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ABSTRACT

Given the clock rate of a single packet processing pipeline has satu-
rated due to slowdown in transistor scaling, today’s programmable
switches employ multiple parallel pipelines to meet high packet
processing rates. However, parallel processing poses a challenge
for stateful packet processing, where it becomes hard to guarantee
functional correctness while maintaining line rate processing. This
paper presents the design and implementation of MP5, which is a
new switch architecture, compiler, and runtime for multi-pipelined
programmable switches that is functionally equivalent to a logical
single pipelined switch while also processing packets close to the
ideal processing rate, for all packet processing programs.
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1 INTRODUCTION

The ability to do custom stateful packet processing on today’s
programmable switches has shown to significantly improve the
performance of several key applications, including packet sched-
uling [29, 32], load balancing [19, 26], congestion control [23]
caching [24, 47], consensus [22, 46], machine learning [21, 48],
and database queries [50].

At the core of a programmable switch is a programmable packet
processing pipeline that is designed to process packets at line rate.
Users can program the processing pipeline using a high-level lan-
guage such as P4 [9] and Domino [31]. While the aggregate packet
processing rate of programmable switches was sub-terabits per sec-
ond, a single packet processing pipeline was sufficient to meet line
rate [31]. However, as the packet processing rates of programmable
switches have increased to multi-terabits per second, coupled with
the slowdown in transistor scaling, which ultimately limits the
clock speed or maximum packet processing rate of a single pipeline,
state-of-the-art programmable switches employ multiple parallel
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packet processing pipelines to meet the line rate. For example, In-
tel’s Tofino switch [43] comprise four parallel pipelines to sustain
line rate of 6.4 Tbps. Unfortunately, however, the multi-pipelined
architecture of today’s programmable switches was designed as-
suming independent packet processing on each pipeline (§2.3). For
example, each input port inside the switch is statically mapped to a
particular pipeline, and there is no state sharing between pipelines
(Figure 1). This makes stateful packet processing challenging, as
it forces programmers to either compromise on performance by
running their program on a single pipeline, or compromise on
correctness by running their program in parallel over multiple
pipelines but with no guarantee that the runtime behavior of their
program would match its intended behavior due to lack of state
sharing between pipelines (§2.3.1). Clearly neither is acceptable.

In that light, the goal of this paper is to design a multi-pipelined
programmable packet processing pipeline, that is functionally equiv-
alent (§2.2.1) to a logical single packet processing pipeline (correct-
ness goal), while still processing packets as close to line rate as the-
oretically possible without comprising on correctness (performance
goal). Achieving both correctness (w.r.t. a serial execution) and per-
formance is a classic problem in parallel computing, that has been
studied extensively in the context of multi-core CPUs [5, 13, 33, 34].
However, packet processing pipelines are fundamentally different
from CPUs, in terms of both the processing architecture and the
performance requirements. For example, in a CPU architecture,
data sits in memory while instructions flow through the pipeline.
In contrast, in packet processing pipelines, packets and not instruc-
tions flow through the pipeline, which, in turn, means that data can
sit both in the switch memory as well as flow through the pipeline
inside packets. As a consequence, when it comes to ensuring data
consistency under concurrency, one needs to consider the data in-
side both the switch memory and the packets (§2.2.1). Next, packet
processing pipelines also have much more stringent performance
requirements compared to CPUs, as they need to process packets
at line rates of multi-terabits per second. A consequence of this
is that a state inside a switch could be accessed every clock cycle
(around every 1 ns on modern switches). This precludes most clas-
sic CPU cache coherence protocols [33] for data consistency, as
they typically rely on complex state machines for operation. Given
these fundamental differences, in this paper we take the first step
to study one of the classic problems in parallel computing within a
new context of multi-pipelined programmable switches.

We present a new switch design, called MP5 (Multi-Pipelined
Programmable Packet Processing Pipeline), which comprises a
switch architecture (§3.2), compiler (§3.3), and runtime (§3.4) for
multi-pipelined packet processing pipelines that is guaranteed to
be functionally equivalent to a logical single packet processing
pipeline for all packet processing programs, while also achieving
close to ideal packet processing rate. Based on ASIC synthesis (§4.2),
we show that MP5’s design can run at clock speeds of state-of-the-
art multi-terabit switches while incurring nominal chip area and
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SRAM overhead. Based on a FPGA prototype (§4.4) and a software

simulator for larger scale experiments (§4.3), we show that MP5 can

achieve line rate packet processing for real-world stateful packet

processing programs, while guaranteeing functional equivalence.
This work does not raise any ethical issues.

2 SCOPE, BACKGROUND, AND GOALS

Given that the processing speed of a single packet processing
pipeline has saturated due to the slowdown in transistor scaling, the
problem that this paper is investigating is how to scale up the pro-
cessing speed of programmable switches using multiple pipelines,
while still being functionally equivalent to a single pipelined switch.
Below we state the scope of the problem.

o We consider functional equivalence between a single and a multi-
pipelined switch only in terms of packet processing. We do not
consider equivalence in terms of other switch functions, such as
packet scheduling.

We limit the scope of processing for functional equivalence to

only data plane operations.

e We limit our scope to programmable switches with Reconfig-
urable Match Table (RMT) [10] pipeline architecture, which is the
most popular processing pipeline architecture for programmable
switches. In particular, we focus on Banzai [31] RMT switches,
that model stateful packet processing on RMT switches.

e We also limit our scope to deterministic processing, i.e., starting
from the same initial state, same set of inputs to the pipeline
always result in the same output state. Fortunately, most real-
world packet processing programs are deterministic [28, 31].

2.1 Background on Banzai RMT Pipelines

Banzai [31] is a programmable packet processing pipeline that com-
prises a series of match-action stages that execute synchronously
on every clock cycle. In each stage, incoming packet’s header fields
are matched against a match table, and then corresponding action
is taken, e.g., re-write a packet header field, or increment a packet
counter. The pipeline has three key components: (i) Match Tables,
that specify the fields to match packet headers against, e.g., destina-
tion IP address, and the corresponding action, e.g., drop the packet.
Match tables are populated and updated by the control plane. (ii)
Registers, that store the state that can be modified by the incoming
packets in the data plane, and the state persists across packets, e.g.,
packet counters, and (iii) Action Units, that implement the actions
specified in the match tables. Banzai models action units as atoms,
where an atom contains a local register state and a digital circuit
implementing ALU and conditional operations. Atoms can either
be stateless, where the inputs and outputs of the digital circuit do
not include a register state and only comprise packet header fields
and/or constants, or the atoms can be stateful, where at least one
of the inputs or outputs include a register state.

Next, we summarize the key characteristics of a Banzai pipeline.
These characteristics are a result of both the physical constraints,
e.g., chip area and power, and performance constraints, e.g., sustain-
ing line rate processing.

e Feed-forward. Packets always move forward through the pro-
cessing pipeline, with no state or computation flowing backwards
through the processing pipeline.
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e One packet per stage. Each stage in the pipeline processes at
most one packet at any given time.

e Atomic state operations. All state operations (e.g., read, write,
update) finish within one pipeline stage so that the effect of a
state operation by the previous packet is always visible to the
next packet.

o No state sharing across stages. All state inside a pipeline stage
is local to that stage, with no access from other pipeline stages.

2.2 Goals

In this section, we formalize the goals of this paper. Consider a multi-
pipelined programmable switch with N ports each with bandwidth
B, and k Banzai pipelines running in parallel, where each pipeline
can process packets at the maximum rate of N*B/k packets per
second. Next, consider a corresponding (logical) single pipelined
programmable switch with a single Banzai pipeline that can process
packets at the maximum rate of N*B packets per second. Assume
both the single and multi-pipelined switch implement the same
packet processing program, which is a formal specification of the pro-
cessing that a programmable switch is supposed to perform. P4 [9]
and Domino [31] are two popular languages for writing packet
processing programs assuming a single logical processing pipeline.
Given this, we want to design a multi-pipelined programmable
switch processing pipeline that achieves the following two goals.

e Correctness. The multi-pipelined switch is functionally equiva-
lent (defined in §2.2.1) to the single pipelined switch.

o Performance. The multi-pipelined switch processes packets as
close to line rate (i.e., N*B) as theoretically possible for a given
packet processing program and stream of input packets, without
compromising on correctness.

2.2.1 Functional Equivalence. This section formally defines
the notion of functional equivalence between a multi-pipelined and
corresponding single pipelined programmable switch.
Assumptions. We assume both the single and multi-pipelined
switch is implementing the same packet processing program, and
no packets are lost during processing. Further, given that the scope
for functional equivalence in this work is limited to data plane
operations, we assume all the control plane operations happen
identically on both the switches only at the start of the runtime,
and that no control plane operations happen during the runtime.

Under the above assumptions, we say that a multi-pipelined
switch and the corresponding single pipelined switch are function-
ally equivalent if starting from the same initial processing state,
and having processed the same stream of input packets, the final
processing state at both the switches are identical, for all possible
packet processing programs and input packet streams. The stream
of input packets is represented as I = {I1 (p1,t1), ..., In(Pn> tn) }
where t; is the time (relative to the start time) at which packet I;
arrives at the switch and p; is the port on which it arrives. Packets
enter the processing pipeline in the order of their arrival time. If
two packets that are to be processed by the same pipeline have the
same arrival times, then we break the tie by allowing the packet
with the smaller port id to enter the pipeline first. Finally, we define
the processing state as a combination of the following two states:

o Register state. This refers to the processing state maintained
in the stateful registers (e.g., counters, meters, data structures
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Figure 1: A 2-pipelined state-of-the-art Banzai processing
pipeline with 12 input ports.

such as hash tables). Functional equivalence requires that starting
from the same initial values for each stateful register specified in
the packet processing program, the final register values at both
the single and multi-pipelined switch must be identical.

o Packet state. This refers to the packet header contents of each
packet being processed. Functional equivalence requires that
for each input packet, if the header content before entering the
processing pipeline was the same at both the single and multi-
pipelined switch, then the final header content after coming out
of the processing pipeline must also be the same.

Note that we do not consider Match table state for functional equiv-
alence, as Match tables in RMT are populated and updated from
the control plane, and one of the assumptions for functional equiv-
alence requires all control plane operations to happen identically
at both the single and multi-pipelined switch at the start, and no
control plane operations happen during runtime, thus ensuring
Match table state will be identical at both the switches at all times.

2.3 State-of-the-art Multi-pipelined
Programmable Switches

State-of-the-art programmable switches are already multi-pipelined
(Figure 1) to support multi-terabits packet processing rates. For ex-
ample, a 6.4 Tbps Tofino switch consists of 4 parallel pipelines [43].
Below are the key characteristics of state-of-the-art multi-pipelined
programmable switches.

o Static port to pipeline mapping. Each input port on the switch
is statically mapped to a particular pipeline, e.g., in the Tofino
switch with 64 ports and four pipelines, ports 1-16 are mapped
to pipeline 1, 17-32 are mapped to pipeline 2, and so on [43].
Thus, a packet arriving on a given port is always processed by
the pipeline the port is mapped to.

o No state sharing between pipelines. The state within a pipeline
is local to that pipeline, and is not directly accessible from other
pipelines. The only way a packet can access a state stored in
another pipeline is by being re-circulated to that pipeline, i.e.,
the packet first goes through its current pipeline, and the output
packet is then re-directed to the input of the target pipeline.

2.3.1 Limitations. The aforementioned design choices were
made assuming packet processing programs where each parallel
pipeline will process packets independently, with no inter-pipeline
state accesses required. In fact, under this design, one can imple-
ment any stateless packet processing program at line rate while
also guaranteeing functional equivalence, by simply replicating
the given program on each parallel pipeline. However, this design
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does not guarantee functional equivalence for all stateful packet
processing programs, as illustrated in the examples below.

Example 1. Consider a stateful packet processing program that
counts the number of packets processed by the switch and stores it
in a register count. Starting from the initial count value of 0, and
after processing two packets {I; (0,0), Iz(1, 1)} on a single pipelined
switch, the final register state would be <count : 2>. However, on
a multi-pipelined switch, assuming port 0 is mapped to the first
pipeline and port 1 is mapped to the second pipeline, I; will be pro-
cessed by the first pipeline, incrementing the count value to 1, but
I, will be processed by the second pipeline, and due to lack of state
sharing between pipelines, the count value inside the first pipeline
will not be incremented, thus violating functional equivalence.

One potential work-around to this issue is to re-circulate the
packet to the pipeline where the target state resides. However, re-
circulation only works if the order of packets accessing a given
state is not relevant for functional equivalence. Otherwise, func-
tional equivalence is not guaranteed due to the fundamental delay
associated with re-circulation, as illustrated below.

Example 2. We modify the program from Example 1 to every time
the value of count is incremented by a packet, the value is also writ-
ten into the packet, e.g., a network sequencer application [22]. Start-
ing from the initial count value of 0, after processing three packets
{6(0,0), I(1,1), I3(0,2)} on a single pipelined switch, the final
packet state would look like <I;:1, I:2, I3:3>. However, ona
multi-pipelined switch, assuming the delay due to re-circulation
is greater than 1 time unit, the final packet state would be <I;: 1,
L:3, I3:2>,since I; could enter the first pipeline only after time
unit greater than 2 (due to re-circulation delay) and hence I3 would
access count before I;. And to make matters worse, if packets I
and I3 belonged to the same flow that relies on in-order packet
delivery for performance, e.g., a TCP flow, this could also result in
reduced application performance.

3 MP5

In this section, we describe the design of MP5. But we first start by
stating a key design condition for guaranteeing functional equiva-
lence, based on the observation made in §2.3.1.

@ State access order equivalence. For each register state, the
same set of input packets must access the state and in the same
order in both single and multi-pipelined switch.

If C1 is not always satisfied by design, then there can be a packet
processing program and a set of input packets, such as the one in
Example 2, for which functional equivalence can be violated. Hence,
MP5 tries to maintain C1 as a design invariant, i.e., regardless of
the packet processing program and input packets in question, MP5
ensures that condition C1 always holds.

3.1 Design Principles

We start by describing the four key design principles underpinning
MP5. Figure 2 summarizes the contributions of each design princi-
ple towards the correctness and performance goals.

@ Processing homogeneity. Given a packet processing program
written for a single logical processing pipeline, MP5’s compiler
(§3.3) programs each of its k pipelines identically and independently
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with the given program to maximize the packet processing rate!.
Thus, the i stage of each pipeline does identical processing. Pro-
cessing homogeneity allows MP5 to achieve functional equivalence
at line rate for stateless processing. This is because each packet will
be processed identically and at maximum rate regardless of which
pipeline processes a packet. Thus MP5 simply needs to uniformly
spray the incoming packets across all available pipelines to achieve
line rate processing without violating functional equivalence.

Challenge # 1. However, for packets needing stateful processing,
one cannot blindly spray packets across pipelines, as a packet will
need to be assigned (in the right order) to the pipeline where the
relevant state resides, to guarantee functional equivalence (C1).
A naive way to guarantee functional equivalence for stateful pro-
cessing using only D1 is by storing all the state within the same
pipeline, and assigning all incoming packets to that pipeline. This is
inspired from the classic shared memory paradigm [39] for parallel
processing. However, in the context of packet processing, such a
design will prohibit achieving maximum packet processing rate
for certain packet processing programs. For example, consider a
switch application that maintains packet counter statistics for each
source IP (use cases include DDoS detection, heavy-hitter detection,
and so on). This will typically be stored as a register hash table in
the switch data plane. Now, if we follow the naive approach and
store the entire register table within a single pipeline, all packets,
regardless of the input port/pipeline they arrive on, will need to be
directed to the pipeline storing the table. This will automatically
limit the processing rate to 1/k times the line rate, assuming k par-
allel pipelines. Ideally, we would want to process packets in parallel
over all available pipelines for optimal packet processing rate. This
motivates MP5’s second design principle.

@ Dynamically sharded shared memory. To optimally utilize
the available parallelism for stateful processing, MP5 dynamically
shards the shared register state within a pipeline stage across the
same stage of all the pipelines, with the goal that packet processing
load is uniformly balanced across pipelines. For example, one could
shard the register hash table from the above example across multi-
ple pipelines such that each pipeline only maintains counters for a
subset of source IPs, thus allowing parallel processing of packets
with different source IPs whose corresponding counters are stored
in different pipelines. Further, since programmable switches do
not support dynamic memory allocation, for each register array of
size N specified in the packet processing program, MP5’s compiler
allocates a fixed N-size array in the same stage of each of the k
pipelines. But at runtime, a particular register index is "active" in
exactly one of the k pipelines, as shown in Figure 3. MP5 maintains
an index-to-pipeline map data structure for each register array
to keep track of which register index is active in which pipeline.
Further, MP5 updates this mapping periodically during runtime to
ensure uniform load balancing across pipelines at all times. For that,
MP5 maintains a runtime statistic of number of accesses for each
register index, and periodically updates the index-to-pipeline map-
ping by moving the appropriate register entries between pipelines

!More generally, MP5 programs a subset m of k pipelines with the same program,
where m would depend upon the maximum packet processing rate targeted by the
programmer for that specific program. This allows the programmers to program
the remaining pipelines with some other packet processing programs, thus creating
multiple independent logical MP5, each with varying number of parallel pipelines.
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Figure 2: Contributions of MP5’s design principles towards
the goals of correctness and performance.

such that the packet processing load is uniformly balanced across
pipelines. We describe this algorithm in detail in §3.4.

Challenge # 2. While sharding the shared state does, in theory,
promise more opportunity for parallel processing, that opportunity
can only be realized if the underlying architecture supports steer-
ing packets to pipelines where the relevant state resides. To make
matters worse, if a packet needs to access multiple different states,
those states could very well reside in different pipelines due to state
sharding (D2). For example, consider the stateful packet processing
program shown in Figure 3, and consider packet P shown. P wants
to access states regl[0] and reg3[2] according to the packet
processing program. But the registers regl and reg3 have been
sharded in a way that the two states reside in different pipelines.
Hence, we need the ability to steer packets between pipelines dur-
ing processing. This motivates MP5’s third design principle.

@ Inter-pipeline packet steering. State-of-art multi-pipelined
switches support inter-pipeline packet steering by re-circulating
the packet output from the current pipeline to the input of the tar-
get pipeline. This not only makes achieving functional equivalence
hard, as illustrated in §2.3.1, but it also results in reduced packet
processing throughput since the same packet is processed through
the pipeline multiple times. To make matters worse, if the relevant
states are distributed across multiple pipelines, it will result in multi-
ple packet re-circulations, thus resulting in even higher throughput
penalty. In fact, in §4.3.2, we observe that if average number of
re-circulations per packet exceeds the number of pipelines, the
throughput can be worse than even the naive design mentioned in
D1, where all states and packets are mapped to a single pipeline.
To overcome the limitations of re-circulation, MP5 employs a feed-
forward mechanism for packet steering, where a packet in stage i of
a pipeline is never steered back to a stage < i in any of the pipelines.
For that, MP5 introduces a crossbar between consecutive stages of
parallel pipelines, to allow a packet in the i* h stage of a pipeline to
be forwarded to the (i+1)t" stage of any of the k parallel pipelines.
Thus, while the pipelines in MP5 remain feed-forward, the data
path of packets are no longer constrained to follow a linear path
through the pipeline, unlike the Banzai pipeline (Figure 3).

Challenge # 3. State sharding with inter-pipeline packet steer-
ing promises to improve the packet processing rate by enabling
parallel processing, but unfortunately, they do not guarantee func-
tional equivalence. The reason being that they are not sufficient
to guarantee C1. E.g., consider the packet processing program in
Figure 3. Packets A, B, C, D, E arrive in the order shown, with
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2-PORT SINGLE BANZAI PIPELINE

struct Packet { Stage - 1 Stage - 2
int hl; reg1 reg2 reg3
int h2;
int h3;
int val; Packet il
int mux;
Vi — p.val = p.mux reg3[p.h3%4] = p.mux
? reg1[p.h1%4] —pp-| ?reg3[p.h3%4] * p.val
int regl [4] = {2,4,8,16}; —_— : reg2[p.h2%4] : reg3[p.h3%4] + p.val
int reg2 [4] = {1,3,5,7};
int reg3 [4] = {0};

2-PORT 2-PIPELINED MP5

void func (struct Packet p) {
p.val = (p.mux == 1) Stage - 1 Stage - 2
? regl[p.hl%4] reg1 reg2 reg3
: reg2([p.h2%4] 2 7 0
4 3 0
reg3[p.h3%4] = (p.mux == 1)
? reg3[p.h3%4] * p.val Packet
: reg3[p.h3%4] + p.val h1:0. h2-1 p.val = p.mux reg3[p.h3%4] = p.mux
} P: | 32 muci [ | —l ? reg1[p.h1%4] ——3p| ?reg3[p.n3%4] * p.val
i (P : reg2[p.h2%4] : reg3[p.h3%4] + p.val
5 |
: =P data path for packet P : reg1 reg2 reg3
! ) . . 1
| [ active register index | - = 3
1 1 16 7 0
: I inactive register index !
| : m p.val = p.mux reg3[p.h3%4] = p.mux
i ; f —_— ? reg1[p.h1%4] —_— ? reg3[p.h3%4] * p.val
1
! [ active register index accessed by P : - reg2[p.h2%4] - reg3[p.h3%4] + pval

Table I: SINGLE PIPELINE
t=0.5 t=1 t=1.5 t=2 t=25 t=3

Input Packet Arrival o Stage 1 A B (o] D E
Pipeline 1
on Port 2 on Port 1 Stage 2 A B c D E
t-0 B i ha . A i ha . Table II: MP5 (w/ design principles D1-D3 but w/o D4)
- | h3:2, mux:1 * | h3:2, mux:1 t=1 t=2 t=3 t=4 t=5 t=6
Pineline 1 Stage 1 AB BCD CcCD D
. 5 . X ipeline
.| ht:1, h2:1, .| ht:1, h2:1,
t=1 D ’ h3:2, mux:1 ‘ C: ’ h3:2, mux:1 ‘ Stage 2
Stage 1 E
Pipeline 2
t=2 Stage 2 A B CE ED D
Table Ill: MP5 (w/ design principles D1-D4)
t=1 t=2 t=3 t=4 t=5 t=6
________________________ )
: For each stage, packets in blue are data ! Pipeline 1 Stage 1 AB BCD co D
I packets currently being processed, packets : Stage 2
: in red are queued data packets, and packets 1
: in are queued phantom packets : Pipeline 2 Stage 1 E
———————————————————————— Stage 2 A B CDE DE E

Figure 3: An example packet processing program (written in Domino [31]) implemented on both a single Banzai pipeline and
MP5. The figure also illustrates the timeline of packet processing for a set of input packets on both single Banzai pipeline and
MP5. Note that the single pipeline runs at twice the rate of 2-pipelined MP5 (i.e., it processes packets every 0.5 time units as

opposed to 1 time unit for MP5).

packets A, B, C and D accessing states reg1[1] and reg3[2],
and packet E accessing states reg2[3] and reg3[2]. In a single
pipelined switch, the packets A, B, C, D, E will be processed in that
order (Table I in Figure 3), and the final value of register reg3[2]
would be 4 * 4 x 4 % 4 + 7 = 135. But in MP5, packets B, C, and

D will be buffered behind A in pipeline 1 in trying to access state
regl[1], while packet E will move freely through pipeline 2, thus
accessing register reg3[2] before packet D, as shown in Table II
in Figure 3. This will result in the final value of register reg3[2] to
be ((4 % 4 % 4) + 7) = 4 = 284, thus violating functional equivalence.
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Further, as discussed in §2.3.1, if packets D and E belonged to the
same flow that relies on in-order packet delivery for performance,
e.g., a TCP flow, this could also reduce application performance.
MP5 resolves this challenge using its fourth design principle.

@ Preemptive state access order enforcement. Packets in a
single pipelined switch always access a common state in the order
of their arrival. Hence, to satisfy C1, MP5 must also enforce this
ordering. However this is challenging in MP5 since packets can get
queued at stateful stages for non-deterministic amounts of time,
thus potentially violating C1, as illustrated in Figure 3. Hence, the
key insight MP5 uses is to preemptively enforce the right packet or-
dering in the pipeline, i.e., before any stateful stages. This requires
solving two challenges—(i) preemptive address resolution, i.e., pre-
emptively resolving all register indexes an incoming packet would
access during processing, and (ii) preemptive order enforcement,
i.e., preemptively enforcing the right processing order for each
packet at respective stateful stages.

Preemptively resolving all register indexes a packet would access
could be challenging (or even impossible) in general. But MP5 uses
the observation that for most packet processing programs, the
register indexes a packet accesses are a function of some subset
of packet header fields, and hence can be resolved at the packet
arrival itself. In fact, we analyzed a wide-range of stateful packet
processing algorithms [1, 3, 8, 14, 20-22, 27, 30, 32, 35, 44, 46, 47, 49]
to verify that the above observation holds true. For example, for
flowlet switching [30], the registers a packet accesses are indexed
by the hash of 5-tuple. However, in general, there can be packet
processing programs where it might not be possible to resolve
addresses preemptively. In §3.3 we discuss how MP5 handles these
scenarios at the cost of some performance.

The second challenge is to enforce the packet ordering at each
stateful stage. The classic way of solving this problem is to times-
tamp a sequence number into the packets at the origin, and use
that to sequence packets in-order at the destination, e.g., packet
ordering in TCP [11] or timestamp-based concurrency control in
databases [7]. In our context, this would mean maintaining a mono-
tonically increasing sequence number register for each stateful
stage, and timestamping packets on arrival with the current se-
quence numbers corresponding to the stateful stages the packet
would access. Each stateful stage can then process packets in or-
der of their sequence numbers. Unfortunately, this simple solution
would not work for MP5 because it requires each packet to access
and increment the global sequence number registers, which in it-
self is a stateful operation, thus resulting in a catch-22 paradoxical
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situation. Fundamentally, we need a stateless approach to enforce
ordering. MP5 achieves this by introducing phantom packets.
Once MP5 has figured that a packet p will access state s, it immedi-
ately generates a phantom packet for packet p and sends it over a
separate physical channel (reserved only for phantom packets) des-
tined to the pipeline stage where state s is located. Phantom packets
are not processed along the path and hence are never queued at any
stage except the final stage where the state corresponding to the
phantom packet resides. Thus, phantom packets for a given state
are guaranteed to be received in the order they were generated at
the pipeline stage where the corresponding state resides. Finally,
in the stage containing state s, the phantom packet is queued in a
FIFO queue and acts as a "placeholder” for the original packet p.
Until p arrives, its phantom packet will block the processing of any
other packets that arrived later, thus enforcing the right processing
order. Table III in Figure 3 shows how phantom packets can enforce
the right processing order between packets D and E. Assuming
phantom packets are generated on packet arrival (§3.3), since D ar-
rived at the switch before E, its phantom packet will reach reg3[2]
before E (t=3 vs. t=4), thus ensuring right processing order.

Based on the design principles D1-D4, we next describe MP5’s
switch architecture (§3.2), compiler (§3.3), and runtime (§3.4).

3.2 Switch Architecture

Figure 4 shows the architecture of MP5. Each of the k pipelines
in MP5 are architecturally identical. Further, each pipeline stage
is identical to Banzai’s pipeline stages (Figure 1), and comprises
match tables, Banzai atoms as actions units, and stateful registers.
However, unlike Banzai, the interconnection between consecutive
pipeline stages is not linear in MP5, but instead comprises a crossbar,
following the design principle D3. Further, MP5 has two physically
separate and parallel interconnection channels, one to carry data
packets ("data" channel) and the other to carry phantom packets
("phantom" channel), following design principle D4. In addition,
each stage in MP5 also has k FIFOs, one per pipeline, at its input, to
buffer packets (data or phantom) waiting to access a register state
in that stage. k FIFOs are needed to handle contention scenarios
where packets from multiple pipelines may want to enter the given
stage in the same clock cycle. Having a separate FIFO per pipeline
allows MP5 to resolve such contentions. Physically, each FIFO is
implemented as an independent ring buffer [37], but logically, k
FIFOs operate as a single FIFO which allows three operations.

(1) push(pkt, fifo_id). This operation adds the packet pkt, which
could either be a data or a phantom packet, to the tail of the
FIFO with id fifo_id. If the FIFO is full, the packet is dropped.
Else, the packet is timestamped and added to the FIFO. If the
packet is a phantom packet, the location of the packet in the
queue is stored into a directory indexed by packet’s id.
insert(pkt, addr, fifo_id). This operation inserts the packet pkt
at location addr in FIFO with id fifo_id. This operation is used to
replace phantom packets in the queue with their corresponding
data packets. Data packets look up the address directory on
arrival to figure the location of their corresponding phantom
packet, and use that as the addr value. If the entry corresponding
to the phantom packet does not exist in the directory, the data
packet is dropped.

@
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(3) pop(). This operation looks at the packets at the head of each
of the FIFO and chooses the packet with the smallest timestamp.
If the chosen head packet is a data packet, it is removed from
the FIFO. But if the chosen head packet is a phantom packet,
no action is taken. This ensures that data packets that arrived
later than the head phantom packet are blocked until the data
packet corresponding to the head phantom packet arrives and
replaces the phantom packet in the queue. This is how MP5 is
able to preserve packet ordering as desired by D4.

3.3 Language and Compiler

MP5 can be programmed using Domino [31], a domain-specific
language used to program Banzai pipelines. Domino is a C-like
language that provides higher-level abstractions to write packet
processing programs, especially stateful programs, compared to
P4 [9]. An example Domino program is shown in Figure 3.

To compile a Domino program, which is written assuming a
single logical pipeline, to MP5’s multi-pipelined hardware target,
we extend the Domino compiler that compiles a Domino program
to a single Banzai pipeline. The workflow of the Domino compiler
is shown in Figure 5. It takes as input a Domino program, and has
three phases—(i) Preprocessing, that converts the input program
into a simpler three-address code form [41], (ii) Pipelining, that
transforms the preprocessed code into an intermediate representa-
tion, called Pipelined Virtual Switch Machine (PVSM), that models
a switch pipeline with no computational or resource limits, and (iii)
Code generation, that transforms PVSM into configuration for a Ban-
zai pipeline, given the machine’s computational and resource limits.
MP5 adds a new block to this workflow, called PVSM-to-PVSM trans-
former, that takes as input the PVSM outputted by the Pipelining
stage, and converts it into a new PVSM with preemptive address
resolution (D4). This new PVSM is then sent to the code generation
block, whose output is then used to program each (or some subset)
of the k MP5 pipelines independently and identically (Figure 5).
Next, we describe the design of PVSM-to-PVSM transformer.

PVSM-to-PVSM transformer. The goal of this transformer is to
compile the preemptive address resolution logic (D4) into the pro-
cessing pipeline outputted by the Pipelining phase of compilation.
The key insight here is to decouple address resolution from corre-
sponding stateful processing. Figure 5 shows the general template
of a stateful stage in Banzai. It comprises a match table entry that,
if a packet matches, results in an action that accesses some stateful
register index. Further, the state access can be predicated using a
conditional statement. For each such stateful stage in Domino’s
PVSM, MP5 moves the logic for table match evaluation, predicate
evaluation, and register index calculation (which together are suffi-
cient to evaluate whether an incoming packet will access a given
register, and if so, the register index that it will access) into a new
stage at the beginning of the pipeline, while the logic to access
and manipulate the state sits in its original stage in the pipeline.
Thus, for incoming packets, the addresses a packet would access
can be resolved before any stateful stages. Further, MP5 also adds
the logic to generate phantom packets in the newly created stage,
and includes the calculated register index along with the pipeline
and stage number of where the register index resides, into both the
phantom and data packet, to aid packet steering (§3.4).
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Finally, MP5 uses the index-to-pipeline map, introduced in D2,
to figure the pipeline where a given register index resides. This data
structure is created during the code generation phase of compilation
and replicated in every pipeline. Since packets only ever read from
the data structure and never update it, replication ensures that
the data structure can be accessed by packets in each pipeline in
parallel at line rate without any contention. In §3.4, we describe
how the data structure is updated periodically and atomically in the
background by the dynamic state sharding algorithm. An example
PVSM-to-PVSM transformation is illustrated in Figure 5.

Note that the above description assumes that the predicate and
register index evaluations do not involve stateful processing, and
hence it is possible to preemptively resolve all the addresses a packet
would access in a stateless manner. But there could be packet pro-
cessing programs where this does not hold. This could be either
because the predicate evaluation requires some stateful process-
ing (e.g., if (regl[0]) {...}), or the register index calculation
requires some stateful processing (e.g., access regl[reg2[0]]).
Next, we describe how MP5 handles both these scenarios to ensure
functional equivalence, albeit at the cost of some performance.

For the former scenario, MP5 conservatively assumes that the
predicate would evaluate to true, and generates the corresponding
phantom packets. Similarly, for if...else statements where the
predicate cannot be evaluated preemptively, phantom packets are
generated for both branches. Later once the predicate is evaluated,
the phantom packet on the false branch is ignored, resulting in a
nominal performance penalty of one wasted clock cycle. As we
show in §4.4, for real world applications, this performance penalty
does not affect line rate processing.

For the later scenario where even the register index calculation
requires stateful processing and hence cannot be calculated pre-
emptively, MP5 again takes the conservative approach and maps
the entire register array to a single pipeline, i.e., effectively no state
sharding (no D2). This obviously would result in a much greater
performance penalty, but fortunately for most real world packet
processing programs [1, 3, 8, 14, 20-22, 27, 30, 32, 35, 44, 46, 47, 49],
the register index calculation is a stateless operation that uses only
the packet header values.

Finally, our design of PVSM-to-PVSM transformation thus far
has assumed that in the input PVSM, a packet accesses at most
one register array per stage. More generally, a packet could access
multiple register arrays in parallel per stage in the input PVSM.
Without loss of generality, let’s assume that the packet accesses
two different register arrays regl and reg2 in the same stage k.
Also suppose the register indexes of the two register arrays that
the packet accesses are idx1 and idx2 respectively. Then, even
if it is possible to preemptively resolve both idx1 and idx2, the
challenge comes from the fact that the two register arrays are
sharded independently, and hence idx1 and idx2 could reside in
the k" stage of different pipelines. But the packet could only be in
one pipeline stage at a time. To get around this issue, MP5 compiler
would do one of two things. First, if there are enough pipeline
stages available, the compiler would try to serialize the register
array accesses such that a packet accesses at most one register array
per stage. Otherwise, MP5 would take the conservative approach
and not shard the register arrays across pipelines.
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Figure 5: Workflow of MP5’s compiler (on left) and an example PVSM-to-PVSM transformation (on right).

3.4 Runtime

At runtime, MP5 maintains two key invariants critical for guaran-
teeing functional equivalence.

Invariant 1. A phantom packet generated in pipeline stage i and
destined to the FIFO in pipeline stage j (j > i), will not be queued in
any stage k such thati < k < j.

This is ensured by using a physically separate data channel
for phantom packets (§3.2), and the fact that phantom packets do
not undergo any stateful processing along the path, unlike data
packets. The consequence of this invariant is that the phantom
packets for a stateful stage are always received in the order they
are generated, which is necessary for maintaining C1, as explained
in design principle D4.

Handling packet drops. Phantom packets are stored in finite size
FIFOs at their final destination pipeline stage. As a result, if the
FIFO is full, the incoming phantom packet will be dropped. And
since in MP5 phantom packets always precede the corresponding
data packets in every stateful pipeline stage, this, in turn, would
mean that when the data packet corresponding to the dropped
phantom packet eventually arrives, it too will be dropped as there
would be no corresponding phantom packet in the FIFO acting as
its placeholder. These drops will typically happen when the rate at
which the switch is receiving packets exceeds the maximum rate
at which the pipelines can process packets for a given packet pro-
cessing program, thus resulting in unbounded queuing. A classic
example would be a packet processing program where each incom-
ing packet needs to access a single register state. In that case, the
maximum packet processing rate is limited to the processing rate

of a single pipeline, and hence if the aggregate packet arrival rate
across all input ports exceeds that of a single processing pipeline,
we will observe packet drops. From an end host’s perspective, these
packet drops are not dissimilar to the traditional packet drops inside
switches caused due to congestion at the egress links/ports, as in
both cases, end hosts are sending packets to switches faster than
switches could forward; the only difference being in the congested
switch resource responsible for drops (in the case of traditional con-
gestion drops, the congested switch resource being the egress links,
while in our case, the congested switch resource are the processing
pipelines). There has already been a lot of research done to handle
congestion in the network [2, 4, 16, 18, 51], and one can potentially
leverage the same ideas to handle and limit the packet drops inside
the packet processing pipelines in MP5. For example, one could
take inspiration from explicit congestion notification mechanisms,
such as ECN [38], to mark the data packets within a FIFO queue
in MP5, once the queue length exceeds a certain threshold. This
would send a backpressure feedback to the sender to slow down the
sending rate preemptively, thus potentially avoiding packet drops.

Invariant 2. A data packet can be queued in a pipeline stage only
if it is accessing a stateful register in that stage. In other words, if a
data packet is only doing stateless processing in a given pipeline stage,
then it will never be queued in that stage.

Note that a stateless packet p arriving at time ¢ in stage i can be
queued only if MP5 decides to process a queued stateful packet at
time ¢ instead of processing p. To avoid this, MP5 prioritizes pro-
cessing of stateless packets over stateful packets. The consequence
of this invariant is that D4 is sufficient to guarantee C1.
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Handling starvation and packet re-ordering. Given that MP5
prioritizes stateless packets over stateful packets raises two key
concerns. First, prioritization could result in unfair queuing (and
eventual dropping) of stateful packets, and could even result in star-
vation of stateful packets for certain input traffic. One way to handle
this would be to drop incoming stateless packets in favor of certain
queued stateful packets, once the time spent in the queue for those
stateful packets exceeds a certain threshold. Note that as long as we
drop the stateless packets instead of queuing them, Invariant 2 will
hold. Second, prioritization could also result in packet re-ordering,
which in turn could affect performance of certain protocols that
rely on in-order delivery of packets for high performance, such
as TCP [18]. However, note that for most real-world in-network
applications, the packets within the same flow (e.g., a TCP flow
defined by the hash of 5-tuple) are processed similarly, i.e., , they ac-
cess the same set of register states. Thus, there would be no packet
re-ordering for such scenarios. However, there are applications,
such as NATs and stateful firewalls, where certain packets within a
flow are stateful while the rest are stateless (i.e., they do not access
any register state), in which case prioritization of stateless packets
could result in packet re-ordering. More generally, if packets within
a flow access different subsets of register states, packet re-ordering
within that flow is possible in MP5. To avoid this, one could create
a "dummy" stateful operation in the final pipeline stage, where the
"dummy" register state would be indexed based on packet flow ids
(e.g., hash of 5-tuple). This would force the generation of phantom
packets for each flow and queued in the final pipeline stage. And
since MP5 ensures that phantom packets are always queued in
the packet arrival order, this would force the corresponding data
packets within each flow to be ordered correctly before they leave
the processing pipeline.
Next, we discuss two key runtime operations in MP5.

Packet steering. A packet (phantom or data) in MP5 will be steered
from its current pipeline if the packet in stage k of pipeline i needs
to access a state in stage k+1 of pipeline j. At runtime, MP5 uses the
pipeline and stage information encoded in the phantom and data
packets (§3.3) to decide at the output of each stage if the current
packet needs to be steered to a different pipeline j. If so, the packet
is steered from pipeline i to j, else it continues along pipeline i.

Dynamic state sharding. As discussed in D2, dynamic state shard-
ing is needed for high performance. MP5 maintains a packet access
counter for each register index in the address resolution stage of
each pipeline, and increments the counter corresponding to index i
every time a packet is resolved to access index i.

Then periodically, MP5 aggregates the counters from all the
pipelines for each index, and re-maps the register indexes to pipelines
to ensure uniform packet processing load across pipelines. After
that, the packet access counters are reset to 0 for the next iteration.
Unfortunately, the optimal algorithm for re-mapping indexes to
pipelines reduces to a variant of the bin packing optimization prob-
lem [15], which is known to be NP-Hard and is not amenable for
fast hardware implementation. Hence, MP5 uses a heuristic instead,
as described in Figure 6.

Note that the re-mapping algorithm does not need to run at line
rate, and only runs periodically in the background every few 100s
of clock cycles. Also, the index update happens synchronously (and
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// run for each stateful register every t clock cycles
remapAlgorithm():
find two pipelines H and L with the highest (c;ax)
and lowest (cmin) aggregate packet access counter
values respectively based on the current mapping.
let C = (cmax - Cmin)/2
find the register index i mapped to pipeline H with
the largest packet access counter value less than C.
if such an index i exists:
move state at index i from pipeline H to L
map i to pipeline L in index-to-pipeline map

Figure 6: Heuristic for dynamic state sharding.

atomically within a clock cycle) in each of the index-to-pipeline map
data structure replicated in each pipeline (§3.3). The register state
movement is also atomic and finishes in one clock cycle. However,
one concern that arises with moving register state from one pipeline
to the other at runtime is that it might result in some in-flight
packets to be steered to the wrong pipeline. This is because packets
are tagged with the destination pipeline number (for each register
index they would access) at the beginning of the pipeline (in the
address resolution stage (§3.3)), and this information is later used
by MP5 to steer packets across pipelines. But if a register index gets
re-mapped to a different pipeline while the packet is still in-flight,
the packet would end up in the wrong pipeline where the index no
longer exists. To handle this, MP5 maintains an in-flight counter
per register index, which is incremented every time a packet is
resolved to access that particular register index, and decremented
once the packet has accessed the register index. MP5 only re-maps
and moves a state at index i (last two lines in algorithm in Figure 6)
if the corresponding in-flight counter value for index i is 0.

3.5 Limits of MP5

In this section, we discuss the limits of MP5.

3.5.1 Limits on functional equivalence. MP5 assumes no
packets are lost during processing for functional equivalence (§2.2.1).
This would be the case as long as the input packet rate does not
exceed the rate at which MP5 can process packets. However, if this
is not true, some of the FIFOs at stateful stages might get over-
flown, resulting in packet loss, as discussed in §3.4. Note that this
is a fundamental limitation as packet loss cannot be avoided if the
input traffic is not admissible. However, if a packet is indeed lost
during processing, functional equivalence can be violated on multi-
ple fronts. First, if a packet is lost in stage i on a multi-pipelined
switch, it can no longer update any potential register state in stages
> i which it would have done on a single pipelined switch, thus
violating register state equivalence. Second, since the lost packet
did not update any potential register state in stages > i as it would
have done on a single pipelined switch, all subsequent packets that
access those register states would have a different view of the state
on the multi-pipelined switch as compared to the single pipelined
switch, thus also potentially violating packet state equivalence. For-
tunately, we note that in our evaluations (§4.4) of real-world stateful
applications with realistic packet and flow size distributions, MP5
was able to process packets at line rate, and hence queuing was
bounded at each stateful stage (maximum of 11 packets).
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3.5.2 Limits on performance. There are both fundamental
and practical limits to the maximum rate at which MP5 can process
packets. Fundamentally, maximum packet processing rate is a func-
tion of the packet processing program being implemented. If the
program itself does not allow parallel processing without violating
functional equivalence, then the maximum packet processing rate
will be limited. For example, consider a program that accesses a
single register state for every single packet (e.g., a global packet
counter). For such a program, the maximum packet processing rate
is fundamentally limited to the rate of a single pipeline, regardless
of the number of parallel pipelines available.

There are also some practical limitations in MP5’s design that
can prevent it from achieving optimal packet processing rate.

(1) As discussed in §3.3, for programs where MP5 is unable to
preemptively resolve addresses, it leads to performance penalty
to preserve functional equivalence.

(2) MP5 maintains one logical FIFO for each stateful stage. This
could result in head-of-line blocking, if say the head of the FIFO
is a phantom packet for register index i, which will block the
processing of every other packet in the queue, even if those
other packets were trying to access a register index different
from i. A natural solution is to maintain a separate FIFO per
register index, but that is not practical for large register arrays.

(3) Finally, as noted in §3.4, the algorithm used by MP5 to dynami-
cally re-map register indexes across pipelines is a heuristic and
is not optimal. Hence, it leaves some performance on the table.

However, it is worth mentioning that in §4 we compare MP5’s
performance against an ideal MP5 design that does not have the
practical limitations mentioned above, and our results show that
MP5 performs very close to ideal.

3.5.3 Limits on scalability. As the packet processing rates of
programmable switches keeps increasing, the switch designers need
to push for more and more hardware parallelism. As a result, the
number of parallel pipelines is expected to increase with increasing
switch speeds (e.g., 12.8 Tbps Tofino 2 switch has eight pipelines
compared to four in 6.4 Tbps Tofino switch). As the number of
pipelines increase, a potential limiting factor in MP5’s scalability
could be the use of a crossbar between each pipeline stage. We
evaluate this in §4.2.

Another approach that has recently gained traction to scale
the switch speeds is the use of multiple silicon chips, also called
chiplets, within the same switch. This follows from the principle
of resource disaggregation, where instead of bundling both the
analog and digital components of the switch on the same silicon
chip, the vendors are disaggregating them into two different silicon
chips with different process technologies. This design is driven
by the fact that digital and analog components of a switch are
fundamentally different and do not need to shrink (scale) at the same
pace. By disaggregating the two components, both components can
shrink (scale) independently using different process technologies.
For example, in Tofino 2, the analog component uses 28 nm or
16 nm process technology whereas the digital component uses 7 nm
technology [17]. In that context, MP5’s design described in this
paper could be applied directly to the chiplet comprising the digital
logic of the switch. However, in the future, one could imagine
disaggregating the digital logic as well across multiple chiplets.
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s=4 s=8 s=12 s=16
k=2 | 0.21 mm? | 0.42 mm? | 0.63 mm? | 0.81 mm?
>1GHz | >1GHz | >1GHz | >1GHz
k=4 | 0.84 mm? | 1.68 mm? | 2.52 mm? | 3.36 mm?
>1GHz | >1GHz | >1GHz | >1GHz
k=8 | 3.2mm? | 6.4mm® | 9.6 mm? | 12.8 mm?
>1GHz | >1GHz | >1GHz | >1GHz

Table 1: Chip area and clock speed against varying number
of pipelines (k) and pipeline stages (s).

MP5’s current design assumes that all the processing pipelines
are on the same chiplet. If the processing pipelines are spread
across multiple chiplets, one could apply MP5’s design to each
individual chiplet, but would need to take into consideration the
interconnection design between the chiplets for inter-chiplet packet
processing. We leave this for future exploration.

4 EVALUATION
Our evaluation of MP5 tries to answer three key questions.

(1) Can MP5’s design run at clock speeds of state-of-the-art pro-
grammable switches (i.e, ~1 GHz [32])? And what is the chip
area and SRAM overhead of implementing the new design com-
ponents introduced by MP5? (§4.2)

(2) How sensitive is MP5’s performance to different switch param-
eters, such as number of pipelines, number of stateful stages,
register sizes, packet sizes? (§4.3)

(3) How does MP5 perform for real stateful packet processing pro-
grams with realistic packet and flow size distributions? (§4.4)

4.1 Implementation and Prototype

We implemented MP5’s design in System Verilog [40]. We started
with the open source hardware implementation of a single RMT
pipeline [36], and replicated it to implement multiple pipelines. We
also augmented the pipeline with stateful action units introduced by
Banzai model [31]. Finally, we added the interconnecting crossbars
and per-stage FIFOs as described in §3.2, and packet steering and
dynamic state sharding logic described in §3.4.

Next, we synthesized our implementation on both an FPGA
and an ASIC simulator. We used the FPGA prototype to run and
evaluate real stateful packet processing programs (§4.4), whereas
we used the ASIC simulator to estimate the clock speed and chip
area overhead of our design (§4.2).

Finally, since our FPGA prototype is only limited to four ports at
10 Gbps bandwidth each, we also implemented a simulator for MP5
in Python, to evaluate the performance of MP5 with more realistic
switch configurations (§4.3).

4.2 Clock Speed and Chip Area Overhead

We synthesized our implementation of MP5 on Synopsys ASIC
design compiler tool [45] using an open source 15 nm process tech-
nology [25]. We report the clock speed and chip area overhead in
Table 1 for varying number of pipelines (ranging from 2 to 8) and
pipeline stages (ranging from 4 to 16). For reference, state-of-the-
art programmable switches, such as Intel Tofino [43], comprise 4
pipelines and most practical stateful packet processing algorithms
can be implemented using 4 to 10 pipeline stages [31].
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Figure 8: Throughput of real applications running on MP5. For FPGA prototype, we are limited to only up to four parallel

pipelines since the FPGA only has four ports.

In terms of clock speed, our implementation meets the speed of
1 GHz for all configurations. This matches the clock speeds of state-
of-the-art multi-terabit switch packet processing pipelines [32].
For chip area overhead, we only report the area consumed by the
pipeline components specific to MP5, which includes the intercon-
necting crossbars, per-stage FIFOs, packet steering, and dynamic
state sharding logic. We set each FIFO size to 8 (i.e., 8k entries
per stage, sufficient to avoid tail drops based on observations in
§4.4), phantom packet size to 48 bits, and data packet header size
to 512 bits. The key take away is that chip area increases linearly
with number of stages and quadratically (square function) with
number of pipelines. The area consumed is dominated by crossbars,
which is consistent with observations made in prior works [12].
But even then, the total area overhead for 4 pipelines (as in Intel
Tofino switch [43]) and 16 stages is only 3.36 mm?. To put this num-
ber into perspective, commercial switch ASICs occupy between
300-700 mm? [12], which means MP5 only adds 0.5-1% overhead.
Even if the number of pipelines are doubled to 8 (as in Intel Tofino
2 switch), the overhead is still only 2—-4% for 16 stages. This is a
reasonable price to pay for functional equivalence.

Finally, MP5 also introduces SRAM overhead for storing the
index-to-pipeline mapping for each register index, as well as storing
the packet access counter and in-flight packet counter values for
each register index used by dynamic state sharding heuristic (§3.4).
This introduces a total overhead of 30 bits per register index (6 bits
for storing pipeline number, 16 bits for packet access counter which
is reset every 100 cycles or so, and 8 bits for in-flight packet counter).
Most practical stateful packet processing programs have 4 to 10
pipeline stages [31]. So even assuming all 10 stages are stateful, and
1000 register entries per stage, the total SRAM overhead only comes
to about 35 KB per pipeline. This is quite nominal given today’s
programmable switches can have 50-100 MB of SRAM [26].

4.3 Sensitivity Analysis

In this section, we use our simulator to evaluate the performance
of MP5 in terms of packet processing throughput.

4.3.1 Configuration Parameters. We assume 64-port switch
with 16 pipeline stages and four configurable parameters, namely
(i) number of pipelines (default is 4), (ii) number of stateful pipeline
stages (default is 4), (iii) register array size (default is 512), and
(iv) packet size (default is 64 bytes). Each stateful stage has one
register array, and all register arrays are of the same size. Finally,
the heuristic for dynamic state sharding (Figure 6) is triggered every
100 clock cycles.

The default values for number of switch ports, pipeline stages,
pipelines, stateful stages, and register size are derived from the
analysis of state-of-the-art multi-pipelined switches [43] and prac-
tical stateful packet processing programs [31]. The packet size of
64 bytes was chosen to stress our system to the fullest, as it is the
smallest Ethernet packet size, and hence results in the worst-case
inter-packet arrival time. In the same spirit of stressing our system
to the fullest, we ensure that the input packets always arrive at
line rate. We also dynamically adapt per-stage FIFO sizes in the
simulator to ensure no packet loss in scenarios where the switch
cannot sustain line rate input.

Finally, we evaluate against two different state access patterns—
(i) uniform pattern, where each state is accessed by roughly the
same number of input packets, and (ii) skewed pattern, where most
packets (95% in our case) access only a small fraction of states (30%
in our case). The skewed distribution is derived from the heavy-tail
traffic distribution observed in datacenters [2, 4].

Evaluation metric. We evaluate the performance of MP5 in terms
of packet processing throughput normalized to the input packet
rate, which is line rate for all the experiments.
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4.3.2 Evaluating MP5’s design principles. We start with
microbenchmarks to show the benefits of MP5’s design principles.

D2: Dynamically sharded shared memory. Using the default
switch configurations from above, we measure the throughput
achieved by MP5 against a design without dynamic state shard-
ing (where register state is sharded randomly across pipelines at
compile time and never updated during runtime) for ten indepen-
dent sets of input packet streams. We observe that dynamic state
sharding achieves between 1.1-3.3% higher throughput for skewed
state access pattern across the ten experiments. Interestingly, even
for uniform state access pattern, dynamic state sharding achieves
between 1-1.5x higher throughput. This is because even though
uniform access ensures that each state is accessed by roughly the
same number of packets over the entire course of the experiment,
depending upon the order of packet arrival, there can be skew-
ness at smaller time granularities. Dynamic state sharding, which
is triggered every 100 clock cycles in our experiments, is able to
effectively react to such scenarios.

D4: Preemptive state access order enforcement. Next, we repeat
the above set of ten experiments (with dynamic state sharding
implemented) with and without D4, and report the fraction of
packets that violate condition C1. Of course, with D4 the number of
violations is zero, but without D4, between 14-26% packets violate
C1 across the ten experiments. For good measure, we also run the
above experiments assuming current generation of multi-pipelined
switches with packet re-circulation to access a state in a different
pipeline (§2.3), and observe between 18-31% packets violate C1.

D3: Inter-pipeline packet steering. Re-circulation in the above
set of experiments also results in a throughput reduction between
31-77% compared to MP5. In fact, in the worst case, the throughput
is even lower than the naive design mentioned in D1, where all
the state is mapped to a single pipeline. This happens when aver-
age number of re-circulations per packet exceeds the number of
pipelines. This highlights the benefit of inter-pipeline packet steer-
ing over re-circulation for accessing a state in a different pipeline.

4.3.3 Sensitivity experiments. We measure throughput of
MP5 against different values of configuration parameters mentioned
in §4.3.1. For each experiment, we vary one parameter while using
default values for the rest. Further, we run each experiment ten
times using ten independent input packet streams, and report the
average throughput across the ten experiment runs.

Ideal baseline. For baseline, we use an ideal implementation of
MP5, that does not have the practical limitations mentioned in
§3.5.2, i.e., no head-of-line blocking and optimal bin packing for
dynamic state sharding.

As we increase the number of pipelines (Figure 7a) and number
of stateful stages (Figure 7b), throughput decreases as expected,
due to more state access contention. But importantly, the decrease
is not aggressive (25% reduction as we go from 1 to 16 pipelines
and 20% reduction as we go from 0 to 10 stateful stages). As far
as register sizes are concerned (Figure 7c), throughput increases
steadily as we increase the size from 1 to 4096. This is also expected,
since when we have small number of register entries, we cannot
effectively shard them across the pipelines to extract maximum
parallelism. Further, when the number of register entries is small,
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there is also a very high contention per entry, as packet accesses
are distributed over a very small number of states, described as
a fundamental limit in §3.5.2. Finally, as we increase the packet
size (Figure 7d), throughput increases, since the inter-packet arrival
time increases, thus allowing for more time budget to process each
packet. In fact, MP5 hits line rate with packet sizes as small as 128
bytes. Also note that the performance of MP5 closely matches the
ideal for all the experiments.

4.4 Real Applications

In this section, we report the performance of MP5 for real stateful
packet processing applications with realistic packet and flow size
distributions. We evaluate four different applications — (i) flowlet
switching [30], (i) CONGA load balancing [1], (iii) priority com-
putation for weighted fair queuing (WFQ) [32], and (iv) network
sequencer [22]. The implementations of the above applications in
Domino language is publicly available [42].

Next, configuration parameters, such as number of stages, state-
ful stages, and register sizes are determined by the programs them-
selves. For packet sizes, we use bimodal distribution, clustered
around 200 B and 1400 B, as commonly observed in datacenters [6].
Finally, we use Web search workload [2, 4] for flow size and traffic
distribution, which also governs the state access pattern. Hence,
the only remaining configurable parameter is number of pipelines.

Figure 8 shows the throughput for each application against the
number of pipelines. Note that for three of the four applications, the
program had predicates which could not be resolved preemptively,
potentially resulting in wasted cycles (§3.3). But still, MP5 achieves
line rate for all applications regardless of the number of pipelines.
This can primarily be attributed to realistic packet size distributions
that provide larger time budget for processing compared to the
worst-case 64 byte packets, as well as realistic state access patterns
that do not result in unrealistically high state access contention.
Also, the maximum number of packets queued in any pipeline stage
at any time across all experiment runs for flowlet, CONGA, WFQ,
and sequencer was 11, 8, 7, and 7 respectively. These experiments
show that for realistic applications, MP5 can achieve functional
equivalence at line rate.

5 CONCLUSION

We presented MP5, which is a new switch architecture, compiler,
and runtime for multi-pipelined packet processing pipelines, that is
guaranteed to be functionally equivalent to a logical single packet
processing pipeline, while also achieving close to ideal packet pro-
cessing rate. Based on ASIC synthesis, we show that MP5’s design
can run at clock speeds of state-of-the-art multi-terabit switches
while incurring nominal chip area and SRAM overhead. Based on a
FPGA prototype and a software simulator, we show that MP5 can
achieve close to ideal packet processing rate while guaranteeing
functional equivalence.
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A ARTIFACT APPENDIX
Abstract

The artifact includes the source code for the hardware design of
MP5, implemented in System Verilog, along with the 15 nm process
technology file used to synthesize the hardware design. The artifact
also includes the code for MP5 simulator, implemented in Python.

Scope

The artifact can be used to validate and reproduce the evaluation

results presented in the paper, namely Table 1, Figure 7, and Figure 8.

Contents

The artifact contains following folders and files,

(1) mp5 folder. This folder contains the source code for MP5’s
hardware design (in .sv files). It also contains .tcl scripts that can
be run to generate the area and timing files for the hardware

design.
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(2) simulator folder. This folder contains the simulator code for
MP5. The source code for MP5 router along with the flow and
packet trace generator is in the sub-folder src/. The experiments
can be run using the scripts all_sensitivity.sh and all_realapp.sh.

(3) NanGate_15nm_OCL_fast.db file. This file contains the 15 nm
process technology information used to synthesize MP5’s hard-
ware design.

Hosting
The artifact is available at https://github.com/vishal1303/MP5.

Requirements

The hardware design was synthesized using Synopsys Design Com-
piler RTL Synthesis version L-2016.03-SP2 for area and timing re-
sults.
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