
Seer: Future-Aware Caching System for Network Processors

Jason Lei
Purdue University

Vishal Shrivastav
Purdue University

Abstract
In order to support state-intensive network applications with
high performance, packet processors rely heavily on caching
between fast on-chip cache and a slower backing store such as
DRAM. However, it is well known that all practical caching
heuristics perform sub-optimally due to the lack of visibility
into future memory accesses. In this paper, we present Seer,
that exploits the unique characteristics of network packet pro-
cessing to provide the packet processors a partial visibility
into future memory accesses. Seer complements this capabil-
ity with the design of a fast cache manager for packet proces-
sors, that can make smarter caching decisions using the partial
knowledge of future memory accesses, at the timescale of a
single DRAM access time. Seer’s design has been prototyped
and implemented on an FPGA-based packet processor. Based
on large-scale network simulations, Seer achieves up to 65%
lower cache misses and up to 78% lower flow completion
times compared to LRU caching heuristic for key stateful
network applications over realistic datacenter workloads.

1 Introduction
Seer is a caching sub-system for network packet processors.
Seer is designed to support state-intensive packet processing
applications, where the state access is triggered almost entirely
by the incoming network packets. Some popular examples of
such applications include Layer 4 load balancing [22], NAT
and firewalls [26], flowlet switching [31], network perfor-
mance monitoring [24], and network intrusion detection [44].
Such applications store large amounts of state that cannot fit
entirely in the processor’s cache [16]. Thus they have to rely
heavily on effective caching between the fast on-chip cache
and the slower backing store such as DRAM for performance.
It is well-known that the optimal offline caching algorithm
for minimizing cache misses, namely Belady [5], requires
visibility into all future memory accesses, thus making it im-
practical. There have been several works [4, 8, 21, 43, 46, 47]
over the past several decades designing online algorithms that
closely emulate Belady. However, there remains a fundamen-
tal gap between the performance of online algorithms and
the optimal offline algorithm, due to the lack of an effective
mechanism to provide visibility into future memory requests
in an online setting.

The key observation Seer makes is that in the context of
network packet processors, where memory accesses inside the
processor are triggered almost entirely by incoming network
packets, there is an opportunity to provide the processor with
a very accurate visibility into the future memory accesses, if

only one could notify the processor of future incoming packets
well in advance before those packets eventually arrive at the
processor. The key insight that enables Seer to implement
this idea in practice is that packets experience delays in the
network, most prominently queuing delays, and while the
packets are waiting in the queue to be transmitted, one could
use that delay to their advantage by notifying the next hop
processors about the queued packets. More precisely, each
packet processor in Seer forwards the queuing information
at their respective egress queues to the neighbors connected
directly to that egress port, as each packet in the egress queue
will eventually arrive at the neighbor processor. Thus, by
notifying the neighbor about these packets in advance, Seer
allows the neighbors to make smarter caching decisions, e.g.,
prefetch the state the packet would access before the packet
eventually arrives.

However, implementing the above idea in practice requires
solving several key challenges.
Challenge # 1. Notify of future packet arrivals in a timely
manner with low bandwidth overhead. Notifying the neigh-
bor processor of future packet arrivals presents a fundamental
trade-off between notification rate and bandwidth overhead.
On the one hand, processor A would want to notify its neigh-
bor processor B as soon as possible of every packet destined
from A to B. However, doing this naively would require gen-
erating a control packet for every packet destined from A to
B, resulting in high bandwidth overhead. §3.1 describes how
Seer navigates this trade-off.

Challenge # 2. Only partial visibility into future packet ar-
rivals for caching decisions. Seer is designed for an online
system, which makes it impossible for a packet processor to
know about all future packet arrivals in advance. Fundamen-
tally, Seer could only provide a partial visibility into future
packet arrivals, and in practice, Seer only provides future vis-
ibility into packets queued at the previous hop. This presents
Seer with the unique challenge of designing a caching algo-
rithm that sits somewhere between the two known extremes of
optimal offline caching algorithm [5] that assumes full visibil-
ity into future packet arrivals, and practical caching heuristics
(e.g., [4,8,21,43]) that assume no visibility into future packet
arrivals. In §3.2, we present Seer’s caching algorithm.

Challenge # 3. Limited time budget for caching decisions.
Seer must be able to make fast caching decisions in terms
of what to prefect from DRAM and what to replace from
the cache. In particular, Seer must be able to make caching
decisions at the timescale of a single DRAM access time

1

(∼100 ns) in order to ensure that fetching state from DRAM
remains a bigger bottleneck to overall system performance
than Seer’s caching mechanism. In §4, we describe the im-
plementation of Seer’s cache manager that implements Seer’s
caching algorithms within a single DRAM access time.

We further implement and prototype Seer’s design on an
FPGA-based processor. Our evaluations show that our pro-
totype achieves up to 80% lower cache miss rate than LRU
while remaining within 20% of Belady. Finally, based on
large-scale network simulations, Seer achieves up to 65%
lower cache miss rate and up to 78% lower flow completion
times compared to LRU for key stateful network applications
over realistic datacenter workloads.

2 Seer: An Overview
The overall goal of Seer is to design a caching sub-system for
packet processors that minimizes cache misses. To achieve
this goal, the key idea in Seer is to provide packet processors
with a visibility into future incoming packets, in order to aid
them in making smarter caching decisions. To realize this
idea, Seer uses the following key insights.

Insight # 1. Visibility into future packet arrivals provides
visibility into future memory accesses.

Most stateful packet processing applications store per-flow
state, that are accessed while processing a packet from that
flow. Further, per-flow state are indexed in memory using the
flow id, which in turn, is a function of packet header fields,
e.g., a Layer 4 flow id is typically a hash over 5-tuple. Thus,
if a processor can know in advance about future incoming
packets, it will have the knowledge of future memory accesses.
It is well known that visibility into future memory accesses
can lead to an optimal cache replacement policy [5].

Insight # 2. Network delays can be leveraged to provide visi-
bility into future packet arrivals.

In a networked system, a packet eventually arriving at a packet
processor X typically goes through multiple hops of packet
processors before it arrives at X . At each hop, the packet can
experience a network delay in the form transmission, prop-
agation, processing, and queuing delay. The key insight in
Seer is to put this delay to good use by co-ordinating amongst
different packet processors to provide each other the visibil-
ity into future packet arrivals. To understand this, suppose a
packet p arrives at a packet processor Y at time t = 0, and is
destined to packet processor X after a further network delay
of T time units. Thus, if Y could notify X of p by time t1 < T ,
then X will get a visibility into a future packet arrival.

Insight # 3. Information about the order (time) of future
packet arrivals matters.

To fully utilize the visibility into future packet arrivals for
making smarter caching decisions, an accurate estimate of
the packet order, and more specifically, the time of future
packet arrival, is necessary. For example, the optimal cache

replacement algorithm, Belady [5], uses the information about
the time of future packet arrivals to replace the cache entry
that will be accessed farthest in the future.

Insight # 4. Queuing at the previous hop provides the most
accurate estimation of the time of future packet arrivals.

If two processors X and Y are separated by multiple hops, it
becomes extremely challenging to estimate when a packet p
arriving at X at time t would eventually arrive at Y , due to
non-deterministic queuing along the path from X to Y . Hence,
even if X could notify Y at time t about the future arrival of p,
it cannot provide an accurate estimate of the time of arrival
for p. In fact, in the worst-case p could be dropped along
the path from X to Y and may never arrive at Y . As a result,
Seer relies only on directly connected neighbors to provide
the information about future packet arrivals. When X and Y
are directly connected, X could accurately calculate when
a packet queued at X would arrive at Y . Consider an egress
queue at X directly connected to Y with B bytes of queued
data. When a packet p of size P bytes arrives at the queue at
time t, it will arrive at Y at time T = t +(B+P)/L+ ε time
units, assuming a FIFO queue, where L is the link speed and
ε is the propagation delay.

Insight # 5. Even a small amount of queuing at the previous
hop is sufficient to provide significant gains in Seer.

We illustrate this insight using an example. Consider an ex-
treme case of zero queuing, where an MTU-sized packet p
arrives at t = 0 in an empty egress queue of processor X .
Over a 100 Gbps link, it would take 120 ns to transmit this
packet. Thus the packet will reach the next hop processor Y
at t = 120+ ε ns, where ε is the propagation delay. Hence, if
Seer could notify Y of the arrival of p at t = 0, Y could poten-
tially prefetch the state p would access from DRAM into the
cache before p reaches Y , assuming DRAM access time of
∼100 ns, thus avoiding a cache miss even in this extreme case
scenario of zero queuing. In practice, due to many-to-one (in-
cast) traffic pattern, bursty traffic, routing inefficiencies (e.g.,
ECMP [38]), and bandwidth oversubscription, the queueing
at the previous hop is typically large enough in practice to
provide significant gains in Seer. We validate this through
experiments in §6.

Putting it all together, Figure 1 shows the potential of Seer
in terms of minimizing cache misses over existing caching
mechanisms (e.g., LRU [43]) that lack visibility into future
packet arrivals.

3 Design
To realize the ideas discussed in §2 into practice, Seer relies
on two key design elements – (i) a low overhead notification
scheme between neighbor packet processors to notify each
other of future incoming packets in a timely manner, and (ii)
a cache manager that leverages the visibility into the future
packet arrivals to make smarter caching decisions at any given
time in terms of what state to prefetch to the cache and what

2

state(p1)
state(p4)

state(p2)
state(p1)
state(p4)

state(p2)
state(p1)
state(p3)

state(p2)
state(p4)
state(p3)

state(p1)
state(p4)

state(p2)
state(p1)
state(p4)

state(p2)
state(p3)
state(p4)

state(p2)
state(p3)
state(p4)

state(p2)
state(p3)
state(p4)

p1
t = 120

p2
t = 240

p3
t = 360

p4
t = 480

t = 120

p1 arrives
HIT

p2 arrives
MISSLRU

state(p4) replaced
following LRU

state(p2) fetched
to cache

t = 240 t = 360 t = 480

t = 120 t = 240 t = 360 t = 480

p3 arrives
MISS

state(p3) fetched
to cache

state(p1) replaced
following LRU

p4 arrives
MISS

state(p4) fetched
to cache

p1 arrives
HIT

state(p2) prefetched
to cache

p2 arrives
HIT

state(p1) replaced
as it will be accessed

farthest in the future (Belady)

state(p3) prefetched
to cache

p3 arrives
HIT

p4 arrives
HITSeer

Cache

Received Notifications about
future packet arrivals in Seer

state(p1)
state(p4)

Cache

Initial State at Processor B Timeline of Cache Accesses at Processor B

p1p2p3p4

Incoming
Packets from
Processor A

t = 0

t = 0

Figure 1: A toy example illustrating the potential of Seer in terms of minimizing cache misses over Least Recently Used (LRU) [43]
caching policy. Example assumes two directly connected processors A and B. Processor A has four packets p1, p2, p3, p4 in its
egress queue. Transmission delay of each packet is 120 ns and propagation delay is 0. In Seer, Processor B has already received
notifications from Processor A at time t = 0 about the future packet arrivals along with the expected time of arrival of each
packet. Seer is able to use this information to (i) effectively prefetch state into the cache well before the packets the would access
that state arrive (as done at t=120 and t =240), and (ii) apply Belady’s algorithm to replace a cache entry that will be accessed
farthest in the future (as done at t=240), to minimize cache misses.

state to evict and replace in the cache. In the following sec-
tions, we describe the design of the two of the aforementioned
design elements.

3.1 Notification Scheme
In order to notify the neighbor processor of future incoming
packets in a timely manner, Seer maintains a Future Packet
Information (FPN) queue for each of its egress queues, as
shown in Figure 2. Each FPN queue is a simple FIFO queue.
Every time a new packet is added to an egress queue, Seer
enqueues a corresponding FPN of the form <flow id, pkt size>
to the tail of the FPN queue. Here, flow id is the id of the
flow the packet is part of, typically calculated using a hash
over a subset of packet headers, e.g., hash of 5-tuple. Asyn-
chronously, for each egress port in parallel, Seer dequeues a
FPN from the head of one of its FPN queues, and sends it out
to the neighbor processor directly connected to that egress
port. A FPN queue is selected for dequeue only when all the
FPN queues with higher priority are empty (as shown for
egress port 2 in Figure 2). This ensures that the FPNs are
transmitted in the same order as respective packets.

Before sending out the FPN, Seer also adds another entry
to each dequeued FPN, namely the expected wait time before
the corresponding packet arrives at the neighbor processor.
Thus, the information communicated between the neighbors
for each future incoming packet includes <flow id, pkt size,
expected wait time>. The expected wait time for a packet is
calculated as follows.

Assume at the egress port P, the currently dequeued FPN
corresponds to a packet p in priority class i. Assume prior-
ity classes at port P range from 1 to k. Also assume that for
any two priority classes i and j, if i < j, then i has higher
priority. Next, let t j = total transmission delay of all packets
queued in priority class j (j ̸= i). ti = total transmission delay
of packet p plus all packets queued ahead of p in priority
class i. And tc = transmission delay of packet currently being
transmitted over port P. Here, transmission delay = packet
size / link bandwidth. Then the expected wait time for packet
p, tw = ∑

i−1
j=1 t j + ti + tc + ε, where ε is the propagation delay

between the directly connected neighbors (which is determin-
istic and can be calculated beforehand). This entire process
is illustrated in Figure 2. Once the FPN reaches the intended

3

p3.id, p3.sizep4.id, p4.size

p5.id, p5.sizep6.id, p6.sizep7.id, p7.size

p8.id, p8.sizep9.id, p9.size

p3p4

p5p6p7

p10p11

p14p13p8p9

p1p2

p3.id, p3.size
p3.tw = TD (p0) + TD (p1)
 + TD (p2) + TD (p3) + PD

<p3.id, p3.size, p3.tw>

p8.tw = TD (p15) + TD (p10)
 + TD (p11) + TD (p14)
 + TD (p13) + TD (p8) + PD

Egress Port 1

Egress Port 2

TD (p) = transmission delay
for packet p

PD = propagation delay

FPN
Queue

Packet
Queue

<p8.id, p8.size, p8.tw>

Pr
io

rit
y

C
la

ss
 1

Pr
io

rit
y

C
la

ss
 2

Pr
io

rit
y

C
la

ss
 1

Pr
io

rit
y

C
la

ss
 2

p0

p15

Figure 2: Illustrates the functioning of FPN queues in Seer.
It assumes the packet processor has two egress ports and
each port has two priority classes. Packets p0 and p15 are
currently being transmitted. It also assumes that the FPNs
corresponding to packets p1 and p2 have already been trans-
mitted via egress port 1, as well as FPNs corresponding to
packets p10, p11, p13 and p14 have already been transmitted
via egress port 2. The figure shows the next FPNs that will be
transmitted via egress ports, and the calculation of expected
time of arrival for each FPN as explained in §3.1.

neighbor, it can easily estimate the expected time of arrival
for packet p by simply adding tw to its current time.
Balancing timely notification and bandwidth overhead.
Seer needs to send a FPN corresponding to each packet in
the egress queue. However, if done naively, this could result
in high bandwidth overhead. The naive approach dictates
generating one control packet (of size equal to the minimum
allowed packet size) for each FPN. This could result in very
high bandwidth overhead for small packet sizes, where in the
worst-case, when all the packets are minimum sized packets,
the control packets could consume as high as half the total
bandwidth. One could potentially reduce this overhead by
batching multiple FPNs into a single control packet. However,
batching could result in delayed notifications, as Seer would
need to wait for as many packets as the batch size to arrive
before sending out the control packet. Ideally, Seer would like
to send notifications about future packet arrivals as soon as
possible, so that the caching algorithm (§3.2) at the neighbor
has as far visibility into the future packets arrivals as possible
while making caching decisions.

To overcome the aforementioned challenge, Seer uses the
insight of using Inter Packet Gap (IPG) bits to exchange FPNs.
An IPG is the minimum gap between consecutive packets dur-
ing transmission, as enforced by the communication protocol.
For example, IEEE 802.3ae standard for Ethernet enforces
a minimum of 96 bits of IPG between consecutively trans-

p0Packet Queue p1p2

p0p1p2

p1p2p3p4p5p6p7p8

p1p2p3p4p5p6p7p8p9

p2p3p4p5p6p7p8p9

p9

p0p1, p0
IPG

p7,……, p2

Control
packet

t = T1

t = T2

t = T3

p9, p8
IPG

p1

FPN Queue

Figure 3: Illustrates how Seer efficiently navigates the trade-
off between timely delivery of FPN to neighbor processor and
bandwidth overhead incurred. It assumes Seer only generates
a control packet when FPN queue size reaches 6 or beyond.
Also assumes that a control packet can carry up to 6 FPNs.
At t = T 1, since FPN queue size is less than 6, Seer uses IPG
to send FPN. As mentioned in §3.1, an IPG can carry at least
2 FPNs. Now suppose at t = T 2, egress port receives a burst
of 7 packets p3− p9 due to incast. Now the FPN queue size
exceeds 6, and hence Seer generates a control packet that
can batch 6 FPNs, p2− p7, while the remaining two FPNs,
p8− p9, can be carried in IPG. Thus, within just two packet
transmission times, the neighbor knows about all the incoming
packets. And this comes at the bandwidth overhead of just
1 control packet. Instead, if we had only used IPG, it would
have resulted in zero bandwidth overhead, but it would have
taken five packet transmission times to notify the neighbor
of all incoming packets. Finally, if we had used the classic
approach of control packets only with, say, a batch size of
6, to send FPN, then the algorithm would have waited till
t = T 2 before transmitting FPNs p0− p5 in 1 control packet,
and again would keep waiting at t = T 3 for two more packets
to arrive so it could batch and send the next 6 FPNs. Thus,
this approach would not only require 1 extra control packet
compared to Seer, but would also add high latency in the
delivery of the FPN.

mitted Ethernet packets. By default, these bits are all set of
0 (called idle bits) by the physical layer of the transmitter,
and are only visible at the physical layer of a directly con-
nected receiver, which removes the idle bits before sending
the packet to higher layers. Further, Ethernet continuously
sends idle bits at line rate even when there are no Ethernet
packets to send.

Seer repurposes the idle bits in IPG by overwriting the
default zeros with FPNs. This is in the same spirit as other
prior works that have repurposed IPG for designing systems
such as a covert channel [19], a bandwidth estimator [42],
and a clock synchronization protocol [18]. In Seer, the key

4

advantage of using IPG is that it allows Seer to exchange
FPN between neighbors at zero bandwidth overhead. More
precisely, assuming a minimum of 96 bits of IPG as enforced
in the Ethernet, and FPN size of 48 bits (the breakdown is
described in §5.2), Seer could exchange two FPNs per packet
transmission time. Thus, given a static queue size of k, the
FPN information about all the k packets in the queue will
be received at the neighbor by the time k/2th packet reaches
the neighbor. Another thing to note is that 96 bits is only the
minimum IPG in Ethernet, resulting when packets are being
sent at line rate. The IPG will be larger (thus allowing Seer to
send even more information at zero bandwidth overhead) at
lower packet transmission rates.

Finally, to accelerate the notification process even further,
Seer uses the insight that in scenarios where the FPN queue
size grows large, one could batch those FPNs in a single
control packet without incurring the batching delay. Of course
this would result in bandwidth overhead, but the amount of
overhead can be controlled by tuning how often Seer generates
these control packets. In particular, Seer only generates a
control packet when the FPN queue size exceeds m entries
and at least t time units have elapsed since the last control
packet was generated. Otherwise, Seer exchanges FPN using
IPG. We tune the values of m and t in §6. Figure 3 illustrates
the overall algorithm used by Seer to exchange FPN between
neighbor processors.

3.2 Cache Manager
The role of Seer’s cache manager is to use the received FPNs
to make smarter caching decisions. The overall objective is
to minimize cache misses. Seer’s cache manager achieves
this using a novel prefetching and cache eviction algorithm
as described below.
Assumptions. Seer assumes the entire per-flow state is stored
in DRAM as a key-value store indexed by flow id. The cache
is a k-way set-associative cache [37] storing the key (flow id)
and value (flow state) pairs for a subset of flows in DRAM.
When k=1 the cache would reduce to a direct-mapped cache,
and when k=N where N is the cache size, the cache would
reduce to a fully-associative cache.
Data structures. The key data structure in Seer’s cache man-
ager is a set of queues, one per ingress port, storing the re-
ceived FPNs from its neighbors. The queue corresponding to
ingress port i is shown as Qi in Algorithm 1. On receiving
a FPN of the form <m.id, m.size, m.twait> on ingress port i,
Seer first calculates the expected time of arrival for the cor-
responding packet, tarrival = tcurr +m.twait , where tcurr is the
current time at the receiver. Seer then adds the updated FPN
<m.id, m.size, m.tarrival> to the queue Qi. Finally, Seer also
maintains a global queue, shown as X in Algorithm 1, that
stores any FPN whose corresponding flow state has already
been (pre)fetched to the cache but that state has not yet been
accessed by the packet corresponding to the FPN.
Prefetching algorithm. The visibility into future incoming

packets provides Seer the opportunity to prefetch state from
DRAM to the cache before the packets that will access that
state arrive at the processor, thus minimizing cache misses. To
achieve this, Seer prefetches the states in the order of increas-
ing expected time of arrival of packets that will access those
states. Algorithm 1 describes Seer’s prefetching algorithm in
its entirety. It is an iterative algorithm that iterates over the
queues Qi (lines 8-9 in Algorithm 1). In each iteration, the
algorithm finds the FPN with the minimum tarrival across all
the queues Qi (lines 11, 18, 19 in Algorithm 1) and whose
corresponding flow state is not in the cache (lines 14, 15 in
Algorithm 1). It then fetches the corresponding flow state
from DRAM to the cache, provided the cache is not full (line
27 in Algorithm 1). In case the cache is full, Seer first calls
its cache eviction algorithm (lines 20-21 in Algorithm 1) to
evict an entry from the cache. If the cache eviction algorithm
succeeds, Seer replaces the evicted entry with the fetched flow
state from the DRAM (lines 22, 24 in Algorithm 1).

One key thing to note in Algorithm 1 is that it does not
destroy an FPN immediately after the corresponding flow
state has been fetched to the cache. Instead, it stores all such
FPNs in a separate queue, X (lines 12-13, 23 in Algorithm 1),
which is used by Seer’s cache eviction algorithm as described
below. An FPN is finally removed from all the queues and
destroyed once the corresponding flow state has been accessed
in the cache (lines 31-34 in in Algorithm 1).
Cache eviction algorithm. The cache eviction algorithm is
triggered when Seer tries to add an entry to the cache, but
the cache is full. More specifically, the eviction algorithm
applies to a "cache set" (shown as s in Algorithm 2) under
set-associative caching. In a k-way set-associative cache, a
cache set size is k cache lines.

Intuitively, Seer’s cache eviction algorithm tries to emulate
the optimal cache eviction algorithm for minimizing cache
misses, namely the Belady’s algorithm [5]. Belady evicts the
cache entry that will be accessed farthest in the future. How-
ever, unlike Belady, which assumes full visibility into the
future requests, Seer only has a partial view of the future, i.e.,
at any given time, Seer only knows about a small set of fu-
ture incoming packets (namely, the packets that are currently
queued at its neighbor). Thus, it may be possible that there
are entries in the cache for which Seer has no knowledge of
when those entries will be accessed in the future (i.e., there is
no received FPN in Seer’s queue corresponding to the packet
that will access that cache entry). Thus, Seer’s cache eviction
algorithm first separates all entries in the cache set into two
sets – set A (line 3 in Algorithm 2) which includes all the
entries in the cache set for which tarrival is known, and set B
(line 4 in Algorithm 2) which stores all the remaining entries
in the cache set. Further, Seer makes an assumption that cache
entries in B will be accessed later than the entries in A. Based
on that, Seer prioritizes set B over set A for eviction (line 7
in Algorithm 2). To evict an entry from set B, Seer relies on
some default caching heuristic, such as LRU [43] (line 6 in

5

Algorithm 2). On the other hand, to evict an entry from set A,
Seer uses Belady’s algorithm (lines 8-14 in Algorithm 2).

An interesting consequence of Seer’s design is that it may
result in scenarios where the cache eviction algorithm fails to
evict an entry from a full cache set, thus aborting the current
state fetch from DRAM. Something like this wouldn’t be
acceptable in typical caching algorithms, where a fetch from
DRAM is typically triggered when the corresponding accesss
request has already arrived and waiting. However, in Seer, all
states are prefetched to the cache and that too in the order
of their tarrival . Thus, if currently every entry in the cache set
has tarrival less than the entry currently being considered to
be fetched from DRAM and replace an entry in the cache,
Seer does not evict any existing entry in the cache (lines 10-
13 in Algorithm 2) and the fetch is aborted. This is in the
spirit of Belady, where the state that will be accessed farthest
in the future (in this case, the state that was currently being
considered for a fetch from DRAM) does not sit in the cache.

4 Implementation
In this section, we describe the implementation Seer’s cache
manager. We start by first discussing the performance goals
for the cache manager, followed by an implementation that
achieves those goals.
Performance goals. Seer’s cache manager operates itera-
tively, and in each iteration it can have three potential per-
formance bottlenecks – (i) time taken to decide what flow
state to prefetch (tpre f etch) , (ii) time taken to evict a cache
entry (tevict), and (iii) time taken to fetch the flow state from
DRAM into the cache (tDRAM). Here, prefetch decision and
eviction need to happen sequentially in each iteration, but
they both can be parallelized with DRAM fetch from the pre-
vious iteration. Thus the goal of Seer’s implementation is to
ensure that tpre f etch+ tevict ≤ tDRAM , so that the DRAM access
time, and not the cache management mechanism, remains the
bottleneck to overall performance of Seer’s cache manager.
Further, we also want to ensure that the received FPNs are
added to the respective queues in the cache manager in ideally
O(1) time, so that the prefetch and eviction algorithms get
access to the FPNs as soon as they arrive at the processor, thus
giving Seer maximum possible time window to prefetch the
corresponding states before the corresponding packets arrive.
Primitives. Next, we highlight the key primitives needed to
carry out the key operations in Seer’s prefetching and eviction
algorithms.

1. max-min(Q): To get the max (line 9 in Algorithm 2) or
the min (line 11 in Algorithm 1) entry in a queue Q.

2. min(Y1,Y2,,YP): To get the min entry (line 18 in Algo-
rithm 2) in an un-ordered set of entries Yi, i=1 to P.

3. intersect(S1, S2): To get the entries present in both sets S1
and S2 (line 3 in Algorithm 2).

4. difference(S1, S2): To get the entries present in set S1 but
not in set S2 (line 4 in Algorithm 2).

Algorithm 1 Seer’s Prefetching Algorithm

1: P: number of ingress ports
2: m: received FPN <m.id, m.size, m.tarrival>
3: Sm: k-way set associative cache to store <m.id, value>
4: sm: cache set in Sm to store <m.id, value>
5: Qi: queue storing received FPNs on ingress port i
6: X : queue storing FPNs whose corresponding flow state

has been fetched to the cache but not yet accessed
7: X = {}
8: while True do
9: for i = 1 to P do in parallel:

10: Yi← NULL
11: m← entry in Qi with minimum tarrival
12: if m.id ∈ sm then
13: Remove m from Qi and add it to X
14: else
15: Yi ← m
16: end if
17: end for
18: idx← index in Y with minimum tarrival
19: e← Yidx
20: if se is full then
21: Evict an entry from se using Algorithm 2
22: if Algorithm 2 succeeds then
23: Remove e from Qidx and add it to X
24: Issue a fetch request for e.id from DRAM
25: end if
26: else
27: Issue a fetch request for e.id from DRAM
28: end if
29: end while
30:
31: Asynchronously do:
32: if flow state for m.id is accessed in the cache then
33: Remove m from X
34: end if

Algorithm 2 Seer’s Cache Eviction Algorithm

1: s is the cache set under eviction
2: e.id is the flow id being considered for fetch from DRAM
3: A← {x.id ∈ s: ∃m s.t. x.id == m.id and m∈

⋃P
i=1 Qi∪X}

4: B← {x.id ∈ s: x.id /∈ A}
5: if B not empty then
6: Replace x.id ∈ B using a default heuristic, e.g., LRU
7: return Success
8: else
9: m.id← entry in A with maximum tarrival

10: if e.tarrival < m.tarrival then
11: Evict m.id from A
12: return Success
13: end if
14: end if
15: return Failure

6

Finally, we also need a primitive to add FPNs to a queue.

5. add(m,Q): To add an element m into queue Q.

We bundle primitives 1, 2, and 5 into order primitives and
primitives 3, 4 into set primitives. Next, we describe the im-
plementation of both sets of primitives in Seer.
Implementing order primitives. To find the minimum el-
ement over an un-ordered set of P elements, the best one
can do fundamentally is O(log(P)) time. Thus, in Seer, we
implement min(Y1,Y2,,YP) in log(P) clock cycles.

Next, we first discuss the implementation of order prim-
itives over a queue (primitives 1 and 5). The natural data
structure for this would be a priority queue, which could re-
turn max/min in O(log(N)) time, where N is the queue size.
However, it would also take O(log(N)) time to add an ele-
ment to the queue, which is higher than our performance goal.
To make matters even worse in Seer, addition of an element to
a queue can trigger an update of value (over which min/max
is calculated) for n other elements in the queue, thus resulting
in an added O(n(log(N)) time to re-insert each updated ele-
ment to the queue (O(N(log(N))) in the worst-case). This is
primarily because of the presence of multiple priority classes
in modern packet processors. A packet p1 in a higher priority
class will be transmitted before a packet p2 queued in some
lower priority class, even if p2 arrived before p1. As a result,
the expected time of arrival field in the received FPN corre-
sponding to p2 will need to be updated once the FPN for p1
arrives at a later time. This update can be done by adding
the transmission delay of p1 to p2’s current expected time of
arrival, i.e., p2.tarrival += p1.size / link bandwidth. All this is
illustrated in Figure 4.

Seer solves this challenge by replacing the priority queues
with fully ordered queues. A fully ordered queue maintains
the invariant that the queue is always sorted (by tarrival in Seer)
even under additions and updates. This automatically reduces
the time complexity for min/max operations 1 clock cycle.
Further, to have a fast implementation for adds and updates,
Seer implements a fully ordered queue of size N using N flip-
flops, which allows parallel access to each of the N elements
in the queue. To add an element m to the queue, Seer first
locates the right location in the queue to add m that would still
keep the queue sorted. This can be done in one clock cycle by
comparing the tarrival value for m against the tarrival values of
each entry in the queue in parallel. Once the right location has
been identified, Seer adds m to that location and shifts the rest
of the entries in the queue in parallel, again requiring only 1
clock cycle. Further, parallel access also allows Seer to update
the tarrival values of multiple elements in the queue (namely,
all elements behind m in the queue) in just 1 clock cycle. Note
that in Seer, the tarrival values of the existing elements are all
updated by the same amount (namely, the transmission delay
of m), and hence their relative positions in a fully ordered
queue will not change. So, Seer does not need to re-insert all
the updated elements. This entire design is an adaptation of

p3p4

p2p5

p3p4

p1

FPN
Queue

Pr
io

rit
y

C
la

ss
 1

Pr
io

rit
y

C
la

ss
 2

Pr
io

rit
y

C
la

ss
 1

Pr
io

rit
y

C
la

ss
 2

p1.id,
p1.size

p1.t = 10

Initial State

New State

Egress Ingress

Egress Ingress

Update Update

current time = 0

p2.id,
p2.size

p2.t = 20

p3.id,
p3.size

p3.t = 30

p2.id,
p2.size

p2.t = 20

p3.id,
p3.size

p3.t = 40

p4.id,
p4.size

p4.t = 50

p5.id,
p5.size

p5.t = 30

current time = 10
<p5.id, p5.size,
p5.t_wait = 20>

p2

p1

p4.id,
p4.size

p4.t = 40

curr time +
p5.t_wait

Figure 4: Illustrates that with multiple priority classes, adding
an FPN to the queue at receiver may result in updating other
existing entries in the queue. Assumes the transmission delay
for each packet is 10 time units and propagation delay 0.
Initially, the FPNs for packets p1− p4 were all received at
the receiver at receiver time 0. Then at some later time, packet
p5 arrived at the sender, and its corresponding FPN was
received at the receiver at receiver time 10. Since p5 arrived
in a higher priority class, it will be transmitted right after p2
and before p3, p4. Thus, the wait time for p5 is only 20 time
units (sum of transmission delays of p5 and p2). But it also
pushes the transmission of p3, p4 back by 10 time units (equal
to p5’s transmission delay). Hence, the current expected time
of arrival for p3, p4 need to be updated at the receiver, by
adding to them the transmission delay of p5.

the classic parallel compare-and-shift architecture [23] that
has also been used recently in other contexts, such as packet
scheduling [28,32] and filtering [29]. Overall, with an ordered
queue, Seer can implement max-min(Q) in 1 clock cycle and
add(m,Q) in 3 clock cycles (which also includes the updates
triggered by an add).

Implementing set primitives. Implementing the queues
in Seer’s cache manager using flip-flops also helps with
fast implementations of the two set primitives, namely
intersect(S1,S2) and difference(S1,S2). In Seer, S1 is the
cache set of size k for a k-way set-associative cache. Imple-
mentation of the cache itself is beyond the purview of Seer.
We assume the cache is implemented using SRAM and that it
requires O(n) time to locate an entry in a cache set of size n
(respectively, O(1) time for n=1, i.e., a direct-mapped cache,
and O(N) time for a fully-associative cache with n=N (total
cache size)). On the other hand, set S2 in Seer refers to queues
Qi and X in Algorithm 1, which we implement using flip-flops
as discussed above. Also, in Seer the intersect and difference

7

Queue size
FPGA ASIC

Clock Logic Clock Area
N = 128 170 MHz 8% 4.2 GHz 0.012 mm2

N = 256 150 MHz 15% 4.1 GHz 0.022 mm2

N = 512 120 MHz 30% 3.7 GHz 0.042 mm2

N = 1024 100 MHz 60% 3.5 GHz 0.085 mm2

N = 2048 – >100% 3.4 GHz 0.167 mm2

N = 4096 – >100% 3.2 GHz 0.324 mm2

Table 1: Clock speed and resource usage for Seer’s prototype
with varying size of the fully ordered queue data structure.

operations are done together and over the same sets S1 and S2
(lines 3-4 in Algorithm 2). Thus, Seer jointly implements the
two primitives as follows.

Seer iteratively compares each flow id f in S1 with all the
entries in each Qi and X in parallel. Since flip-flops allow
parallel access, this can be done in 1 clock cycle. If f matches
the id of an entry m in Qi or X , Seer adds it to set A (the
output of intersect(S1,S2)), else it adds it to set B (the output
of difference(S1,S2)). Thus, it takes a total of k clock cycles
to execute both the intersect and difference primitives, where
k is the cache set size. Additionally, Seer also calculates the
max tarrival within set A (line 9 in Algorithm 2) in parallel
while building set A. Essentially, while adding an entry m
to set A, Seer updates the current max tarrival value, Tmax, to
max(Tmax, m.tarrival), and accordingly updates the flow id with
the current max tarrival , Fmax to m.id if m.tarrival > Tmax. Thus,
after the k iterations, Fmax stores the flow id in set A with max
tarrival . Hence, Seer could execute the entire cache eviction
algorithm in k clock cycles.
Overall performance. Overall, Seer takes 3 clock cycles to
add an FPN to a queue, and for prefetching and eviction, it
takes (i) log(P)+1 clock cycles to find the FPN with mini-
mum tarrival to prefect from DRAM, and (ii) k clock cycles in
the best case or k clock cycles plus the latency of the default
caching heuristic (for LRU the best known implementation
has O(1) time) in the worst case, to evict an entry from the
cache. The tpre f etch+ tevict = log(P)+k+1 clock cycles. The
value of k, the cache set size, is typically set to 4–8 for most
modern caches [39]. The value of P, number of ports, varies
from 2–4 for NIC and FPGA-based processors processors
to few 100s for switch processors. Assuming clock rates of
100–200 MHz as typically observed for FPGA-based packet
processors (§5) and clock rates of around 1 GHz as typically
observed for ASIC switches [30, 32], the total tpre f etch + tevict
time would be 30–100 ns for FPGA-based packet processors
and around 16 ns for ASIC switches, thus within our budget
of the DRAM access time, tDRAM , which is around 100 ns.

5 Prototype
We prototype Seer on an Altera Stratix V [36] FPGA com-
prising 234 K Adaptive Logic Modules (ALMs), 52 Mbits
(6.5 MB) SRAM, and four 10 Gbps network ports. Our proto-

Physical Medium Dependent (PMD)

Physical Medium Attachment (PMA)

Encoder

Seer TX

Scrambler

Gearbox

Decoder

Seer RX

Decrambler

Blocksync

Physical Coding Sublayer (PCS)

XSBI 644.53125 MHz

Physical Layer (PHY)

Reconciliation Sublayer (RS)

Media Access Control (MAC)

XGMII 156.25 MHz

FI
FO

s

O
rd

er
ed

 q
ue

ue
(fl

ip
-fl

op
s)

Recvd
FPN

logic

Cache Manager

id2, val2id1, val1

id6, val6id3, val3

id1, val1
id2,val2

id100, val100

id98, val98
id99,val99

2-way set assoc cache

DRAM Fetch

Evict

2 Priority Classes

FP
NPK

T

Egress Ingress

IPG

Figure 5: Seer’s FPGA prototype. Seer’s components are
shown in cyan colored boxes.

type is written in System Verilog (∼1200 LOCs). The archi-
tecture of the prototype is shown in Figure 5.

To implement Seer’s notification scheme using the Inter
Packet Gap (IPG) as described in §3.1, we modify Ethernet’s
physical layer (PHY) as shown in Figure 5. Once the Physical
Coding Sublayer (PCS) in PHY receives a packet from higher
layers to transmit, the Encoder module in PCS reformats
the packet into a sequence of one /S/ block (Start of an
Ethernet frame), multiple data blocks, and one /E/ block
(End of an Ethernet frame). PCS inserts at least twelve 8-bit
idle characters (/I/) following the /E/ block of an Ethernet
frame. The /E/ block can have anywhere between 0 to 7
/I/ characters, and PCS inserts a special /E/ block with
8 /I/ characters to make up the minimum requirement of
twelve /I/ characters. Note that if there are no Ethernet

8

frames to transmit, PCS continuously keeps transmitting /E/
blocks. The /T/ and /E/ blocks are accessible as part of
the output from the Encoder on the TX path and input to
the Decoder on RX path. Hence, we implement Seer’s logic
after the Encoder/Decoder modules. On the TX path, Seer
creates a separate data path (shown using red lines in Figure 5)
that bypasses the normal data path for Ethernet frames, and
connects Seer’s PHY module directly to the FPN FIFO queues.
If any of the FPN queues are non-empty, Seer immediately
dequeues an FPN from the queue and overwrites the outgoing
/I/ characters with the FPN. On the RX path, when Seer
receives a /T/ or an /E/ block, it extracts the FPN from the
bits corresponding to the /I/ characters in those blocks, and
overwrites those bits with all 0’s as required by the Ethernet
standard such that higher network layers do not know about
the existence of the Seer sublayer. Seer adds the extracted FPN
to the fully ordered queue of FPNs through another separate
data path (shown using a red line in Figure 5) bypassing the
normal Ethernet frame’s data path.

Besides the notification scheme, we also implement Seer’s
cache manager based on the algorithms and primitives de-
scribed in §3.2 and §4.

5.1 Resource Usage
The most resource consuming component of Seer’s design
(and also the bottleneck for clock speed) is the fully ordered
queue used to store the received FPNs. This is the price we
way for parallelism via flip-flops. Table 1 shows Seer’s overall
clock speed and resource consumption for varying sizes of
the ordered queue. We also synthesized Seer’s RTL design
on Synopsys Design Compiler tool [40] using an open-source
15 nm process technology [20], and report the results in Ta-
ble 1. On the FPGA, we are unable to synthesize a design
beyond queue size of 1024, as we run out of FPGA logic re-
sources. On the ASIC however, Seer is able to support much
larger queue sizes with clock rates in excess of 3 GHz. To put
this in perspective, modern switching chips typically run at
around 1 GHz clock rates [30, 32]. Chip area increases lin-
early with queue size. Note that the numbers reported are
for a single queue. If the processor has multiple ports, the
area usage will be multiplied by the number of ports, as Seer
maintains one queue per ingress port. Thus, for N = 4096,
and 100 ports, the total area consumed will be 32 mm2. This
is between 5%–10% overhead for switching chips whose chip
areas vary from 300–700 mm2 [7].

5.2 Microbenchmark
We ran a set of microbenchmarks to evaluate the performance
of our prototype shown in Figure 5.
Setup. We directly connect two FPGAs using an optical cable
of length 2 m (propagation delay of around 10 ns). At the first
FPGA, we implement two priority classes at the egress. We
use a packet generator on the FPGA to feed the packets into
the priority classes. Packet generator randomly decides which

Figure 6: Cache miss rate for Seer against LRU and Belady for
different packet sizes. For each data point, the cache miss rate
values are normalized independently w.r.t. the corresponding
cache miss rate value for Seer.

Figure 7: Cache miss rate for Seer against LRU and Belady
for different packet generation rates. For each data point, the
cache miss rate values are normalized independently w.r.t. the
corresponding cache miss rate value for Seer.

priority class to put a packet into. Packets arrive according
to a Poisson process. We assign a random flow id to each
packet, chosen uniformly at randomly from 0 to 100 K, thus
emulating a 100 K flows. At the second FPGA, we populate
the DRAM with 100 K flow state entries. Each flow state is
512 bits. We implement a 2-way set associative cache size
2 MB in SRAM (can cache around 30 K flow states).
Parameters. We set the default packet size to 256 B. The
default average rate of packet generation is 6 Gbps. The FPN
queue size at both the egress and ingress is set to 256 entries.
The size of each FPN is 48 bits – 20 bits for flow id, 11 bits
for packet size, and 17 bits for twait . Thus we can send two
FPNs in the minimum sized IPG. The control packet size is
64 B, and we send a control packet only when the FPN queue
size at egress exceeds 8 entries and at least 5 us have elapsed
since the last control packet was sent (to limit the bandwidth
overhead to 1%).
Evaluation metric. We use cache miss rate for evaluation.
Baselines. We use LRU [43] and Belady [5] as the baselines.
Experiments. Figure 6 shows the cache miss rate against
packet size. Seer outperforms LRU for all packet sizes, but
the gains decrease for larger packet sizes (80% gain for 64B

9

(a) Incast workload. (b) Permutation workload. (c) Websearch workload. (d) Datamining workload.

Figure 8: Illustrates the cache miss rate in Seer relative to LRU and Belady for different workloads and packet sizes. For each
packet size, the cache miss rate values are normalized independently w.r.t. the corresponding cache miss rate value for Seer.

vs. 20% for 1500B). This is because with smaller packet sizes,
the number of packets in a queue of given size would be
higher. This works in favor of Seer, as Seer receives much
higher number of FPNs within a given time window, thus
allowing Seer to make more informed decisions in terms of
prefetching and eviction. Another thing to note is that Seer
performs very closely to Belady for all packet sizes (within
20% for all packet sizes).

Figure 7 shows the cache miss rate against different packet
generation rates. As the packet generation rates increase, Seer
outperforms LRU by a bigger margin. This is due to the fact
that at higher packet generation rate, there is more chance of
queuing at the egress, thus providing Seer with more visibility
into the future packet arrivals. Seer again performs within
20% of Belady for all packet generation rates. Further, Seer
performs much closer to Belady at higher packet rates (within
5% at 9G). This is again because at higher packet rates, Seer
gets much more visibility into future packet requests due to
higher queuing, thus pushing it closer to Belady.

6 Evaluation
In this section, we do large scale network simulations to eval-
uate the performance of Seer for two key state-intensive ap-
plications, namely L4 load balancing [22] and intrusion de-
tection [44].
Setup. We simulate a two-tier Fattree topology with 16 spine
switches, 9 ToR switches, and 16 hosts per ToR switch for
a total of 144 hosts. All links in the network are 100 Gbps.
Per-hop propagation delay is 100 ns. Each host in the network
is running DCTCP [1] congestion control and each switch
supports ECN. Switches do ECMP [38] load balancing.
Applications. Each spine switch in the network is run-
ning a stateful L4 load balancing application, similar to
SilkRoad [22]. Each ToR switch in the network is running
an intrusion detection algorithm [44], which stores several
per-flow states in the switch, e.g., packet counts, packet inter-
arrival times, etc. By default, we assume the cache in each
switch can store up to 20% of the flow states.
Workloads. We evaluate Seer against a variety of workloads
– (i) A Permutation workload, where each host sends and
receives exactly one flow. (ii) An incast workload, where we

select a rack for incast destination and all other hosts in the
network send to the hosts in the incast rack. (iii) Websearch
workload [1]. and (iv) Datamining workload [11]. Websearch
and Datamining are representative datacenter workloads, and
are both heavy-tailed, meaning that most of the flows are short
but most of the bytes are in the long flows. We generate flows
from these workloads using a Poisson arrival process for a
target network load of 0.6.

Baselines. We evaluate Seer against a variety of state-of-the-
art caching algorithms – LRU [43], LFU [8], ARC [21], S3-
FIFO [46], SIEVE [47]. We also evaluate Seer against the
optimal offline algorithm, Belady [5].

Evaluation metrics. We evaluate Seer against two key eval-
uation metrics – (i) cache miss rate aggregated across all
the switches running the two stateful applications described
above, and (ii) flow completion time (FCT).

Parameters. The FPN queue size at both the egress and
ingress is set to 1024 entries. The size of each FPN is 48 bits
– 20 bits for flow id, 11 bits for packet size, and 17 bits for
twait. Thus we can send two FPNs in the minimum sized IPG.
The control packet size is 64 B, and we send a control packet
only when the FPN queue size at egress exceeds 8 entries and
at least 500 ns have elapsed since the last control packet was
sent (to limit the bandwidth overhead to 1%).

Experiments. Figure 8 shows that Seer incast workload, Seer
significantly outperforms LRU for all packet sizes. This is due
to the fact that incast workload results in significant queue-
ing in the network, which allows Seer to get better visibility
into future packet arrivals. In contrast, for the permutation
workload, Seer performs similarly to LRU, since this work-
load observes least queuing in the network, thus effectively
reducing Seer to LRU (the default caching algorithm in Seer
(Algorithm 2)). This is also the reason why for this workload,
the gap between the performance of Seer and Belady is largest.
Next, even for realistic datacenter workloads, namely Web-
search and Datamining, Seer significantly outperforms LRU
(by up to 65%) while remaining within 20% of Belady for all
packet sizes. Finally, there are two common trends across all
the four experiments. First, as the packet sizes increase, the
gains in Seer against LRU decreases. And second, the differ-

10

(a) Incast workload. (b) Websearch workload.

Figure 9: Illustrates the number of cache misses in Seer, LRU
and Belady for different cache capacities. The packet size
used is 64B.

ence in the performance of LRU and Belady increases with
higher packet sizes. As explained in §5.2, both of these trends
are because with smaller packet sizes, the number of packets
in a queue of given size would be higher, which allows Seer
to receive much higher number of FPNs within a given time
window, thus allowing Seer to make more informed decisions
in terms of prefetching and eviction.

Next, Figure 9 shows the performance of Seer with varying
cache capacities. As expected, as the cache size increases,
the number of cache misses decrease for both Seer and the
baselines. However, Seer performs consistently better than
LRU for all cache sizes. For the gains are more for smaller
cache sizes, but even for larger cache sizes, the gains are
significant. This is because even with a large cache size, LRU
is unable to avoid cold misses, where a flow state is fetched
to the cache for the first time. However, Seer can avoid such
misses due to its prefetching algorithm leveraging visibility
into future packets.

Next, Figure 10 shows the performance of Seer against
other state-of-the-art algorithms. Seer outperforms each algo-
rithm. LFU performs the worst, which is perhaps an indication
that frequency is not the right metric for caching in our envi-
ronment. All other algorithms use some variant of LRU, and
hence they all perform very similar to LRU. But ultimately,
all these algorithms are limited by the lack of future visibil-
ity, which both Seer and Belady exploits to gain much better
performance.

Finally, in Figure 11 we show the performance of Seer
in terms of flow completion time. The trends here are very
similar to the cache miss rate, which indicates strong co-
relation between the two metrics – higher cache miss rate in
the switches results in more latency and lower throughput for
flows, ultimately resulting in higher flow completion time.

7 Related Work
Optimal caching algorithms exist, most notably Belady’s algo-
rithm [5]. While a true implementation of Belady’s algorithm
is impractical as it requires seeing all future cache accesses,
Seer emulates it to best effort.

Many caching algorithms focus on simple implementations

(a) Incast workload. (b) Websearch workload.

Figure 10: Illustrates the cache miss rate in Seer relative
to different caching algorithms. The cache miss rate values
are normalized w.r.t. the cache miss rate value for Seer. The
packet size used is 64B.

(a) Websearch workload. (b) Datamining workload.

Figure 11: Illustrates the flow completion time in Seer relative
to LRU. The flow completion times have been normalized w.r.t.
to the flow completion time for Seer.

of queues based on varying recency metrics, such as LRU [43],
LFU [8], LRU-K [25], 2Q [14], ARC [21], SLRU [15], GDSF
[6], EELRU [33], LRFU [17], CAR [3], CLOCK-Pro [13],
TinyLFU [9], S3-FIFO [46], and SIEVE [47]. LRU orders a
queue based on how recently each entry has been accessed,
and evicts the oldest entry whenever cache replacement is
necessary. LFU is similar to LRU, however ordering is in-
stead based on how frequently each entry has been accessed
since entering the cache. LRU-K is an extension of the origi-
nal LRU concept, wherein all of the K most recent accesses
are considered, i.e. LRU-3 would consider each object’s 3
most recent accesses, and LRU-1 would be a simple LRU.
2Q further extends the LRU concept by utilizing two LRU
queues: the first for singly-accessed objects, which are then
moved to the second on repeat access. ARC is similar to 2Q,
using two LRU queues for singly and multiply-accessed en-
tries, adding a ghost LRU queue containing recently evicted
metadata to each, giving recently-evicted objects a second
chance at promotion to the second queue. SLRU is also simi-
lar to 2Q, except evictions from the second queue are instead
replaced into the first queue, giving multiply-accessed ob-
jects another chance before eviction. EELRU acts as a usual
LRU cache until many accesses occur in a short period of
time, after which eviction targets change from the least recent
entry to a pre-determined recency instead. LRFU combines

11

recency and frequency into a single value by combining the
times an object has been accessed with how recent those ac-
cesses were using some simple function. GDSF considers
that not all memory accesses are equally costly, and as such
optimizes based on the cost of accessing entries from memory.
CAR augments the CLOCK algorithm by using two pairs of
a CLOCK and an LRU, one pair of which is responsible for
tracking recency, and the other frequency. CLOCK-Pro is also
a CLOCK-based algorithm, evicting based on a metric called
reuse distance: the number of times other entries have been
accessed since its own last access. Tiny-LFU augments any
other arbitrary caching algorithm with an LFU-approximate
decision-making process for deciding between new poten-
tial cache entries and eviction victims, to mitigate the cache
space taken up by one-hit-wonders. S3-FIFO is similar to
ARC in concept, but differs in execution. Instead of managing
LRU queues, S3-FIFO manages three FIFO queues: a short
FIFO used to track singly-accessed objects, a large main FIFO
queue for frequently-accessed objects, and a ghost queue con-
taining recently evicted metadata. SIEVE simplifies this con-
cept further, using a single FIFO queue with a hand pointer,
iterating through the queue to decide eviction or reinsertion of
objects based on access frequency. These algorithms use LRU,
LFU, CLOCK, and FIFO queues to approximate Belady’s al-
gorithm. Though these algorithms improve cache efficiency
to varying degrees, they are naturally limited by their online
design, as being unable to make decisions based on future
cache accesses leaves much performance on the table. Seer
bridges the online-offline gap by forwarding caching informa-
tion ahead-of-schedule, thus better approximating Belady’s
algorithm.

In recent years, caching algorithms based on machine learn-
ing have grown in popularity, such as LHD [4], Raven [12],
LeCaR [41], CACHEUS [27], LRB [34], GL-Cache [45] and
HALP [35]. These are especially common in Web caching
applications. LHD uses ML to produce a statistical distribu-
tion for predicting hit probability based on object age, then
decides eviction victims based on predicted hit probability
and object size. Raven approximates Belady by predicting
future access time using an ML model called Mixture-Density
Network-based universal distribution estimation trained on
past accesses. LeCaR maintains an LRU and an LFU queue
called experts, then randomly picks which expert to base evic-
tion decisions on. The ML algorithm optimizes the probability
each expert is picked based on how often their use leads to
wrongful evictions. CACHEUS extends LeCaR by allowing
dynamic use of different caching algorithms rather than the
LRU/LFU pair LeCaR was based on. LRB approximates the
Belady MIN algorithm by training an ML model to predict
future access time based on randomly sampled old objects.
GL-Cache places cache entries in groups based on similarity,
then uses ML to determine which group of objects to evict
when necessary. HALP is a low-CPU overhead ML caching
algorithm optimized for Youtube’s content delivery network,

combining time between accesses, average time between ac-
cesses, frequency, and recency metrics to make caching de-
cisions. All of these algorithms serve their own purposes.
However, packet processors differ in many key ways from the
web servers where you would typically find these algorithms
in use. Most importantly, packet processors, such as switches
and router, possess far less computing power and have much
more stringent performance requirements than web servers,
making the type of computation required for this class of al-
gorithms far more challenging to implement. Further, several
of these algorithms rely on the historical data to make future
predictions, which may result in inaccurate results. In con-
trast, Seer provides a mechanism that provides very accurate
estimates of future packet arrivals.

Other unique caching solutions exist. One such solution is
Belatedly and its practical approximation MAD [2]. Belatedly
notes a key flaw in Belady’s algorithm, which is that mini-
mizing cache misses does not necessarily minimize cache
delay. We decided not to optimize for cache delays in Seer’s
design, leaving possible space for future research. Regardless,
MAD is a fully online caching algorithm, and hence could
potentially benefit from Seer’s design for future packet visi-
bility. Another solution is TEA [16], which presents a design
for extending switch memory by storing excess state in end
host server memory. This comes with high additional latency
overhead from reading/writing to remote memory. Further-
more, TEA lacks serialization guarantees under write-heavy
workloads, making it more suited to read-heavy workloads.
Yet another solution is Reframer [10], which intentionally
delays and reorders packets belonging to different flows to
reduce end host cache misses. However, re-ordering packets
in high-speed networks at line rate is extremely challenging,
not to mention the added delay in Reframer to wait for future
packets to arrive for re-ordering. As a result, Reframer is cur-
rently only implemented in software and is more suited for
improving end-host caching. In contrast, Seer’s ideas could
be applied to both in-network processors and end-host packet
processors.

8 Conclusion
We presented Seer which is a cahcing sub-system for packet
processors that provides visibility into future packet arrivals
by leveraging queuing delays in the network. We provided
novel prefetching and cache eviction algorithms leveraging
future visibilty into packets, and complemented that with
a extremely efficient cache manager design that can make
caching decisions within a single DRAM access time. Seer’s
design has been prototyped and implemented on an FPGA-
based packet processor. Based on large-scale network simula-
tions, Seer achieves up to 65% lower cache misses and up to
78% lower flow completion times compared to LRU caching
heuristic for key stateful network applications over realistic
datacenter workloads.

12

References
[1] Mohammad Alizadeh, Albert Greenberg, David A.

Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data Center
TCP (DCTCP). SIGCOMM, 2010.

[2] Nirav Atre, Justine Sherry, Weina Wang, and Daniel S.
Berger. Caching with Delayed Hits. SIGCOMM, 2020.

[3] Sorav Bansal and Dharmendra S. Modha. CAR: Clock
with Adaptive Replacement. FAST, 2004.

[4] Nathan Beckmann, Haoxian Chen, and Asaf Cidon.
LHD: Improving hit rate by maximizing hit density.
NSDI, 2018.

[5] Laszlo A. Belady. A study of replacement algorithms
for a virtual-storage computer. IBM Systems Journal,
1966.

[6] Pei Cao and Sandy Irani. Cost-Aware WWW Proxy
Caching Algorithms. USITS, 1997.

[7] Sharad Chole, Andy Fingerhut, Sha Ma, Anirudh Sivara-
man, Shay Vargaftik, Alon Berger, Gal Mendelson, Mo-
hammad Alizadeh, Shang-Tse Chuang, Isaac Keslassy,
Ariel Orda, and Tom Edsall. dRMT: Disaggregated
Programmable Switching. SIGCOMM, 2017.

[8] John Dilley and Martin Arlitt. Improving proxy cache
performance: Analysis of three replacement policies.
IEEE Internet Computing, 1999.

[9] Gil Einziger, Roy Friedman, and Ben Manes. TinyLFU:
A Highly Efficient Cache Admission Policy. ACM Trans-
actions on Storage, 2017.

[10] Hamid Ghasemirahni, Tom Barbette, Georgios P. Kat-
sikas, Alireza Farshin, Amir Roozbeh, Massimo Girondi,
Marco Chiesa, Gerald Q. Maguire Jr., and Dejan Kostić.
Packet Order Matters! Improving Application Perfor-
mance by Deliberately Delaying Packets. NSDI, 2022.

[11] Albert Greenberg, James R. Hamilton, Navendu Jain,
Srikanth Kandula, Changhoon Kim, Parantap Lahiri,
David A. Maltz, Parveen Patel, and Sudipta Sengupta.
VL2: A Scalable and Flexible Data Center Network.
SIGCOMM, 2009.

[12] Xinyue Hu, Eman Ramadan, Wei Ye, Feng Tian, and
Zhi-Li Zhang. Raven: Belady-Guided, Predictive
(Deep) Learning for in-Memory and Content Caching.
CoNEXT, 2022.

[13] Song Jiang, Feng Chen, and Xiaodong Zhang. CLOCK-
Pro: an effective improvement of the CLOCK replace-
ment. ATC, 2005.

[14] Theodore Johnson and Dennis Shasha. 2Q: A Low
Overhead High Performance Buffer Management Re-
placement Algorithm. VLDB, 1994.

[15] R. Karedla, J.S. Love, and B.G. Wherry. Caching strate-
gies to improve disk system performance. Computer,
1994.

[16] Daehyeok Kim, Zaoxing Liu, Yibo Zhu, Changhoon
Kim, Jeongkeun Lee, Vyas Sekar, and Srinivasan Seshan.
TEA: Enabling State-Intensive Network Functions on
Programmable Switches. SIGCOMM, 2020.

[17] Donghee Lee, Jongmoo Choi, Jong-Hun Kim, S.H. Noh,
Sang Lyul Min, Yookun Cho, and Chong Sang. LRFU:
a spectrum of policies that subsumes the least recently
used and least frequently used policies. IEEE Transac-
tions on Computers, 2001.

[18] Ki Suh Lee, Han Wang, Vishal Shrivastav, and Hakim
Weatherspoon. Globally Synchronized Time via Data-
center Networks. SIGCOMM, 2016.

[19] Ki Suh Lee, Han Wang, and Hakim Weatherspoon. PHY
Covert Channels: Can you see the Idles? NSDI, 2014.

[20] Mayler Martins, Jody Maick Matos, Renato P. Ribas,
André Reis, Guilherme Schlinker, Lucio Rech, and Jens
Michelsen. Open Cell Library in 15nm FreePDK Tech-
nology. ISPD, 2015.

[21] Nimrod Megiddo and Dharmendra S Modha. Arc: A
self-tuning, low overhead replacement cache. FAST,
2003.

[22] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun
Lee, and Minlan Yu. SilkRoad: Making Stateful Layer-4
Load Balancing Fast and Cheap Using Switching ASICs.
SIGCOMM, 2017.

[23] Sung-Whan Moon, Jennifer Rexford, and Kang G. Shin.
Scalable hardware priority queue architectures for high-
speed packet switches. Transactions on Computers,
2000.

[24] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan,
Prateesh Goyal, Venkat Arun, Mohammad Alizadeh, Vi-
malkumar Jeyakumar, and Changhoon Kim. Language-
Directed Hardware Design for Network Performance
Monitoring. SIGCOMM, 2018.

[25] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard
Weikum. The LRU-K Page Replacement Algorithm For
Database Disk Buffering. SIGMOD, 1993.

[26] Salvatore Pontarelli, Roberto Bifulco, Marco Bonola,
Carmelo Cascone, Marco Spaziani, Valerio Bruschi, Da-
vide Sanvito, Giuseppe Siracusano, Antonio Capone,

13

Michio Honda, Felipe Huici, and Giuseppe Siracusano.
FlowBlaze: Stateful Packet Processing in Hardware.
NSDI, 2019.

[27] Liana V. Rodrigues, Farzana Yusuf, Steven Lyons,
Eysler Paz, Raju Rangaswami, Jason Liu, Ming Zhao,
and Giri Narasimhan. Learning Cache Replacement
with CACHEUS. FAST, 2021.

[28] Vishal Shrivastav. Fast, Scalable, and Programmable
Packet Scheduler in Hardware. SIGCOMM, 2019.

[29] Vishal Shrivastav. Programmable Multi-Dimensional
Table Filters for Line Rate Network Functions. SIG-
COMM, 2022.

[30] Vishal Shrivastav. Stateful Multi-Pipelined Pro-
grammable Switches. SIGCOMM, 2022.

[31] Shan Sinha, Srikanth Kandula, and Dina Katabi. Har-
nessing TCPs Burstiness using Flowlet Switching. Hot-
Nets, 2004.

[32] Anirudh Sivaraman, Suvinay Subramanian, Mohammad
Alizadeh, Sharad Chole, Shang-Tse Chuang, Anurag
Agrawal, Hari Balakrishnan, Tom Edsall, Sachin Katti,
and Nick McKeown. Programmable Packet Scheduling
at Line Rate. SIGCOMM, 2016.

[33] Yannis Smaragdakis, Scott Kaplan, and Paul Wilson.
EELRU: simple and effective adaptive page replacement.
SIGMETRICS, 1999.

[34] Zhenyu Song, Daniel S. Berger, Kai Li, Anees Shaikh,
Wyatt Lloyd, Soudeh Ghorbani, Changhoon Kim,
Aditya Akella, Arvind Krishnamurthy, Emmett Witchel,
et al. Learning relaxed belady for content distribution
network caching. NSDI, 2020.

[35] Zhenyu Song, Kevin Chen, Nikhil Sarda, Deniz Altin-
buken, Eugene Brevdo, Jimmy Coleman, Xiao Ji, Pawel
Jurczyk, Richard Schooler, and Ramki Gummadi. Halp:
Heuristic aided learned preference eviction policy for
youtube content delivery network. NSDI, 2023.

[36] http://de5-net.terasic.com.tw. DE5-Net FPGA
Development Kit. Terasic, 2021.

[37] https://en.wikipedia.org/wiki/Cache_
placement_policies.
Cache Placement Policies. Wikipedia, 2023.

[38] https://en.wikipedia.org/wiki/Equal-cost_
multi-path_routing. Equal-cost multi-path routing.
Wikipedia, 2023.

[39] https://www.intel.com/content/dam/develop/
external/us/en/documents/architecture-
instruction-set-extensions-programming-
reference.pdf. Intel Architecture. Intel, 2023.

[40] https://www.synopsys.com/implementation-
and-signoff/rtl-synthesis-test/dc-
ultra.html.
DC Ultra RTL Synthesis. Synopsys, 2021.

[41] Giuseppe Vietri, Liana V. Rodrigues, Wendy A. Mar-
tinez, Steven Lyons, Jason Liu, Raju Rangaswami, Ming
Zhao, and Giri Narasimhan. Driving cache replacement
with ML-based LeCaR. hotStorage, 2018.

[42] Han Wang, Ki Suh Lee, Erluo Li, Chiun Lin Lim,
Ao Tang, and Hakim Weatherspoon. Timing is Every-
thing: Accurate, Minimum Overhead, Available Band-
width Estimation in High-Speed Wired Networks. IMC,
2014.

[43] Maurice V Wilkes. Slave memories and dynamic stor-
age allocation. IEEE Transactions Electronic Comput-
ers, 1965.

[44] Bruno Missi Xavier, Rafael Silva Guimarães, Giovanni
Comarela, and Magnos Martinello. Programmable
Switches for in-Networking Classification. INFOCOM,
2021.

[45] Juncheng Yang, Ziming Mao, Yao Yue, and K. V.
Rashmi. GL-Cache: Group-level learning for efficient
and high-performance caching. FAST, 2023.

[46] Juncheng Yang, Yazhuo Zhang, Ziyue Qiu, Yao Yue,
and K. V. Rashmi. FIFO Queues are ALL You Need for
Cache Eviction. SOSP, 2023.

[47] Yazhuo Zhang, Juncheng Yang, Yao Yue, and Ymir Vig-
fusson. SIEVE is Simpler than LRU: an Efficient Turn-
Key Eviction Algorithm for Web Caches. NSDI, 2024.

14

http://de5-net.terasic.com.tw
https://en.wikipedia.org/wiki/Cache_placement_policies
https://en.wikipedia.org/wiki/Cache_placement_policies
https://en.wikipedia.org/wiki/Equal-cost_multi-path_routing
https://en.wikipedia.org/wiki/Equal-cost_multi-path_routing
https://www.intel.com/content/dam/develop/external/us/en/documents/architecture-instruction-set-extensions-programming-reference.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/architecture-instruction-set-extensions-programming-reference.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/architecture-instruction-set-extensions-programming-reference.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/architecture-instruction-set-extensions-programming-reference.pdf
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html

	Introduction
	Seer: An Overview
	Design
	Notification Scheme
	Cache Manager

	Implementation
	Prototype
	Resource Usage
	Microbenchmark

	Evaluation
	Related Work
	Conclusion

