LEVERAGING
TARGETED REGULAR EXPRESSIONS ON FPGAS

by

Jack Gardel

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Master of Science in Electrical and Computer Engineering

Elmore Family School of Electrical and Computer Engineering

West Lafayette, Indiana

August 2025

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Sanjay Rao, Co-Chair

Elmore School of Electrical and Computer Engineering

Dr. Vishal Shrivastav, Co-Chair

Elmore School of Electrical and Computer Engineering

Dr. Mark Johnson

Elmore School of Electrical and Computer Engineering

Approved by:

Dr. Milind Kulkarni

2

To my Lord Jesus Christ who saves me and the Blessed Virgin Mary who intercedes for me

3

ACKNOWLEDGMENTS

Firstly, I am thankful for Dr Sanjay Rao for providing me with this research opportunity

and I am thankful for both Dr Rao and Dr Vishal Shrivastav for their advice and funding;

especially during the last months of the summer. I am also thankful for Dr. Mark Johnson

who helped me with leading much of my computer architecture course as a TA.

I thank my peers who worked on this project with; Syed Usman Jafri who tested much

of our designs and obtained countless results used in guiding this research as well as Weigao

Su who provided assistance and expertise with realizing our designs in application.

I would finally like to thank those outside of academia who helped encourage me especially

when I was most overwhelmed; my mother and father Julie and Robert Gardel, my parish

priest Fr Peter Lewitzke, and the many friends who helped me along the way.

4

TABLE OF CONTENTS

LIST OF FIGURES . 7

ABSTRACT . 8

1 INTRODUCTION . 9

2 BACKGROUND AND MOTIVATION . 11

2.1 FPGAs . 11

2.2 Finite Automaton . 12

2.3 IDS/IPS . 12

2.3.1 Software vs Hardware Accelerator Implementations 13

2.3.2 Filtering effectiveness . 13

2.4 Regular Expression Processing on Hardware 14

3 DESIGN . 17

3.1 Overview and Design Philosophy . 17

3.2 NFA Matching Stage . 18

3.2.1 Overview . 18

3.2.2 Implementing NFAs . 19

3.2.3 AXI Interface . 23

AXI RX Interface . 23

AXI TX Interface . 24

3.2.4 Load Balancer . 24

3.2.5 PDU Buffers and Channels . 25

3.2.6 Response Unit . 26

3.2.7 Packet Re-ordering . 27

3.2.8 NFA Replication . 28

4 RESULTS . 30

4.1 FPGA Evaluation and Python Simulation 30

4.2 Theoretical Limits . 30

4.3 Resource Consumption . 31

4.4 Simulation-Based Throughput Experiments 32

5 FUTURE WORK . 35

5

5.1 FPGA Testbench . 35

5.2 Grouping Strategies . 35

5.3 Runtime-Configurable State Machines . 36

REFERENCES . 38

6

LIST OF FIGURES

2.1 Traffic forwarded for regular expression matching assuming perfect exact-match
filtering with no false positives . 14

2.2 Throughput and resource usage of a Grapefruit-style NFA pipeline on an Alveo
U200 FPGA for a 11K-rule Snort ruleset, as the degree of pipeline replication
increases. The figure shows that there is only sufficient resource to support 3
replicas, which limits throughput to 3.5 Gbps. 15

3.1 The NFA Matching Stage (stage 2) . 19

3.2 NFA representing the regular expression (AB)+(AC) being converted to a homo-
geneous NFA . 20

3.3 GRAPEFRUIT NFA for the regular expression (AB)+(AC) 21

3.4 NFA group showing how to add multiple BRAM blocks horizontally and how to
populate both halves of each BRAM block to avoid wastage 22

3.5 Stage 2 with the AXI modules shown in more detail. In this configuration, there
are 2 load balancer - response unit pairs each in charge of 2 PDU buffers. NFA
groups not shown. 23

3.6 PDU buffer with corresponding interfaces and channel state machine 25

3.7 Packet re-ordering is handled on a per-location basis in the response unit and on
a per-data ID (PID) basis in the AXI TX module 27

3.8 Group ID translation and NFA group replication. This diagram shows channel 0
currently has group 1 while channel 1 also requests group ID 1 but gets access to
group 4. 28

4.1 Metrics comparing the Alveo U200 FPGA to the larger Alveo U250 FPGA when
synthesizing stage 2, sweeping the number of channels, the Alveo U200 fails to
synthesize after 32 channels and the Alveo U250 fails after 48 31

4.2 Python-based evaluation platform for gathering throughput results on TRex . . 32

4.3 10-core throughput of different IDS’s while varying the percentage of packets
requiring regular expression matching (out-of-order response unit) 33

4.4 single-core throughput of different IDS’s on scaled stratosphere [9] traces (out-of-
order response unit) . 34

5.1 DFA based modules that can be reprogrammed at runtime for popular rules that
were not accounted for at the time of synthesis 37

7

ABSTRACT

Current software-based IDS solutions for protecting networks do not scale well to meet

the higher linerates of larger enterprise networks such as those at universities. Much of the

bottleneck has to do with regular expressions which take the most amount of time to process.

While hardware accelerators such as GRAPEFRUIT and HARE exist, they are either too

slow or not dense enough to support large rulesets. Pigasus IDS uses an FPGA-based

approach to filtering out packets before regex matching but suffers from trace-dependent

performance. We present TRex; an FPGA-based IDS that has a filter similar to Pigasus

and a custom regular-expression accelerator for this application. TRex only checks regular

expressions that are relevant to each packet, allowing it to process packets in parallel on

separate rules. Exploiting parallelism in this way allows TRex to support 2x throughput,

lessening the demand for software to take over.

8

1. INTRODUCTION

Intrusion detection and prevention systems (IDS/IPS) are used as network monitors and

firewalls that inspect incoming packets against a ruleset. Each rule contains multiple fields

that all must be true for the rule to match. These fields can be exact match strings, TCP

header checks, regular expressions, etc. Out of these fields, regular expressions take the

most amount of time to check even with lots of research over the past two decades looking

to accelerate this [1 – 5].

Many IDS’s will typically employ a multi-stage approach to filtering [1 , 6] where less

computationally-expensive checks are performed first to hide the large overhead of regular

expression processing - meaning fewer packets need to match against regular expressions.

However, software-based IDS’s are still shown to be inefficient and take many CPU cores to

reach linerates comparable with that of large enterprise networks [6]. Our experience with

campus network operations are consistent with this and require multiple servers dedicated

to IDS.

Hardware solutions to accelerate regular expression matching aim to replace slower soft-

ware solutions. Designs like GRAPEFRUIT [3] offer enough compactness to support full IDS

rulesets but tend to suffer from throughput issues - only being able to support <10 Gbps of

traffic. Unique ASIC designs such as HARE [7] offer throughput greater than 10 Gbps, but

use techniques that only allow 20 or so regular expressions total in the design.

Pigasus IDS [6] does not put regular expression matching in hardware but instead does the

opposite; creating an efficient multi-stage filter in hardware and pushing remaining packets

into software for regular expression processing. This design claims to meet linerate demands

of 100 Gbps. However, Pigasus will suffer if too many packets require regular expression

processing (see § 2.3.2) making Pigasus dependent on the network trace for its performance.

Considering these setbacks, we present TRex - an FPGA-based IDS that takes the fil-

tering philosophies of Pigasus and the NFA matching of GRAPEFRUIT to process packets

at linerate and be more robust to varying network traces. Since most packets only need

to match against a few rules after filtering [6], TRex’s "NFA match stage" will only check

packets against rules that require those rules, reducing redundant rule checks. Since packets

9

only need to check a few rules out of many, packets can be processed by TRex in parallel on

separate regular expressions to increase throughput without replicating regular expressions.

Our results show that TRex can perform 2x better than Pigasus in most cases with

heavy regular expression usage, supporting workloads at 100 Gbps for up to 20% of packets

requiring regular expression processing § 4.4 . TRex can be configured to fit the performance

demands of the network and the resource demands of the FPGA.

My primary contributions to this project include the design and implementation of the

NFA matching stage § 3.2 as well as the simulation of the NFA matching stage § 4.1 .

10

2. BACKGROUND AND MOTIVATION

2.1 FPGAs

Field Programmable Gate Arrays (FPGAs) are integrated circuits that can be pro-

grammed to function like any digital design (a CPU, an ethernet module, etc). FPGAs

do this by enabling and connecting logic cells and other resources together to have the same

behavior as the target design. FPGAs are commonly used to prototype ASICs before going

into production, or they can be used in situations where having highly configurable hardware

is preferred to doing the same thing in software.

FPGA logic cells typically contain flip-flops (FFs) and look-up tables (LUTs). Flip-flops

are circuits that hold their output value constant until the incoming clock goes from voltage

level 0 to voltage level 1 (also called a rising edge), at which the flip-flop will copy the

input value to the output value. Look-up tables implement combinational logic such as as

AND gates (F=AB) and are used in conjunction with the output of flip-flops to compute

the output of the next clock-cycle, allowing for sequential logic that depends on a previous

output state.

Compared to an equivalent ASIC, the FPGA design will tend to have a slower clock

frequency. This is due to the standard cells being of a certain size and cannot be optimized

to be smaller and closer together as an ASIC designer can achieve through different methods

of laying out individual transistors. These longer connections have more parasitic effects and

thus data takes longer to get from one part of the design to another, meaning the clock will

be slower.

To gain advantage over software-based solutions for computation problems, FPGA en-

gineers will employ techniques to maximize parallelism by having independent tasks run

at the same time in different parts of the FPGA. If one functional block, such as an adder,

needs to be used by many tasks at once, the block can be replicated to account for the higher

throughput requirement. If we wanted to have the same parallelism using software, we would

have to allocate another whole CPU core to carry out a duplicate task, often costing more

hardware resources and taking away compute time normally given to other processes.

11

FPGAs may also contain various RAM resources. Xilinx’s SRAM known as Block-RAM

or BRAM tends to be used for high-speed applications and is typically in lower supply than

dynamic-RAM or DRAM, which takes many clock cycles to access.

2.2 Finite Automaton

In discrete mathematics, finite automaton are memory-less models used to implement

the behavior of a regular expression. They operate by keeping track of which state is active

at any given point and transition between states when a new input character is introduced

when reading a stream of characters.

The first type of finite automaton is non-deterministic finite automaton or NFAs. NFAs

have typical transitions that can take a set of characters and decide whether or not to

advance to the next state. However, when a regular expression branches into two possible

match conditions, the NFA can have transitions that don’t take any characters at all but

instead "choose" the correct branch that would be matched against. We can also think of

this as the NFA taking both transitions to find out which one is correct.

Another type of finite automaton is deterministic finite automaton or DFAs. DFAs do not

have non-deterministic transitions and must always take one transition at a time based on

the current input character. NFAs can be transformed into DFAs however the transformation

into DFAs often adds complexity in the form of additional states. DFAs are technically a

subset of NFAs as every DFA is a valid NFA just without any non-deterministic transitions.

2.3 IDS/IPS

Intrusion detection and prevention systems (IDS/IPS) work by checking network traffic

against a ruleset. Each rule in the ruleset contains a few different fields; (i) header match

which checks the TCP 5-tuple, (ii) exact match strings and (iii) regular expressions. Ad-

vanced options also exist such as depth of patterns, TCP flow state, etc [6 , 8]. For any rule

to match, all of it’s fields must match the given traffic, resulting in an AND operation. For a

packet or flow to be deemed malicious, only one rule must match the given traffic, resulting

in an OR operation between rules.

12

Because each rule can be thought of as an AND operation, IDS systems will typically

employ multi-stage filtering [6]. For instance, many IDS systems will have a stage where every

exact match pattern is put into hash tables and those hash tables are used to determine if

any exact-match string across all rules would match the given packet [1]. If the hash function

returns false, then the packet can be flagged as benign without needing to check the rest of

the header matches and regular expressions (again, due to the AND operation of rules).

Later stages in these schemes will often more complex checks that can handle less through-

put than prior stages. This way, we end up checking less than what would be checked if we

blindly iterated through all rules.

The ruleset used in this paper is from Snort [8] - a software-based IDS that uses hash-

tables as a filtering stage.

2.3.1 Software vs Hardware Accelerator Implementations

Software-based IDS systems have certain limitations. When running Snort at high line

rates (e.g. 100 Gbps), hundreds of CPU cores are required to meet the throughput demand

[6]. To combat this, accelerator-based implementations of IDS’s can help us regain CPU

resources. In particular, the Pigasus IDS [6] uses a cascading system of bit-wise filters to

bring the CPU usage down to only a handful of cores in most cases.

In particular, Pigasus claims to give only 5% of packets to a software-based IDS and

narrows the ruleset down to (number) of rules to check. It uses the multi-filtering approach

from before but can do so more efficiently by replicating smaller units of hardware instead

of using multiple CPU cores to achieve parallelism.

2.3.2 Filtering effectiveness

Although using hash tables and other light-weight checks as filters to later stages helps

with meeting higher throughput, it is still sensitive to payload data and network traffic. In

figure 2.1 , different stratosphere [9] traces tested against an ideal exact-match filter with

no false positives. Even for some of the "normal" traces that contain no malicious packets,

7% of the packets still require additional processing. Even if Pigasus or Snort were able

13

to obtain this perfect filtering for 100 Gbps, 7 Gbps would still need additional processing,

highlighting a need for regular expression acceleration.

malw-11 malw-15 malw-9B malw-9A mix-4 mix-3 mix-1 mix-5B mix-5A mix-2 norm-27 norm-20 norm-2 norm-1
0

10

20

30

40

50

60

70

Tr
af

fic
 fo

rw
ar

de
d

(%
)

62.4%

49.8%

14.5% 13.6% 14.1% 12.4%
7.4% 6.5% 6.4% 5.4% 7.0% 6.6%

0.2% 0.1%

Malware
Mixed
Normal

Figure 2.1. Traffic forwarded for regular expression matching assuming per-
fect exact-match filtering with no false positives

2.4 Regular Expression Processing on Hardware

Hardware-based implementations of regular expressions can either use DFAs with one

state active at a given time or NFAs that can have multiple states active. DFAs are im-

plemented as state-transition tables, are easy to reconfigure, and hence easily applicable to

ASIC implementations. However, these designs have more states and thus a larger memory

footprint [7]. Further, they do not allow for as much parallelism. While NFAs are more

compact and allow for parallelism, they must be re-synthesized as rulesets change with sub-

sequent updates. NFAs are a good fit for FPGAs due to the hardware being reconfigurable

[3 , 10].

HARE [7] is an ASIC DFA-based design which takes a set of regular expressions and

combines like prefixes to make a single large regular expression. HARE then creates state-

transition tables and splits the regular expression into components. Since state-transition

tables increase the number of elements to multiplex with each new state, multiplexing logic

would become too slow to keep up with HARE’s proposed clock rate for an entire IDS ruleset.

14

In practice, HARE is deployed on the order of 1-16 regular expressions, while IDS rulesets

involve several thousands of regular expressions.

(a) Resource consumption of an NFA pipeline. (b) Estimated throughput of NFA pipeline.

Figure 2.2. Throughput and resource usage of a Grapefruit-style NFA
pipeline on an Alveo U200 FPGA for a 11K-rule Snort ruleset, as the degree
of pipeline replication increases. The figure shows that there is only sufficient
resource to support 3 replicas, which limits throughput to 3.5 Gbps.

For regular expression processing on FPGAs, solutions such as GRAPEFRUIT [3] and

REAPR [10] exist, allowing for larger numbers of regular expressions to be processed due

to more resource efficient NFA-based state machines. GRAPEFRUIT in particular, uses

BRAM as a character-indexed lookup table for individual states in each regular expression,

and uses logic cells to create the topology for each. Unfortunately, these FPGA designs do

not offer nearly enough throughput to keep up with a 100 Gbps linerate. In figure 2.2 , we

create a simple pipeline of GRAPEFRUIT-style NFAs. If we seek to parallelize simply by

duplicating this design, we quickly run out of resources (figure 2.2a). Using the synthesized

clock rate and number of replications, the maximum throughput we can achieve with this

method is shown in figure 2.2b at 3.5 Gbps, far below the linerate requirement.

Even from GRAPEFRUITs proposed figures, the best BRAM-based design will achieve

6.21 Gbps for a TCP ruleset. To achieve 100 Gbps, we would need to replicate GRAPE-

FRUIT 17 times. One replication of GRAPEFRUIT takes 73k LUTs, 106 FFs, and 581

15

BRAM blocks. Multiplying this 17 times goes well over the resource limits for virtually any

FPGA.

16

3. DESIGN

3.1 Overview and Design Philosophy

For IDS designs similar to that of Pigasus, the output of exact-match filtering tends

to be a much lower throughput than the input. Additionally, packets coming out of the

exact-match filter typically require only 1 or 2 rules to be checked. Zhao et al. [6] proposes

using designs such as GRAPEFRUIT [3] for regular expression processing on these filtered

packets. However, GRAPEFRUIT alone still does not provide enough throughput for what

Pigasus requires. A drawback from using GRAPEFRUIT in this application is that it will

check every rule in the ruleset and not just the 1 or 2 rules that Pigasus tells it to check. It

would be convenient if we could pick and choose which rules we would like to match within

GRAPEFRUIT, and if two packets want to check different rules we can process those two

rules in parallel. Even by processing just 7 packets in parallel, we would meet the "full

matcher" requirement of Pigasus at 5 Gbps and completely remove the need to replicate

GRAPEFRUIT.

There are still some things that GRAPEFRUIT does well that we would keep in such

a multiplexed design. One such design feature is putting NFAs into "groups" that process

in parallel on an input stream. While GRAPEFRUIT is pipelined, it doesn’t pipeline all

rules but instead pipelines groups of rules. The architecture of NFAs in GRAPEFRUIT

prefer grouping, as they are able to share more BRAM this way and resource costs are

minimized. Grouping also helps with multiplexing into rules as there would be fewer entries

and therefore a potentially shorter critical path. These groups would also be convenient for

grouping similar popular rules together and processing them in parallel on the same data

(e.g. if multiple rules from a set of HTTP rules are popular, we can just group all HTTP

rules together from this set).

In our design, we present a 2-stage structure; the first stage is an exact match stage similar

to Pigasus’s multi-string pattern matcher, designed to reduce throughput to subsequent

stages and cut down the number of rules to check. The second stage is an NFA matching

stage with NFAs similar to GRAPEFRUIT with the added bonus of multiplexing into NFAs

17

using multiple channels of input, giving the illusion of replication without needing to replicate

the entire ruleset.

The exact match stage (also known as stage 1) consists of multiple exact-match pipelines

that operate around 400 MHz and are designed for high throughput and high filtering similar

to Pigasus. A single pipeline will match whole packets in a byte-wise fashion using hash tables

on all starting indices. At the end of these pipelines, a "Group ID store" or "GID store" will

collect the NFA groups that need to be matched against later in the design.

The NFA matching stage (or "stage 2") is responsible for taking packets and their corre-

sponding NFA groups from stage 1 to process them - checking all exact matches and regular

expressions for the requested rules. Stage 2 is configured to maximize parallelism, and can

skip over packets temporarily if there are too many packets currently processing on a re-

quested rule. Throughput for particular groups can also be increased by statically replicating

popular NFA groups at the time of synthesis. Stage 2 runs at 100 MHz and one group will

process a packet at approximately 0.75 Gbps.

3.2 NFA Matching Stage

3.2.1 Overview

The exact match stage will hand any unfiltered packets and the respective rule groups

over to the NFA Matching Stage (henceforth called stage 2). The goal of stage 2 is to extract

the most amount of parallelism out of the incoming packets given the resources it has in its

NFA table (the table containing NFAs that represent rules). Stage 2 operates on the notion

of "channels". A channel is a state machine that reads packet data from it’s corresponding

buffer and feeds it to an NFA group. The number of channels corresponds to the maximum

number of packets that can be processed in parallel. The channels will search their buffers

for a packet that requests a free group that is not in use by any other channel. This leads

to out-of-order execution with the goal of improving average throughput.

We can follow the path of execution for one 512-byte PDU (packet data unit) using figure

 3.1 . The PDU first arrives at an AXI interface for stage 2 where it is assigned a unique "data

ID". The PDU then gets sent to one of several stage 2 interfaces in a round-robin fashion.

18

Load
Balancer

pkt 1 pkt 3 pkt 5

pkt 2 pkt 4

Response
Unit... ...

Channels & Buffers NFA Groups

Group 0

Group N

1

3

5 99

2
41

77

8
N

5

AXI RX AXI TX

Load
Balancer

...

Response
Unit

...

E
xa

ct
 M

at
ch

 S
ta

g
e

N
et

w
o

rk
/S

o
ft

w
ar

e
ID

S

Figure 3.1. The NFA Matching Stage (stage 2)

These interfaces each connect to a load balancer that is in charge of writing data to one of

several buffers based on buffer capacity. Once the PDU is written to a buffer along with it’s

requested groups, it then waits for the channel to inspect it. Once the group that the PDU

requests is available, the channel will select the PDU and start reading it’s data to an NFA

group. Once all groups are checked (or one group matches), the channel writes the result

of the match as a boolean flag to the buffer. It also writes a flag to the PDU’s buffer entry

indicating that the PDU is done processing and is ready to be given back to the network via

the response unit. Once the response unit reads the PDU to the AXI TX module, it is then

sent back to the network where the trailer of the packet is modified to indicate the status of

processing the PDU.

3.2.2 Implementing NFAs

In our design, all regular expressions and exact-match strings for rules in stage 2 are

represented as homogeneous NFAs. Homogeneous NFAs are NFAs in which each incoming

19

transition for each state matches on the same set of characters. That is, if state Si has

incoming transitions Ti,j with corresponding characters c(Ti,j), then the following property

holds that c(Ti,j) = c(Ti,k)∀j, k ∈ transitionsi.

A

A

1

B
2

C
3

44

(a) Non-Homogeneous NFA

A

A

1

B2

C3

44

45

(b) Homogeneous NFA

A

A

4B

4C

(c) Homogeneous NFA reorganized

Figure 3.2. NFA representing the regular expression (AB)+(AC) being con-
verted to a homogeneous NFA

Figure 3.2a , shows a non-homogeneous NFA for the regular expression "(AB)+(AC)"

where state 4 breaks the homogenous property by having incoming transitions with different

character sets. Figure 3.2b , splits state 4 into 4 and 5, creating a homogeneous NFA. Figure

 3.2c , shows a common representation of homogeneous NFAs where the match characters for

incoming transitions are closely tied to the state itself.

To construct this homogeneous NFA in hardware, we borrow much of the architec-

ture from GRAPEFRUIT [3]. In figure 3.3 , we implement the same regular expression of

"(AB)+(AC)" in this fashion. The BRAM table is addressed by the current input character

in the byte-stream. The output of BRAM is a bitvector where each bit position corresponds

to a boolean value of whether the given character will match on an incoming transition for

the corresponding state. States 1 and 2 share the same match function of "A", so we can share

a column of BRAM between the two states, allowing for a more compact implementation.

20

BRAM

1&2 3 4

A

B

C

A (1)

A (2)

4B (3)

4C (4)

(1)

(2)

(3)

(4)

1

1

INPUT = 'C'

Figure 3.3. GRAPEFRUIT NFA for the regular expression (AB)+(AC)

Figure 3.3 shows a moment in time where states 1 and 2 are currently active and the

NFA is receiving an input symbol "C". On the column for state 4, the character C yields a

1. This bit gets ANDed with the register for state 2 because state 2 has a transition into

state 4. The result of this AND will activate state 4 on the next cycle, matching the regular

expression.

The next step in the process is to organize these NFAs into a group of NFAs that occupy

the same BRAM blocks. Our Vivado BRAM IP supports an address width of 9 bits and

an output vector of 36 bits. If we wish to process multiple NFAs in parallel, we can follow

21

BRAMBRAMBRAM

0 1

0

1

65

...

...

255

...

...

...

...

...

...

...

35

...

...

256

257

...

511

...

...

...

...

...

0 1

0

1

65

...

...

255

...

...

...

...

...

...

...

35

...

...

256

257

...

511

...

...

...

...

...

0 1

0

1

65

...

...

255

...

...

...

...

...

...

...

35

...

...

256

257

...

511

...

...

...

...

...

...

ADDR = 0 + 'A'

0

29-1

0 35 36 71

Registers + AND gates

Set 0
Set 1

Figure 3.4. NFA group showing how to add multiple BRAM blocks horizon-
tally and how to populate both halves of each BRAM block to avoid wastage

the architecture of figure 3.4 by using more bits in the output vector and sharing columns

between states with identical match characters.

Once we run out of space and we need more than 36 bits at each address, we can simply

had more BRAM blocks horizontally, where each new BRAM block takes the same address of

the input symbol. We can now increase the number of states supported linearly in increments

of 36 bitlines per BRAM block.

We can continue to add NFAs and states to this architecture forever. However, we are

always wasting half of our BRAM. Vivado’s BRAM IP has a 9-bit address field in its smallest

configuration and ASCII characters are only 8-bits in length, meaning there are 28 possible

input combinations but 29 addresses to access in each BRAM block. If we hard-wire the

most-significant bit of the address to 0, we end up not utilizing the upper half of all BRAM

22

blocks. To get more use out of our BRAM, we divide NFA groups into "NFA sets", where

each set occupies one of these halves of BRAM. The most significant bit in the address field

is the "set bit" that can be toggled to target different NFAs. For ease of implementation, we

allocate the same number of rules to each set in each group (16), but this can be changed

or optimized to get even tighter utilization. This structure of 32 rules in 16 rules per set, is

referred to as an "NFA group".

3.2.3 AXI Interface

The AXI interface modules shown in figure 3.1 connect stage 2 to Xilinx’s AXI bus

protocol to communicate with stage 1 and the network. However, these interface blocks are

responsible for more than just interfaces. They also handle packet re-ordering and bypassing

of packets into software.

PDU Buffer

Load
Balancer

Response
Unit

AXI RX AXI TX

E
xa

ct
 M

at
ch

 S
ta

g
e

N
et

w
o

rk
/S

o
ft

w
ar

e
ID

S

PDU Buffer

Load
Balancer

Buffer

BufferBypass
Buffer

Buffer

Buffer

PDU Buffer

Response
Unit

PDU Buffer

Figure 3.5. Stage 2 with the AXI modules shown in more detail. In this
configuration, there are 2 load balancer - response unit pairs each in charge of
2 PDU buffers. NFA groups not shown.

AXI RX Interface

The AXI RX interface module receives packet data as well as group ID’s on the AXI

protocol’s data lines. It temporarily stores the latest incoming packet in a "bypass buffer"

in case the packet needs to be sent to software or if the packet is a control packet for the

23

NIC [11]. Upon filling the bypass buffer, it also fills one of several buffers corresponding to

interfaces for the primary components of stage 2. These interfaces are connected to load

balancers as discussed in § 3.2.4 .

The AXI RX module will fill these buffers in a mostly round-robin fashion. However, if

all interfaces indicate that they cannot take any more packets, the packet will by passed to

the AXI TX interface to be sent to a software IDS.

AXI TX Interface

Similar to the AXI RX interface module, the AXI TX module has several buffers that it

rotates between. The number of buffers in the AXI TX module corresponds to the number

of response units in stage 2. In figure 3.5 , the AXI TX module can multiplex between any

response unit as well as the bypass buffer coming in from AXI RX.

3.2.4 Load Balancer

When a PDU arrives in stage 2 via the AXI RX module, it then gets sent to a module

called a "load balancer" (seen in the second column of figure 3.1). The load balancer is

responsible for writing data and group ID’s to a small collection of PDU buffers, where the

packet data will wait to be processed. The load balancer peeks at the capacity of each buffer

and writes data to the buffer with the highest current capacity. Once written, the load

balancer will trigger the entry holding the PDU to become "valid" so that the channel is

aware of packet data occupying the now full entry.

If all buffers are full, a signal is sent out to the RX module telling it to not send any

further packets to the load balancer. In this case, the RX module will either select another

load balancer or forward the packet to be processed in software.

While the load balancer is writing to the buffers, it communicates with the response unit

the buffer number and entry number it is writing to. The response unit will eventually use

this information to re-order packets.

24

BRAM

Data Data Data

8 bits

Data

Groups

V
M D

V
M D

V
M D

V
M D

GroupsGroupsGroups

group group group group

BRAM

Data Data Data

64 bits

Data

GroupsGroupsGroupsGroups

Set V

64 bitsLoad balancer

Read V, Set M/D

Read V/M/D, Clear V/M/D

Response Unit

Translator

Channel FSM NFAs

Figure 3.6. PDU buffer with corresponding interfaces and channel state machine

3.2.5 PDU Buffers and Channels

Each buffer in stage 2 corresponds to a channel - a collection of hardware objects such

as state-machines that takes stored data and streams it into an NFA group. These buffers

store the data used for matching and eventually de-allocate this data or send it out on the

stage 2 egress path.

PDU buffers have three ports, each requiring their own independent address bus; a port

for the load balancer to write to an entry, a port for the channel to read data character-

by-character, and a port for the egress or "response unit" to read out data after it has been

matched against an NFA. Due to Xilinx’s BRAM IP only having at most two independent

address busses, stage 2 buffers incorporate duplicate BRAM arrays inside each buffer to

achieve this as seen in figure 3.6 . The load balancer will write to both BRAM blocks

25

simultaneously. However, the channel will read characters (8 bits at a time) from block 1

and the egress port will read 64 bits at a time from block 2 independently. This way, we

effectively get a BRAM block with 3 address busses by allocating a block for each read port.

Each slot in the buffer has 3 status bits; valid, match, and done. Valid gets set high

when the BRAM is written to by the load balancer on an empty entry. When the channel

sees that the valid bit is high but the done bit isn’t, it is responsible for matching that entry

against an NFA group. Once the channel is done processing the packet, it sets the "done"

bit high and sets the "match" bit high whenever it encounters a match. The response unit

(egress) will look for entries that are both valid and done. These entries will get sent out of

stage 2, after which all status bits get cleared and the slot is empty again.

The channel FSM will look for a buffer entry in the SEARCH state. When it finds a

packet taking up a slot in the buffer, it enters the CHECK state where the channel checks

to see if the corresponding NFA group is available and not being used by any other channel.

If the group isn’t available it goes back to the search state. If the group can be acquired,

the channel moves to the PROC state and reads characters from the selected entry. It then

moves to the DONE state, where the channel flips the "match" bit for the entry if the NFA

group matched against the packet. The channel may also set the "done" bit high if it is done

matching the packet, signaling the egress to take a look at the result. If there are more

groups to check, the buffer will take a few cycles to fetch the next group ID from BRAM

and inform the channel that there are more groups to analyze.

3.2.6 Response Unit

In stage 2, PDUs have the ability to finish processing in a different order to how they

arrive in stage 2. If these PDUs are allowed to be forwarded to the network out-of-order,

this can put additional pressure on the TCP protocol to re-order these packets [12]. Even

though packets may complete matching out-of-order, they should be sent out in the order in

which they arrived.

Part of this responsibility lies with the response unit, which keeps a queue of packet

locations within a set of packet buffers. This queue tells the response unit which PDU

26

should be allowed next to exit stage 2. It continually looks at the next entry until the "done"

bit is set high and then reads out the data in 64 bit chunks.

3.2.7 Packet Re-ordering

(1,1)
Response Unit

AXI RX AXI TX

E
xa

ct
 M

at
ch

 S
ta

g
e

N
et

w
o

rk
/S

o
ft

w
ar

e
ID

S

PID 7

PID 6

PID 1

PID 3

D

PID 2

(1,2)

PID 4

(2,1)

PID 5

(2,2)

Load
Balancer (2,2) (2,1) (1,2)

Next PID:

8

Next PID:

1

...

D

D D

Figure 3.7. Packet re-ordering is handled on a per-location basis in the
response unit and on a per-data ID (PID) basis in the AXI TX module

Although stage 2 may process packets in a different order than how they arrive, it always

commits them in the same order to not add any more work for TCP drivers. It does this

through the use of "data ID’s" (or PID’s). A data ID is a unique number assigned to each

packet as it enters stage 2 and is how stage 2 generally keeps track of what to send to the

network next.

As packets come into stage 2, the AXI RX module will assign packets to data ID’s in

a sequential order, only incrementing the next data ID after a successful store to a PDU

buffer. This ensures that every PDU in stage 2 can be placed in a sequential order with no

gaps in the data ID’s (e.g. if PID 2 and PID 5 exist in stage 2, PID’s 3 and 4 must also exist

in stage 2).

After the PDU with its data ID is successfully handed to a load balancer, the load balancer

will place the PDU in an empty buffer entry and inform the corresponding response unit

where the PDU was placed. The response unit uses this (channel,entry) pair to keep track

of which entry to read from the buffers next so that the PDU’s are read out in order. In

27

figure 3.7 , we can observe that PID’s 2,4 and 5 can be reached by the response unit, which

keeps a queue of the location of these packets. In the same figure, the response unit shown

is waiting for the PDU at (1,2) to finish (as indicated by the "done" bit).

Once the response unit sees that the next PDU has finished, it forwards this PDU to

it’s buffer in the AXI TX module with the corresponding PID. Since each PID in stage 2

exists in sequential order, the AXI TX module doesn’t keep a queue but rather a counter

indicating which PID needs to be read next. Since each response unit forwards PDU’s in

the order which the load balancer receives them, the next PID will always be given by one

of the response units. Once the AXI TX module has been given the next PID, it forwards

the PDU to the network and then increments it’s PID counter to search for the next packet.

3.2.8 NFA Replication

NFA Table

BRAM

0 0 0

4 -> 5 4 5

3 3 3

2 2 2

gro
up ID

cu
rre

nt t
ra

nsla
tio

n

st
art

of r
eplic

atio
n

end o
f r

eplic
atio

n

0

1

2

3

virtual ID 0

1physical ID 0

BRAM

0 0 0

4 -> 5 4 5

3 3 3

2 2 2

0

1

2

3

virtual ID 1

read 4
write 5

x -> 4

write 5

physical ID 1

Group 0 (0)
 Group 1 (1)
 Group 2 (2)
 Group 3 (3)
 Group 4 (1)
 Group 5 (1)

Figure 3.8. Group ID translation and NFA group replication. This diagram
shows channel 0 currently has group 1 while channel 1 also requests group ID
1 but gets access to group 4.

28

Stage 2 offers the ability to replicate certain NFA groups at the time of synthesis. In the

NFA table, this is handled simply by placing these replicated groups at new indices in the

table as seen with group 1 in figure 3.8 .

In between the channel and the NFA table sits the "translator block" which takes the

original GID requested and transforms it to select one of several replicas. The channel’s

requested GID is called the "virtual GID". In the table shown in figure 3.8 , this virtual ID

is used as an index to obtain the current corresponding "physical ID" pertaining to one of

several replications of the same NFA group. When a channel wants to request a new group,

it accesses the translation table and writes the "current translation" to a register that is

seen by the NFA table. The translator then looks at the "start of replication" and "end of

replication" values to determine where the next translation will be located. It then writes

the new translation for the GID back to each channel’s BRAM so that the next channel to

request the same GID gets a new physical GID.

Channels can still clash on the same NFA groups and there are not enough resources to

replicate all groups by the number of channels. That’s why the NFA table itself keeps track

of which channel has access to which group and ignores requests from channels that do not

have access.

29

4. RESULTS

4.1 FPGA Evaluation and Python Simulation

To test the validity of stage 2 beyond simulations, stage 2 is placed within Corundum [11]

- an FPGA-based NIC. This design is then placed on the Alveo U200 FPGA board to verify

correctness and theorized performance numbers. This verification is also used to validate

results obtained by stage 2’s corresponding Python simulation which allows for parameters

to be easily modified and results to be quickly gathered without needing to re-synthesize the

whole design.

Stage 2’s Python simulation is behaviorally accurate to the RTL implementation. The

Python simulation emulates multiple PDU buffers all operating on an NFA table, keeping

track of which channel has access to which NFA group. If any packets cannot fit into the

simulator, they are written to the output trace indicating the need for the software-based

IDS. The Python simulation ignores overhead cycles due to collisions on the same NFA

group, cycles for accessing the NFA table, and cycles for reading/writing to the PDU buffers

from the AXI interface. The Python simulator also does not perform packet reordering as

discussed in § 3.2.7 .

4.2 Theoretical Limits

In it’s default configuration, stage 2 is designed to run at 100 MHz. With each NFA

group being able to process a single 8-bit character per cycle, each channel operates at a

throughput of around 0.75 Gbps. If the assumption is made temporarily that each packet

only requests one NFA group, then 0.75 Gbps is the minimal performance of stage 2.

This worst-case performance of 0.75 Gbps happens when all packets in stage 2 request to

match against one group. Since each group is atomic and can be ran independently, only one

channel can access a group at any given time resulting in the serial execution of all packets.

This minimum throughput can be avoided through the replication of popular NFA groups

as discussed in § 3.2.8 .

30

In contrast, the maximum theoretical performance for stage 2 happens when all channels

are able to process packets simultaneously. Each channel must be accessing a different

group, making the maximum throughput 0.75N Gbps where N is the number of channels.

In practice, the maximum throughput will be somewhat less than this to account for the

time it takes to select a new packet and start processing it, in addition to other miscellaneous

latching overhead.

4.3 Resource Consumption

Channels AU200 AU250
16 106.19 105.98
32 101.96 103.33
48 FAIL 89.8
64 FAIL FAIL

(a) Max frequency (MHz) for a differing number
of channels

Channels AU200 AU250
16 12.66 12.63
32 24.31 24.64
48 FAIL 32.11
64 FAIL FAIL

(b) Maximum estimated throughput (Gbps) for a
differing number of channels

Channels AU200 AU250
16 395,473 (33.5%) 395,309 (22.9%)
32 462,351 (39.1%) 462,352 (26.8%)
48 FAIL 537,103 (31.1%)
64 FAIL FAIL

Total 1,182,240 (100%) 1,728,000 (100%)

(c) LUT count for a differing number of channels

Figure 4.1. Metrics comparing the Alveo U200 FPGA to the larger Alveo
U250 FPGA when synthesizing stage 2, sweeping the number of channels, the
Alveo U200 fails to synthesize after 32 channels and the Alveo U250 fails after
48

Figure 4.1 presents synthesis results from the Alveo U200 FPGA platform (our default

platform) and the larger Alveo U250 FPGA platform. We vary the number of channels

between the two platforms until the design is too large to fit on the board. Each channel

contains a buffer that contains 4 entries for packets.

In figure 4.1a , we notice that the maximum frequency stays roughly the same for both

boards with the exception of 48 channels on the AU250 platform. Figure 4.1b shows our

estimated maximum throughput calculated using the number of channels and the maximum

frequency. Changing the number of channels from 32 to 48 shows that with larger FPGAs,

TRex can scale to meet larger throughput demands.

31

Additionally, figure 4.1c shows the LUT usage across both boards. LUTs for synthesizable

versions of stage 2 typically use less than half of the FPGA’s LUTs. Any more than this and

stage 2 creates too much routing congestion to synthesize.

4.4 Simulation-Based Throughput Experiments

Network
Trace

Perfect Exact

Match

Needs Regex

No Regex

+
Synth
Trace

X%

(1-X)%

(a) Process for creating synthetic traces where X% of packets need to be checked against regular
expression matching.

timer

Synth
Trace

Stage 1 Sim Stage 2 Sim Snort IDS

(b) Gathering throughput results for a synthetic trace using a timer on the Snort IDS

Figure 4.2. Python-based evaluation platform for gathering throughput results on TRex

Using stage 2’s Python simulator, we are able to get an estimate of throughput in various

circumstances. In figure 4.2 , we take stratosphere [9] traces and split the packets into two

groups depending on whether the packets would require the last bit of regular expression

processing. Looking at the result in figure 4.3 ; even when 20% of packets require regular

32

0% 20% 40% 60% 80% 100%
Traffic Percentage Needing Regular Expressions

0

20

40

60

80

100
Th

ro
ug

hp
ut

 (G
bp

s)
T-Rex
Pigasus
Snort

Figure 4.3. 10-core throughput of different IDS’s while varying the percent-
age of packets requiring regular expression matching (out-of-order response
unit)

expression processing, Pigasus’ throughput is cut in half compared to 0%. The TRex model

is still performing at 100 Gbps when 20% of packets require regular expression matching.

From 4.3 , we can see that the curve for TRex is similar to the Pigasus curve shifted to

the right by 20%, showing that stage 2 of TRex can handle roughly 20% of all network traffic

before needing software support. In theory, TRex should only perform worse than Pigasus

if Pigasus outperforms TRex’s filtering stage enough to cancel out any benefits of stage 2.

If we scale the original stratosphere [9] traces to 100 Gbps as in figure 4.4 , we observe that

TRex doesn’t always offer a significant improvement in throughput. Part of this phenomenon

is due to packets with a high "load" where many groups are requested and single packets

take a long time to process. Current work is being done to discover strategies of grouping

and replicating rules in order to widen the gap with Pigasus [6].

33

norm-27 norm-20 mix-1 mix-2 mix-3 mix-4 mix-5A mix-5B
0

1

10

100

Th
ro

ug
hp

ut
 (G

bp
s)

TRex Pigasus Snort

Figure 4.4. single-core throughput of different IDS’s on scaled stratosphere
[9] traces (out-of-order response unit)

34

5. FUTURE WORK

5.1 FPGA Testbench

Ideally, we would like to use our FPGA implementation of stage 2 to test throughput.

However, we are currently running into packet loss when the throughput in stage 2 exceeds

1 Gbps. Current efforts are aimed at finding the source of this packet drop whether it be

inside stage 2 or on the path to stage 2. Once this issue gets resolved, we can obtain more

accurate throughput results.

5.2 Grouping Strategies

In the default configuration for TRex, rules are taken from the given Snort ruleset 32

rules at a time and put into groups naively. A lot of adjacent rules are similar and will come

from the same file so this approach is still somewhat performative. While the initial reason

for putting rules into groups was to decrease multiplexing and resource utilization, it’s still

worthwhile to see if the way rules are grouped reduces the "load" of stage 2 where load is the

product of the groups requested per packet and the incoming throughput. We are currently

looking into multiple grouping strategies to decrease load.

While debugging and looking at individual packets, we notice that there are certain

popular rules that attract a lot of packets after the filtering stage. Some of these rules appear

together frequently. Therefore, the ideal grouping strategy would be to group popular rules

together that appear together frequently, decreasing the average number of groups requested

by each packet. With this approach, we would need to be careful to not group popular

rules that do not appear together as this would lead to more conflicts for the same group

unnecessarily. Once the popular groups have been formed, they can be selectively replicated

before synthesizing TRex.

Analyzing popular rules has a caveat; measuring "popular" rules is a per-packet trace

metric and can be different between traffic patterns. This would be effective only so far as

there are "globally" popular rules that are popular across many different and diverse traces.

It may be more ideal to group together similar rules - rules that have like strings and fields

35

between them. For example, a rule that contains the string "dog" and another rule that

contains "doggy" would be grouped together in this scheme.

5.3 Runtime-Configurable State Machines

Although TRex stage 2 can be configured to contain multiple replicas of certain groups,

this does not happen during runtime and must be accomplished by determining the best

configuration. The configuration must then be synthesized before it is flashed to the FPGA.

If TRex encounters a large burst of malicious traffic, it may overflow on an NFA group

that does not have sufficient resources in terms of the number of replications. For this

scenario, it would be useful to have some module that can reprogram itself at runtime to

simulate the behavior any NFA in the design.

With the current architecture for NFAs, this cannot be done because the topology for

the different states is in the flip-flops and look-up tables for the FPGA which are not re-

programmable at runtime. As noted from comparing HARE [7] and GRAPEFRUIT [3],

we have to use an NFA-based approach to fit all rules on the FPGA. However, we may

use HARE’s DFA-based approach to create a small collection generic modules that do not

require re-synthesizing to reconfigure.

These modules are outlined in figure 5.1 . The idea is to store the state-transition tables for

all rules in DRAM. If a rule suddenly receives a large amount of traffic, the corresponding

table from DRAM can be written to a generic DFA module in BRAM to allocate more

resources to specific groups or rules. These DFA modules can then start matching against

more packets parallel in addition to what is already implemented as NFAs to improve the

lower-bound performance of stage 2.

36

DRAM

5

BRAM

1 2 3 4

A

B

C

2

3

NEXT STATE
4

4

CURRENT STATE X

INPUT

2

3

4

4 0 9

7

Read Popular Rule

Figure 5.1. DFA based modules that can be reprogrammed at runtime for
popular rules that were not accounted for at the time of synthesis

37

REFERENCES
[1] X. Wang et al., “Hyperscan: A fast multi-pattern regex matcher for modern CPUs,” in

16th USENIX Symposium on Networked Systems Design and Implementation (NSDI
19), Boston, MA: USENIX Association, Feb. 2019, pp. 631–648, isbn: 978-1-931971-49-
2. [Online]. Available: https://www.usenix.org/conference/nsdi19/presentation/wang-
xiang .

[2] R. Sidhu and V. Prasanna, “Fast regular expression matching using fpgas,” in The
9th Annual IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM’01), 2001, pp. 227–238.

[3] R. Rahimi, E. Sadredini, M. Stan, and K. Skadron, “Grapefruit: An open-source,
full-stack, and customizable automata processing on fpgas,” in 2020 IEEE 28th An-
nual International Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2020, pp. 138–147. doi: 10.1109/FCCM48280.2020.00027 .

[4] M. Becchi and S. Cadambi, “Memory-efficient regular expression search using state
merging,” in IEEE INFOCOM 2007 - 26th IEEE International Conference on Com-
puter Communications, 2007, pp. 1064–1072. doi: 10.1109/INFCOM.2007.128 .

[5] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz, “Fast and memory-efficient
regular expression matching for deep packet inspection,” in Proceedings of the 2006
ACM/IEEE Symposium on Architecture for Networking and Communications Systems,
ser. ANCS ’06, San Jose, California, USA: Association for Computing Machinery, 2006,
pp. 93–102, isbn: 1595935800. doi: 10 . 1145/1185347 . 1185360 . [Online]. Available:

 https://doi.org/10.1145/1185347.1185360 .

[6] Z. Zhao, H. Sadok, N. Atre, J. C. Hoe, V. Sekar, and J. Sherry, “Achieving 100gbps
intrusion prevention on a single server,” in 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), USENIX Association, Nov. 2020,
pp. 1083–1100, isbn: 978-1-939133-19-9. [Online]. Available: https : / /www .usenix .
org/conference/osdi20/presentation/zhao-zhipeng .

[7] V. Gogte, A. Kolli, M. J. Cafarella, L. D’Antoni, and T. F. Wenisch, “Hare: Hardware
accelerator for regular expressions,” in 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), IEEE, 2016, pp. 1–12.

[8] Snort. [Online]. Available: https://www.snort.org .

[9] Stratosphere ips. [Online]. Available: https://www.stratosphereips.org .

[10] T. Xie, V. Dang, J. Wadden, K. Skadron, and M. Stan, “Reapr: Reconfigurable en-
gine for automata processing,” in 2017 27th International Conference on Field Pro-
grammable Logic and Applications (FPL), 2017, pp. 1–8. doi: 10.23919/FPL.2017.
8056759 .

38

https://www.usenix.org/conference/nsdi19/presentation/wang-xiang
https://www.usenix.org/conference/nsdi19/presentation/wang-xiang
https://doi.org/10.1109/FCCM48280.2020.00027
https://doi.org/10.1109/INFCOM.2007.128
https://doi.org/10.1145/1185347.1185360
https://doi.org/10.1145/1185347.1185360
https://www.usenix.org/conference/osdi20/presentation/zhao-zhipeng
https://www.usenix.org/conference/osdi20/presentation/zhao-zhipeng
https://www.snort.org
https://www.stratosphereips.org
https://doi.org/10.23919/FPL.2017.8056759
https://doi.org/10.23919/FPL.2017.8056759

[11] A. Forencich, A. C. Snoeren, G. Porter, and G. Papen, “Corundum: An open-source
100-gbps nic,” in 2020 IEEE 28th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2020, pp. 38–46. doi: 10.1109/FCCM48280.
2020.00015 .

[12] M. Laor and L. Gendel, “The effect of packet reordering in a backbone link on ap-
plication throughput,” IEEE Network, vol. 16, no. 5, pp. 28–36, 2002. doi: 10.1109/
MNET.2002.1035115 .

39

https://doi.org/10.1109/FCCM48280.2020.00015
https://doi.org/10.1109/FCCM48280.2020.00015
https://doi.org/10.1109/MNET.2002.1035115
https://doi.org/10.1109/MNET.2002.1035115

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	BACKGROUND AND MOTIVATION
	FPGAs
	Finite Automaton
	IDS/IPS
	Software vs Hardware Accelerator Implementations
	Filtering effectiveness

	Regular Expression Processing on Hardware

	DESIGN
	Overview and Design Philosophy
	NFA Matching Stage
	Overview
	Implementing NFAs
	AXI Interface
	AXI RX Interface
	AXI TX Interface

	Load Balancer
	PDU Buffers and Channels
	Response Unit
	Packet Re-ordering
	NFA Replication

	RESULTS
	FPGA Evaluation and Python Simulation
	Theoretical Limits
	Resource Consumption
	Simulation-Based Throughput Experiments

	FUTURE WORK
	FPGA Testbench
	Grouping Strategies
	Runtime-Configurable State Machines

	REFERENCES
	COLOPHON

