
Using RDMA Efficiently for Key-Value Services

Anuj Kalia Michael Kaminsky† David G. Andersen
Carnegie Mellon University †Intel Labs

{akalia,dga}@cs.cmu.edu michael.e.kaminsky@intel.com

ABSTRACT
This paper describes the design and implementation of HERD, a key-
value system designed to make the best use of an RDMA network.
Unlike prior RDMA-based key-value systems, HERD focuses its
design on reducing network round trips while using efficient RDMA
primitives; the result is substantially lower latency, and throughput
that saturates modern, commodity RDMA hardware.

HERD has two unconventional decisions: First, it does not use
RDMA reads, despite the allure of operations that bypass the remote
CPU entirely. Second, it uses a mix of RDMA and messaging verbs,
despite the conventional wisdom that the messaging primitives are
slow. A HERD client writes its request into the server’s memory;
the server computes the reply. This design uses a single round trip
for all requests and supports up to 26 million key-value operations
per second with 5 µs average latency. Notably, for small key-value
items, our full system throughput is similar to native RDMA read
throughput and is over 2X higher than recent RDMA-based key-
value systems. We believe that HERD further serves as an effective
template for the construction of RDMA-based datacenter services.
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1. INTRODUCTION
This paper explores a question that has important implications for
the design of modern clustered systems: What is the best method
for using RDMA features to support remote hash-table access? To
answer this question, we first evaluate the performance that, with
sufficient attention to engineering, can be achieved by each of the
RDMA communication primitives. Using this understanding, we
show how to use an unexpected combination of methods and system
architectures to achieve the maximum performance possible on a
high-performance RDMA network.

Our work is motivated by the seeming contrast between the funda-
mental time requirements for cross-node traffic vs. CPU-to-memory
lookups, and the designs that have recently emerged that use multiple
RDMA (remote direct memory access) reads. On one hand, going
between nodes takes roughly 1-3 µs, compared to 60-120 ns for a
memory lookup, suggesting that a multiple-RTT design as found in
the recent Pilaf [21] and FaRM [8] systems should be fundamen-
tally slower than a single-RTT design. But on the other hand, an
RDMA read bypasses many potential sources of overhead, such as
servicing interrupts and initiating control transfers, which involve

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses. contact the Owner/Author.
Copyright is held by the owner/author(s).
SIGCOMM’14, Aug 17-22 2014, Chicago, IL, USA
ACM 978-1-4503-2836-4/14/08.
http://dx.doi.org/10.1145/2619239.2626299

the host CPU. In this paper, we show that there is a better path to
taking advantage of RDMA to achieve high-throughput, low-latency
key-value storage.

A challenge for both our and prior work lies in the lack of richness
of RDMA operations. An RDMA operation can only read or write a
remote memory location. It is not possible to do more sophisticated
operations such as dereferencing and following a pointer in remote
memory. Recent work in building key-value stores [21, 8] has
focused exclusively on using RDMA reads to traverse remote data
structures, similar to what would have been done had the structure
been in local memory. This approach invariably requires multiple
round trips across the network.

Consider an ideal RDMA read-based key-value store (or cache)
where each GET request requires only 1 small RDMA read. Design-
ing such a store is as hard as designing a hash-table in which each
GET request requires only one random memory lookup. We instead
provide a solution to a simpler problem: we design a key-value
cache that provides performance similar to that of the ideal cache.
However, our design does not use RDMA reads at all.

In this paper, we present HERD, a key-value cache that leverages
RDMA features to deliver low latency and high throughput. As we
demonstrate later, RDMA reads cannot harness the full performance
of the RDMA hardware. In HERD, clients transmit their request to
the server’s memory using RDMA writes. The server’s CPU polls its
memory for incoming requests. On receiving a new request, it exe-
cutes the GET or PUT operation in its local data structures and sends
the response back to the client. As RDMA write performance does
not scale with the number of outbound connections, the response is
sent as a SEND message over a datagram connection.

Our work makes three main contributions:

• A thorough analysis of the performance of RDMA verbs and
expose the various design options for key-value systems.

• Evidence that “two-sided” verbs are better than RDMA reads
for key-value systems, refuting the previously held assump-
tion [21, 8].

• Describing the design and implementation of HERD, a key-
value cache that offers the maximum possible performance of
RDMA hardware.

The following section briefly introduces key-value stores and
RDMA, and describes recent efforts in building key-value stores
using RDMA. Section 3 discusses the rationale behind our design
decisions and demonstrates that messaging verbs are a better choice
than RDMA reads for key-value systems. Section 4 discusses the
design and implementation of our key-value cache. In Section 5, we
evaluate our system on a cluster of 187 nodes and compare it against
FaRM [8] and Pilaf [21].
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2. BACKGROUND
This section provides background information on key-value stores
and caches, which are at the heart of HERD. We then provide an
overview of RDMA, as is relevant for the rest of the paper.

2.1 Key-Value stores
DRAM-based key-value stores and caches are widespread in large-
scale Internet services. They are used both as primary stores (e.g.,
Redis [4] and RAMCloud [23]), and as caches in front of backend
databases (e.g., Memcached [5]). At their most basic level, these
systems export a traditional GET/PUT/DELETE interface. Internally,
they use a variety of data structures to provide fast, memory-efficient
access to their underlying data (e.g., hash table or tree-based in-
dexes).

In this paper, we focus on the communication architecture to
support both of these applications; we use a cache implementation
for end-to-end validation of our resulting design.

Although recent in-memory object stores have used both tree and
hash table-based designs, this paper focuses on hash tables as the
basic indexing data structure. Hash table design has a long and rich
history, and the particular flavor one chooses depends largely on the
desired optimization goals. In recent years, several systems have
used advanced hash table designs such as Cuckoo hashing [24, 17, 9]
and Hopscotch hashing [12]. Cuckoo hash tables are an attractive
choice for building fast key-value systems [9, 31, 17] because, with
K hash functions (usually, K is 2 or 3), they require only K memory
lookups for GET operations, plus an additional pointer dereference if
the values are not stored in the table itself. In many workloads, GETs
constitute over 95% of the operations [6, 22]. This property makes
cuckoo hashing an attractive backend for an RDMA-based key-value
store [21]. Cuckoo and Hopscotch-based designs often emphasize
workloads that are read-intensive: PUT operations require moving
values within the tables. We evaluate both balanced (50% PUT/GET)
and read-intensive (95% GET) workloads in this paper.

To support both types of workloads without being limited by the
performance of currently available data structure options, HERD
internally uses a cache data structure that can evict items when
it is full. Our focus, however, is on the network communication
architecture—our results generalize across both caches and stores,
so long as the implementation is fast enough that a high-performance
communication architecture is needed. HERD’s cache design is
based on the recent MICA [18] system that provides both cache
and store semantics. MICA’s cache mode uses a lossy associative
index to map keys to pointers, and stores the values in a circular log
that is memory efficient, avoids fragmentation, and does not require
expensive garbage collection. This design requires only 2 random
memory accesses for both GET and PUT operations.

2.2 RDMA
Remote Direct Memory Access (RDMA) allows one computer to
directly access the memory of a remote computer without involving
the operating system at any host. This enables zero-copy trans-
fers, reducing latency and CPU overhead. In this work, we focus
on two types of RDMA-providing interconnects: InfiniBand and
RoCE (RDMA over Converged Ethernet). However, we believe that
our design is applicable to other RDMA providers such as iWARP,
Quadrics, and Myrinet.

InfiniBand is a switched fabric network widely used in high-
performance computing systems. RoCE is a relatively new network
protocol that allows direct memory access over Ethernet. InfiniBand

and RoCE NICs achieve low latency by implementing several layers
of the network stack (transport layer through physical layer) in
hardware, and by providing RDMA and kernel-bypass. In this
section, we provide an overview of RDMA features and terminology
that are used in the rest of this paper.

2.2.1 Comparison with classical Ethernet
To distinguish from RoCE, we refer to non-RDMA providing Ether-
net networks as “classical Ethernet.” Unlike classical Ethernet NICs,
RDMA NICs (RNICs) provide reliable delivery to applications by
employing hardware-based retransmission of lost packets. Further,
RNICs provide kernel bypass for all communication. These two
factors reduce end-to-end latency as well as the CPU load on the
communicating hosts. The typical end-to-end ( 1

2 RTT) latency in In-
finiBand/RoCE is 1 µs while that in modern classical Ethernet-based
solutions [2, 18] is 10 µs. A large portion of this gap arises because
of differing emphasis in the NIC design. RDMA is increasing its
presence in datacenters as the hardware becomes cheaper [21]. A
40 Gbps ConnectX-3 RNIC from Mellanox costs about $500, while
a 10 Gbps Ethernet adapter costs between $300 and $800. The
introduction of RoCE will further boost RDMA’s presence as it will
allow sockets applications to run with RDMA applications on the
same network.

2.2.2 Verbs and queue pairs
Userspace programs access RNICs directly using functions called
verbs. There are several types of verbs. Those most relevant to
this work are RDMA read (READ), RDMA write (WRITE), SEND,
and RECEIVE. Verbs are posted by applications to queues that are
maintained inside the RNIC. Queues always exist in pairs: a send
queue and a receive queue form a queue pair (QP). Each queue pair
has an associated completion queue (CQ), which the RNIC fills in
upon completion of verb execution.

The verbs form a semantic definition of the interface provided
by the RNIC. There are two types of verbs semantics: memory
semantics and channel semantics.

Memory semantics: The RDMA verbs (READ and WRITE)
have memory semantics: they specify the remote memory address
to operate upon. These verbs are one-sided: the responder’s CPU
is unaware of the operation. This lack of CPU overhead at the
responder makes one-sided verbs attractive. Furthermore, they have
the lowest latency and highest throughput among all verbs.

Channel semantics: SEND and RECEIVE (RECV) have channel
semantics, i.e., the SEND’s payload is written to a remote memory
address that is specified by the responder in a pre-posted RECV. An
analogy for this would be an unbuffered sockets implementation
that required read() to be called before the packet arrived. SEND
and RECV are two-sided as the CPU at the responder needs to post
a RECV in order for an incoming SEND to be processed. Unlike
the memory verbs, the responder’s CPU is involved. Two-sided
verbs also have slightly higher latency and lower throughput than
one sided verbs and have been regarded unfavorably for designing
key-value systems [21, 8].

Although SEND and RECV verbs are technically RDMA verbs,
we distinguish them from READ and WRITE. We refer to READ
and WRITE as RDMA verbs, and refer to SEND and RECV as
messaging verbs.

Verbs are usually posted to the send queue of a QP (except RECV,
which is posted to the receive queue). To post a verb to the RNIC,
an application calls into the userland RDMA driver. Then, the driver
prepares a Work Queue Element (WQE) in the host’s memory and
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Verb RC UC UD

SEND/RECV 3 3 3

WRITE 3 3 7

READ 3 7 7

Table 1: Operations supported by each connection type. UC does not
support READs, and UD does not support RDMA at all.

rings a doorbell on the RNIC via Programmed IO (PIO). For Con-
nectX and newer RNICs, the doorbell contains the entire WQE [27].
For WRITE and SEND verbs, the WQE is associated with a pay-
load that needs to be sent to the remote host. A payload up to the
maximum PIO size (256 in our setup) can be inlined in the WQE,
otherwise it can be fetched by the RNIC via a DMA read. An inlined
post involves no DMA operations, reducing latency and increasing
throughput for small payloads.

When the RNIC completes the network steps associated with the
verb, it pushes a completion event to the queue pair’s associated
completion queue (CQ) via a DMA write. Using completion events
adds extra overhead to the RNIC’s PCIe bus. This overhead can
be reduced by using selective signaling. When using a selectively
signaled send queue of size S, up to S− 1 consecutive verbs can
be unsignaled, i.e., a completion event will not be pushed for these
verbs. The receive queue cannot be selectively signaled. As S is large
(∼ 128), we use the terms “selective signaling” and “unsignaled”
interchangeably.

2.2.3 Transport types
RDMA transports can be connected or unconnected. A connected
transport requires a connection between two queue pairs that com-
municate exclusively with each other. Current RDMA implemen-
tations support two main types of connected transports: Reliable
Connection (RC) and Unreliable Connection (UC). There is no ac-
knowledgement of packet reception in UC; packets can be lost and
the affected message can be dropped. As UC does not generate
ACK/NAK packets, it causes less network traffic than RC.

In an unconnected transport, one queue pair can communicate
with any number of other queue pairs. Current implementations
provide only one unconnected transport: Unreliable Datagram (UD).
The RNIC maintains state for each active queue in its queue pair
context cache, so datagram transport can scale better for applications
with a one-to-many topology.

InfiniBand and RoCE employ lossless link-level flow control,
namely, credit-based flow control and Priority Flow Control. Even
with unreliable transports (UC/UD), packets are never lost due to
buffer overflows. Reasons for packet loss include bit errors on the
wire and hardware failures, which are extremely rare. Therefore,
our design, similar to choices made by Facebook and others [22],
sacrifices transport-level retransmission for fast common case per-
formance at the cost of rare application-level retries.

Some transport types support only a subset of the available verbs.
Table 1 lists the verbs supported by each transport type. Figure 1
shows the DMA and network steps involved in posting verbs.

2.3 Existing RDMA-based key-value stores
Pilaf [21] is a key-value store that aims for high performance and low
CPU use. For GETs, clients access a cuckoo hash table at the server
using READs, which requires 2.6 round trips on average for single
GET request. For PUTs, clients send their requests to the server
using a SEND message. To ensure consistent GETs in the presence

T
im

e

CPU RNIC RNIC CPU

WRITE

WRITE, INLINED,
UNREALIABLE,
UNSIGNALLED

READ

SEND/RECV

1

Figure 1: Steps involved in posting verbs. The dotted arrows are PCIe PIO
operations. The solid, straight arrows are DMA operations: the thin ones are
for writing the completion events. The thick wavy arrows are RDMA data
packets and the thin ones are ACKs.

of concurrent PUTs, Pilaf’s data structures are self-verifying: each
hash table entry is augmented with two 64-bit checksums.

The second key-value store we compare against is based upon the
store designed in FaRM [8]. It is important to note that FaRM is a
more general-purpose distributed computing platform that exposes
memory of a cluster of machines as a shared address space; we
compare only against a key-value store implemented on top of FaRM
that we call FaRM-KV. Unlike the client-server design in Pilaf
and HERD, FaRM is symmetric, befitting its design as a cluster
architecture: each machine acts as both a server and client.

FaRM’s design provides two components for comparison. First
is its key-value store design, which uses a variant of Hopscotch
hashing [12] to create a locality-aware hash table. For GETs, clients
READ several consecutive Hopscotch slots, one of which contains
the key with high probability. Another READ is required to fetch
the value if it is not stored inside the hash table. For PUTs, clients
WRITE their request to a circular buffer in the server’s memory.
The server polls this buffer to detect new requests. This design is
not specific to FaRM—we use it merely as an extant alternative to
Pilaf’s Cuckoo-based design to provide a more in-depth comparison
for HERD.

The second important aspect of FaRM is its symmetry; here it
differs from both Pilaf and HERD. For small, fixed-size key-value
pairs, FaRM can “inline” the value with the key. With inlining,
FaRM’s RDMA read-based design still achieves lower maximum
throughput than HERD, but it uses less CPU. This tradeoff may be
right for a cluster where all machines are also busy doing compu-
tation; we do not evaluate the symmetric use case here, but it is an
important consideration for users of either design.

3. DESIGN DECISIONS
Towards our goal of supporting key-value servers that achieve the
highest possible throughput with RDMA, we explain in this section
the reasons we choose to use—and not use—particular RDMA
features and other design options. To begin with, we present an
analysis of the performance of the RDMA verbs; we then craft a
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Name Nodes Hardware

Apt 187 Intel Xeon E5-2450 CPUs. ConnectX-3
MX354A (56 Gbps IB) via PCIe 3.0 x8

Susitna 36 AMD Opteron 6272 CPUs. CX-3 MX353A
(40 Gbps IB) and CX-3 MX313A (40 Gbps
RoCE) via PCIe 2.0 x8

Table 2: Cluster configuration

communication architecture using the fastest among them that can
support our application needs.

As hinted in Section 1, one of the core decisions to make is
whether to use memory verbs (RDMA read and write) or messag-
ing verbs (SEND and RECV). Recent work from the systems and
networking communities, for example, has focused on RDMA reads
as a building block, because they bypass the remote network stack
and CPU entirely for GETs [21, 8]. In contrast, however, the HPC
community has made wider use of messaging, both for key-value
caches [14] and general communication [16]. These latter systems
scaled to thousands of machines, but provided low throughput—less
than one million operations per second in memcached [14]. The
reason for low throughput in [14] is not clear, but we suspect appli-
cation design that makes the system incapable of leveraging the full
power of the RNICs.

There remains an important gap between these two lines of work,
and to our knowledge, HERD is the first system to provide the best of
both worlds: throughput even higher than that of the RDMA-based
systems while scaling to several hundred clients.

HERD takes a hybrid approach, using both RDMA and messaging
to best effect. RDMA reads, however, are unattractive because of
the need for multiple round trips. In HERD, clients instead write
their requests to the server using RDMA writes over an Unreliable
Connection (UC). This write places the PUT or GET request into
a per-client memory region in the server. The server polls these
regions for new requests. Upon receiving one, the server process
executes in conventional fashion using its local data structures. It
then sends a reply to the client using messaging verbs: a SEND over
an Unreliable Datagram.

To explain why we use this hybrid of RDMA and messaging,
we describe the performance experiments and analysis that support
it. Particularly, we describe why we prefer using RDMA writes
instead of reads, not taking advantage of hardware retransmission by
opting for unreliable transports, and using messaging verbs despite
conventional wisdom that they are slower than RDMA.

3.1 Notation and experimental setup
In the rest of this paper, we refer to an RDMA read as READ
and to an RDMA write as WRITE. In this section, we present
microbenchmarks from Emulab’s [29] Apt cluster, a large, modern
testbed equipped with 56 Gbps InfiniBand. Because Apt has only
InfiniBand, in Section 5, we also use the NSF PRObE’s [11] Susitna
cluster to evaluate on RoCE. The hardware configurations of these
clusters are shown in Table 2.

These experiments use one server machine and several client
machines. We denote the server machine by MS and its RNIC by
RNICS. Client machine i is denoted by Ci. The server and client
machines may run multiple server and client processes respectively.
We call a message from client to server a request, and the reply
from server to client, a response. The host issuing a verb is the
requester and the destination host responder. For unsignaled SEND

and WRITE over UC, the destination host does not actually send a
response, but we still call it a responder.

For throughput experiments, processes maintain a window of
several outstanding verbs in their send queues. Using windows
allows us to saturate our RNICs with fewer processes. In all of
our throughput experiments, we manually tune the window size for
maximum aggregate throughput.

3.2 Using WRITE instead of READ
There are several benefits to using WRITE instead of READ.
WRITEs can be performed over the UC transport, which itself
confers several performance advantages. Because the responder
does not need to send packets back, its RNIC performs less pro-
cessing, and thus can support higher throughput than with READs.
The reduced network bandwidth similarly benefits both the server
and client throughput. Finally, as one might expect, the latency
of an unsignaled WRITE is about half that ( 1

2 RTT) of a READ.
This makes it possible to replace one READ by two WRITEs, one
client-to-server and one server-to-client (forming an application-
level request-reply pair), without increasing latency significantly.

3.2.1 WRITEs have lower latency than READs
Measuring the latency of an unsignaled WRITE is not straightfor-
ward as the requester gets no indication of completion. Therefore,
we measure it indirectly by measuring the latency of an ECHO. In
an ECHO, a client transmits a message to a server and the server
relays the same message back to the client. If the ECHO is realized
by using unsignaled WRITEs, the latency of an unsignaled WRITE
is at most one half of the ECHO’s latency.

We also measure the latency of signaled READ and WRITE
operations. As these operations are signaled, we use the completion
event to measure latency. For WRITE, we also measure the latency
with payload inlining.

Figure 2 shows the average latency from these measurements. We
use inlined and unsignaled WRITEs for ECHOs. On our RNICs, the
maximum size of the inlined payload is 256 bytes. Therefore, the
graphs for WR-INLINE and ECHO are only shown up to 256 bytes.

Unsignaled verbs: For payloads up to 64 bytes, the latency of
ECHOs is close to READ latency, which confirms that the one-
way WRITE latency is about half of the READ latency. For larger
ECHOs, the latency increases because of the time spent in writing
to the RNIC via PIO.

Signaled verbs: The solid lines in Figure 2 show the latencies for
three signaled verbs—WRITE, READ, and WRITE with inlining
(WR-INLINE). The latencies for READ and WRITE are similar
because the length of the network/PCIe path travelled is identical.
By avoiding one DMA operation, inlining reduces the latency of
small WRITEs significantly.

3.2.2 WRITEs have higher throughput than READs
To evaluate throughput, it is first necessary to observe that with
many client machines communicating with one server, different
verbs perform very differently when used at the clients (talking to
one server) and at the server (talking to many clients).

Inbound throughput: First, we measured the throughput for
inbound verbs, i.e., the number of verbs that multiple remote ma-
chines (the clients) can issue to one machine (the server). Using
the notation introduced above, C1, ...,CN issue operations to MS as
shown in Figure 3a. Figure 3b shows the cumulative throughput
observed across the active machines. For up to 128 byte payloads,
WRITEs achieve 35 Mops, which is about 34% higher higher than
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(b) The one-way latency of WRITE is half of the ECHO latency. ECHO
operations used unsignaled verbs.

Figure 2: Latency of verbs and ECHO operations

the maximum READ throughput (26 Mops). Interestingly, reliable
WRITEs deliver significantly higher throughput than READs despite
their identical InfiniBand path. This is explained as follows: writes
require less state maintainance both at the RDMA and the PCIe level
because the initiator does not need to wait for a response. For reads,
however, the request must be maintained in the initiator’s memory
till a response arrives. At the RDMA level, each queue pair can
only service a few outstanding READ requests (16 in our RNICs).
Similarly, at the PCIe level, reads are performed using non-posted
transactions, whereas writes use cheaper, posted transactions.

Although the inbound throughput of WRITEs over UC and RC
is nearly identical, using UC is still beneficial: It requires less pro-
cessing at RNICS, and HERD uses this saved capacity to SEND
responses.

Outbound throughput: We next measured the throughput for
outbound verbs. Here, MS issues operations to C1, ...,CN . As shown
in Figure 4a, there are N processes on MS; the ith process com-
municates with Ci only (the scalability problems associated with
all-to-all communication are explained in Section 3.3). Apart from
READs, WRITEs, and inlined WRITEs over UC, we also measure
the throughput for inlined SENDs over UD for reasons outlined in
Section 3.3. Figure 4b plots the throughput achieved by MS for dif-
ferent payload sizes. For small sizes, inlined WRITEs and SENDs
have significantly higher outbound throughput than READs. For
large sizes, the throughput of all WRITE and SEND variants is less
than for READs, but it is never less than 50% of the READ through-
put. Thus, even for these larger items, using a single WRITE (or
SEND) for responses remains a better choice than using multiple
READs for key-value items.

ECHO throughput is interesting for two reasons. First, it pro-
vides an upper bound on the throughput of a key-value cache based
on one round trip of communication. Second, ECHOs help charac-
terize the processing power of the RNIC: although the advertised
message rate of ConnectX-3 cards is 35 Mops, bidirectionally, they
can process many more messages.

An ECHO consists of a request message and a response message.
Varying the verbs and transport types yield several different imple-
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(a) Setup for measuring inbound throughput. Each client pro-
cess communicates with only one server process
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Figure 3: Comparison of inbound verbs throughput
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(a) Setup for measuring outbound throughput. Each server
process communicates with only one client process.
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Figure 4: Comparison of outbound verbs throughput

mentations of ECHO. Figure 5 shows the throughput for some of
the possible combinations and for 32 byte payloads. The figure also
shows that using inlinining, selective signaling, and UC transport
increases the performance significantly.

ECHOs achieve maximum throughput (26 Mops) when both the
request and the response are done as RDMA writes. However, as
shown in Section 3.3, this approach does not scale with the number
of connections. HERD uses RDMA writes (over UC) for requests
and SENDs (over UD) for responses. An ECHO server using this
hybrid also achieves 26 Mops—it gives the performance of WRITE-
based ECHOs, but with much better scalability.
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Figure 5: Throughput of ECHOs with 32 byte messages. In WR-SEND,
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By avoiding the overhead of posting RECVs at the server, our
method of WRITE based requests and SEND-based responses pro-
vides better throughput than purely SEND-based ECHOs. Inter-
estingly, however, after enabling all optimizations, the throughput
of purely SEND-based ECHOs (with no RDMA operations) is 21
Mops, which is more than three-fourths of the peak inbound READ
throughput (26 Mops). Both Pilaf and FaRM have noted that RDMA
reads vastly outperform SEND-based ECHOs, which our results
agree with if our optimizations are removed. With these optimiza-
tions, however, SENDs significantly outperform READs in cases
where a single SEND-based ECHO can be used in place of multiple
READs per request.

Our experiments show that several ECHO designs, with vary-
ing degrees of scalability, can perform better than multiple-READ
designs. From a network-centric perspective, this is fortunate: it
also means that designs that use only one cross-datacenter RTT can
potentially outperform multiple-RTT designs both in throughput and
in latency.

Discussion of verbs throughput: The ConnectX-3 card is adver-
tised to support 35 million messages per second. Our experiments
show that the card can achieve this rate for inbound WRITEs (Fig-
ure 3b) and slightly exceed it for very small outbound WRITEs
(Figure 4b). All other verbs are slower than 30 Mops regardless of
operation size. While the manufacturer does not specify bidirectional
message throughput, we know empirically that RNICS can service
30 million ECHOs per second (WRITE-based ECHOs achieve 30
Mops with 16 byte payloads; Figure 5 uses 32 byte payloads), or at
least 60 total Mops of inbound WRITEs and outbound SENDs.

The reduced throughputs can be attributed to several factors:

• For outbound WRITEs larger than 28 bytes, the RNIC’s mes-
sage rate is limited by the PCIe PIO throughput. The sharp
decreases in the WR-UC-INLINE and SEND-UD graphs in
Figure 4b at 64 byte intervals are explained by the use of
write-combining buffers for PIO acceleration. With the write-
combining optimization, the unit of PIO writes is a cache line
instead of a word. Due to the larger datagram header, the
throughput for SEND-UD drops for smaller payload sizes than
for WRITEs

• The maximum throughput for inbound and outbound READs
is 26 Mops and 22 Mops respectively, which is considerably
smaller than the advertised 35 Mops message rate. Unlike
WRITEs, READs are bottlenecked by the RNIC’s processing
power. This is as expected. Outbound READs involve a PIO
operation, a packet transmission, a packet reception, and a
DMA write, whereas outbound WRITEs (inlined and over UC)
avoid the last two steps. Inbound READs require a DMA

read by the RNIC followed by a packet transmission, whereas
inbound WRITEs only require a DMA write.

3.3 Using UD for responses
Our previous experiments did not show that as the number of con-
nections increases, connected transports begin to slow down. To
reduce hardware cost, power consumption, and design complexity,
RNICs have very little on-chip memory (SRAM) to cache address
translation tables and queue pair contexts [26]. A miss in this cache
requires a PCIe transaction to fetch the data from host memory.
When the communication fan-in or fan-out exceeds the capacity
of this cache, performance begins to suffer. This is a potentially
important effect to avoid both for cluster scaling, but also because it
interacts with the cache or store architectural decisions. For example,
the cache design we build on in HERD partitions the keyspace be-
tween several server processes in order to achieve efficient CPU and
memory utilization. Such partitioning further increases the fan-in
and fan out of connections to a single machine.

To evaluate this effect, we modified our throughput experiments
to enable all-to-all communication. We use N client processes (one
process each at C1, ...,CN ) and N server processes at MS. For mea-
suring inbound throughput, client processes select a server process
at random and issue a WRITE to it. For outbound throughput, a
server process selects a client at random and issues a WRITE to it.
The results of these experiments for 32 byte messages are presented
in Figure 6. Several results stand out:

Outbound WRITEs scale poorly: for N = 16, there are 256
active queue pairs at RNICS and the server-to-clients throughput
degrades to 21% of the maximum outbound WRITE throughput
(Figure 4b). With many active queue pairs, each posted verb can
cause a cache miss, severely degrading performance.

Inbound WRITEs scale well: Clients-to-server throughput is
high even for N = 16. The reason for this is that queueing of out-
standing verbs operations is performed at the requesting RNIC and
very little state is maintained at the responding RNIC. Therefore,
the responding RNIC can support a much larger number of active
queue pairs without incurring cache misses. The higher requester
overhead is amortized because the clients outnumber the server.

In a different experiment, we used 1600 client processes spread
over 16 machines to issue WRITEs over UC to one server process.
HERD uses this many-to-one configuration to reduce the number
of active connections at the server (Section 4.2). This configuration
also achieves 30 Mops.

Outbound WRITEs scale poorly only because RNICS must man-
age many connected queue pairs. This problem cannot be solved if
we use connected transports (RC/UC/XRC) because they require at
least as many queue pairs at MS as the number of client machines.
Scaling outbound communication therefore mandates using data-
grams. UD transport supports one-to-many communication, i.e., a
single UD queue can be used to issue operations to multiple remote
UD queues. The main problem with using UD in a high performance
application is that it only supports messaging verbs and not RDMA
verbs.

Fortunately, messaging verbs only impose high overhead at the re-
ceiver. Senders can directly transmit their requests; only the receiver
must pre-post a RECV before the SEND can be handled. For the
sender, the work done to issue a SEND is identical to that required
to post a WRITE. Figure 6 shows that, when performed over Unreli-
able Datagram transport, SEND side throughput is high and scales
well with the number of connected clients.
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The slight degradation of SEND throughput beyond 10 connected
clients happens because the SENDs are unsignaled, i.e., server pro-
cesses get no indication of verb completion. This leads to the server
processes overwhelming RNICS with too many outstanding opera-
tions, causing cache misses inside the RNIC. As HERD uses SENDs
for responding to requests, it can use new requests as an indication
of the completion of old SENDs, thereby avoiding this problem.

4. DESIGN OF HERD
To evaluate whether these network-driven architectural decisions
work for a real key-value application, we designed and implemented
an RDMA-based KV cache, called HERD, based upon recent high-
performance key-value designs. Our HERD setup consists of one
server machine and several client machines. The server machine
runs NS server processes. NC client processes are uniformly spread
across the client machines.

4.1 Key-Value cache
The fundamental goal of this work is to evaluate our networking and
architectural decisions in the context of key-value systems. We do
not focus on building better back-end key-value data structures but
rather borrow existing designs from MICA [18].

MICA is a near line-rate key-value cache and store for classical
Ethernet. We restrict our discussion of MICA to its cache mode.
MICA uses a lossy index to map keys to pointers, and stores the
actual values in a circular log. On insertion, items can be evicted
from the index (thereby making the index lossy), or from the log in
a FIFO order. In HERD, each server process creates an index for
64 Mi keys, and a 4 GB circular log. We use MICA’s algorithm for
both GETs and PUTs: each GET requires up to two random memory
lookups, and each PUT requires one.

MICA shards the key space into several partitions based on a
keyhash. In its “EREW” mode, each server core has exclusive read
and write access to one partition. MICA uses the Flow Director [3]
feature of modern Ethernet NICs to direct request packets to the
core responsible for the given key. HERD achieves the same effect
by allocating per-core request memory at the server, and allowing
clients to WRITE their requests directly to the appropriate core.

4.1.1 Masking DRAM latency with prefetching
To service a GET, a HERD server must perform two random memory
lookups, prepare the SEND response (with the key’s value inlined in
the WQE), and then post the SEND verb using the post send()
function. The memory lookups and the post send() function are
the two main sources of latency at the server. Each random memory
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Figure 7: Effect of prefetching on throughput

access takes 60-120 ns and the post send() function takes about
150 ns. While the latter is unavoidable, we can mask the memory
access latency by overlapping memory accesses of one request with
computation of another request.

MICA and CuckooSwitch [18, 31] mask latency by overlapping
memory fetches and prefetches, or request decoding and prefetches.
HERD takes a different approach: we overlap prefetches with the
post send() function used to transmit replies. To process mul-
tiple requests simultaneously in the absence of a driver that itself
handles batches of packets [2, 18, 31]), HERD creates a pipeline of
requests at the application level.

In HERD, the maximum number of memory lookups for each
request is two. Therefore, we create a request pipeline with two
stages. When a request is in stage i of the pipeline, it performs
the i-th memory access for the request and issues a prefetch for the
next memory address. In this way, requests only access memory
for which a prefetch has already been issued. On detecting a new
request, the server issues a prefetch for the request’s index bucket,
advances the old requests in the pipeline, pushes in the new request,
and finally calls post send() to SEND a reply for the pipeline’s
completed request. The server process expects the issued prefetches
to finish by the time post send() returns.

Figure 7 shows the effectiveness of prefetching. We use a
WRITE/SEND-based ECHO server but this time the server per-
forms N random memory accesses before sending the response.
Prefetching allows fewer cores to deliver higher throughput: 5 cores
can deliver the peak throughput even with N = 8. We conclude
that there is significant headroom to implement more complex key-
value applications, for instance, key-value stores, on top of HERD’s
request-reply communication mechanism.

With a large number of server processes, this pipelining scheme
can lead to a deadlock. A server does not advance its pipeline until
it receives a new request, and a client does not advance its request
window until it gets a response. We avoid this deadlock as follows.
While polling for new requests, if a server fails for 100 iterations
consecutively, it pushes a no-op into the pipeline.

4.2 Requests
Clients WRITE their GET and PUT requests to a contiguous memory
region on the server machine which is allocated during initialization.
This memory region is called the request region and is shared among
all the server processes by mapping it using shmget(). The re-
quest region is logically divided into 1 KB slots (the maximum size
of a key-value item in HERD is 1 KB).

Requests are formatted as follows. A GET request consists only
of a 16-byte keyhash. A PUT request contains a 16-byte keyhash,
a 2-byte LEN field (specifying the value’s length), and up to 1000
bytes for the value. To poll for incoming requests, we use the left-
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to-right ordering of the RNIC’s DMA writes [16, 8]. We use the
keyhash field to poll for new requests; therefore, the key is written
to the rightmost 16 bytes of the 1 KB slot. A non-zero keyhash
indicates a new request, so we do not allow the clients to use a zero
keyhash. The server zeroes out the keyhash field of the slot after
sending a response, freeing it up for a new request.

Figure 8 shows the layout of the request region at the server
machine. It consists of separate chunks for each server process
which are further sub-divided into per-client chunks. Each per-
client chunk consists of W slots, i.e., each client can have up to W
pending requests to each server process. The size of the request
region is NS ·NC ·W KB. With NC = 200, NS = 16 and W = 2,
this is approximately 6 MB and fits inside the server’s L3 cache.
Each server process polls the per-client chunks for new requests in
a round robin fashion. If server process s has seen r requests from
client number c, it polls the request region at the request slot number
s · (W ·Nc)+(c ·W )+ r mod W .

A network configuration using bidirectional, all-to-all, communi-
cation with connected transports would require NC ·NS queue pairs
at the server. HERD, however, uses connected transports for only the
request side of communication, and thus requires only NC connected
queue pairs. The configuration works as follows. An initializer pro-
cess creates the request region, registers it with RNICS, establishes
a UC connection with each client, and goes to sleep. The NS server
processes then map the request region into their address space via
shmget() and do not create any connections for receiving requests.

4.3 Responses
In HERD, responses are sent as SENDs over UD. Each client creates
NS UD queue pairs (QPs) whereas each server process uses only one
UD QP. Before writing a new request to server process s, a client
posts a RECV to its s-th UD QP. This RECV specifies the memory
area on the client where the server’s response will be written. Each
client allocates a response region containing W ·NS response slots:
this region is used for the target addresses in the RECVs. After
writing out W requests, the client starts checking for responses by
polling for RECV completions. On each successful completion, it
posts another request.

The design outlined thus far deliberately shifts work from the
server’s RNIC to the client’s, with the assumption that client ma-
chines often perform enough other work that saturating 40 or 56
gigabits of network bandwidth is not their primary concern. The
servers, however, in an application such as Memcached, are often
dedicated machines, and achieving high bandwidth is important.

5. EVALUATION
We evaluate HERD on two clusters: Apt and Susitna (Table 2). Due
to limited space, we restrict our discussion to Apt and only present
graphs for RoCE on Susitna. A detailed discussion of our results
on Susitna may be found in [15]. Although Susitna uses similar
RNICs as Apt, the slower PCIe 2.0 bus reduces the throughput of
all compared systems. Despite this, our results on Susitna remain
interesting: just as ConnectX-3 cards overwhelm PCIe 2.0 x8, we
expect the next-generation Connect-IB cards to overwhelm PCIe 3.0
x16. Our evaluation shows that:

• HERD uses the full processing power of the RNIC. A single
HERD server can process up to 26 million requests per second.
For value size up to 60 bytes, HERD’s request throughput is
greater than native READ throughput and is much greater than
that of READ-based key-value services: it is over 2X higher
than FaRM-KV and Pilaf.

• HERD delivers up to 26 Mops with approximately 5 µs average
latency. Its latency is over 2X lower than Pilaf and FaRM-KV
at their peak throughput respectively.

• HERD scales to the moderately sized Apt cluster, sustaining
peak throughput with over 250 connected client processes.

We conclude the evaluation by examining the seeming drawback
of the HERD design relative to READ-based designs—its higher
server CPU use—and put this in context with the total (client +
server) CPU required by all systems.

5.1 Experimental setup
We run all our throughput and latency experiments on 18 machines
in Apt. The 17 client machines run up to 3 client processes each.
With at most 4 outstanding requests per client, our implementation
requires at least 36 client processes to saturate the server’s through-
put. We over-provision slightly by using 51 client processes. The
server machine runs 6 server processes, each pinned to a distinct
physical core. The machine configuration is described in Table 2.
The machines run Ubuntu 12.04 with Mellanox’s OFED v2.2 stack.

Comparison against stripped-down alternatives: In keeping
with our focus on understanding the effects of network-related deci-
sions, we compare our (full) HERD implementation against simpli-
fied implementations of Pilaf and FaRM-KV. These simplified im-
plementations use the same communication methods as the originals,
but omit the actual key-value storage, instead returning a result in-
stantly. We made this decision for two reasons. First, while working
with Pilaf’s code, we observed several optimization opportunities;
we did not want our evaluation to depend on the relative perfor-
mance tuning of the systems. Second, we did not have access to the
FaRM source code, and we could not run Windows Server on our
cluster. Instead, we created and evaluated emulated versions of the
two systems which do not include their backing data structures. This
approach gives these systems the maximum performance advantage
possible, so the throughput we report for both Pilaf and FaRM-KV
may be higher than is actually achievable by those systems.

Pilaf is based on 2-level lookups: a hash-table maps keys to point-
ers. The pointer is used to find the value associated with the key from
flat memory regions called extents. FaRM-KV, in its default operat-
ing mode, uses single-level lookups. It achieves this by inlining the
value in the hash-table. It also has a two-level mode, where the value
is stored “out-of-table.” Because the out-of-table mode is necessary
for memory efficiency with variable length keys, we compare HERD
against both modes. In the following two subsections, we denote the
size of a key, value, and pointer by SK , SV , and SP respectively.

302



5.1.1 Emulating Pilaf

In K-B cuckoo hashing, every key can be found in K different buck-
ets, determined by K orthogonal hash functions. For associativity,
each bucket contains B slots. Pilaf uses 3-1 cuckoo hashing with
75% memory efficiency and 1.6 average probes per GET (higher
memory efficiency with fewer, but slightly larger, average probes is
possible with 2-4 cuckoo hashing [9]). When reading the hash index
via RDMA, the smallest unit that must be read is a bucket. A bucket
in Pilaf has only one slot that contains a 4 byte pointer, two 8 byte
checksums, and a few other fields. We assume the bucket size in
Pilaf to be 32 bytes for alignment.
GET: A GET in Pilaf consists of 1.6 bucket READs (on average)

to find the value pointer, followed by a SV byte READ to fetch the
value. It is possible to reduce Pilaf’s latency by issuing concurrent
READs for both cuckoo buckets. As this comes at the cost of
decreased throughput, we wait for the first READ to complete and
issue the second READ only if it is required.
PUT: For a PUT, a client SENDs a SK +SV byte message contain-

ing the new key-value item to the server. This request may require
relocating entries in the cuckoo hash-table, but we ignore that as our
evaluation focuses on the network communication only.

In emulating Pilaf, we enable all of our RDMA optimizations for
both request types; we call the resulting system Pilaf-em-OPT.

5.1.2 Emulating FaRM-KV

FaRM-KV uses a variant of Hopscotch hashing to locate a key in
approximately one READ. Its algorithm guarantees that a key-value
pair is stored in a small neighborhood of the bucket that the key
hashes to. The size of the neighborhood is tunable, but its authors
set it to 6 to balance good space utilization and performance for
items smaller than 128 bytes. FaRM-KV can inline the values in the
buckets, or it can store them separately and only store pointers in
the buckets. We call our version of FaRM-KV with inlined values
FaRM-em and without inlining FaRM-em-VAR (for variable length
values).
GET: A GET in FaRM-em requires a 6 * (SK +SV ) byte READ.

In FaRM-em-VAR, a GET requires a 6 * (SK + SP) byte READ
followed by a SV byte READ.
PUT: FaRM-KV handles PUTs by sending messages to the server

via WRITEs, similar to HERD. The server notifies the client of PUT
completion using another WRITE. Therefore, a PUT in FaRM-em
(and FaRM-em-VAR) consists of one SK +SV byte WRITE from a
client to the server, and one WRITE from the server to the client.
For higher throughput, we perform these WRITEs over UC unlike
the original FaRM paper that used RC (Figure 5).

5.2 Workloads
Three main workload parameters affect the throughput and latency
of a key-value system: relative frequency of PUTs and GETs, item
size, and skew.

We use two types of workloads: read-intensive (95% GET, 5%
PUT) and write-intensive (50% GET, 50% PUT). Our workload can
either be uniform or skewed. Under a uniform workload, the keys
are chosen uniformly at random from the 16 byte keyhash space.
The skewed workload draws keys from a Zipf distribution with
parameter .99. This workload is generated offline using YCSB [7].
We generated 480 million keys once and assigned 8 million keys to
each of the 51 client processes.

5.3 Throughput comparison
We now compare the end-to-end throughput of HERD against the
emulated versions of Pilaf and FaRM.

Figure 9 plots the throughput of these system for read-intensive
and write-intensive workloads for 48-byte items (SK = 16, SV = 32).
We chose this item size because it is representative of real-life work-
loads: an analysis of Facebook’s general-purpose key-value store [6]
showed that the 50-th percentile of key sizes is approximately 30
bytes, and that of value sizes is 20 bytes. To compare the READ-
based GETs of Pilaf and FaRM with Pilaf’s SEND/RECV-based
PUTs, we also plot the throughput when the workload consists of
100% PUTs.

In HERD, both read-intensive and write-intensive workloads
achieve 26 Mops, which is slightly larger than the throughput of
native RDMA reads of a similar size (Figure 3b). For small key-
value items, there is very little difference between PUT and GET
requests at the RDMA layer because both types of requests fit inside
one cacheline. Therefore, the throughput does not depend on the
workload composition.

The GET throughput of Pilaf-em-OPT and FaRM-em(-VAR) is
directly determined by the throughput of RDMA READs. A GET in
Pilaf-em-OPT involves 2.6 READs (on average). Its GET throughput
is 9.9 Mops, which is about 2.6X smaller than the maximum READ
throughput. For GETs, FaRM-em requires a single 288 byte READ
and delivers 17.2 Mops. FaRM-em-VAR requires a second READ
and has throughput of 11.4 Mops for GETs.

Surprisingly, the PUT throughput in our emulated systems is
much larger than their GET throughput. This is explained as fol-
lows. In FaRM-em(-VAR), PUTs use small WRITEs over UC that
outperform the large READs required for GETs. Pilaf-em-OPT uses
SEND/RECV-based requests and replies for PUT. Both Pilaf and
FaRM assume that messaging-based ECHOs are much more ex-
pensive than READs. (Pilaf reports that for 17 byte messages, the
throughput of RDMA reads is 2.449 Mops whereas the throughput of
SEND/RECV-based ECHOs is only 0.668 Mops.) If SEND/RECV
can provide only one fourth the throughput of READ, it makes sense
to use multiple READs for GET.

However, we believe that these systems do not achieve the
full capacity of SEND/RECV. After optimizing SENDs by us-
ing unreliable transport, payload inlining, and selective signaling,
SEND/RECV based ECHOs, as shown in Figure 5, achieve 21 Mops,
which is considerably more than half of our READ throughput (26
Mops). Therefore, we conclude that SEND/RECV-based communi-
cation, when used effectively, is more efficient than using multiple
READs per request.

Figure 10 shows the throughput of the three systems with 16 byte
keys and different value sizes for a read-intensive workload. For up
to 60-byte items, HERD delivers over 26 Mops, which is slightly
greater than the peak READ throughput. Up to 32-byte values,
FaRM-em also delivers high throughput. However, its throughput
declines quickly with increasing value size because the size of FaRM-
em’s READs grow rapidly (as 6 * (SV + 16)). This problem is
fundamental to the Hopscotch-based KV design which amplifies
the READ size to reduce round trips. FaRM-KV quickly saturates
link bandwidths (PCIe or InfiniBand/RoCE) with smaller items than
HERD, which conserves network bandwidth by transmitting only
essential data. Figure 10 illustrates this effect. FaRM-em saturates
the PCIe 2.0 bandwidth on Susitna with 4 byte values, and the 56
Gbps InfiniBand bandwidth on Apt with 32 byte values. HERD
achieves high performance for up to 32 byte values on Susitna, and
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items
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Figure 10: End-to-end throughput comparison with different value
sizes

60 bytes values on Apt, and is bottlenecked by the smaller PCIe PIO
bandwidth.

With large values (144 bytes on Apt, 192 on Susitna), HERD
switches to using non-inlined SENDs for responses. The outbound
throughput of large inlined messages is less than non-inlined mes-
sages because DMA outperforms PIO for large payloads (Figure 4b).
For large values, the performance of HERD, FaRM-em, and Pilaf-
em-OPT are within 10% of each other.

5.4 Latency comparison
Unlike FaRM-KV and Pilaf, HERD uses only one network round
trip for any request. FaRM-KV and Pilaf use one round trip for PUT
requests but require multiple round trips for GETs (except when
FaRM-KV inlines values in the hash-table). This causes their GET
latency to be higher than the latency of a single RDMA READ.

Figure 11 compares the average latencies of the three systems
for a read-intensive workload; the error bars indicate the 5th and
95th percentile latency. To understand the dependency of latency
on throughput, we increase the load on the server by adding more
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Figure 11: End-to-end latency with 48 byte items and read-intensive
workload
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clients until the server is saturated. When using 6 CPU cores at
the server, HERD is able to deliver 26 million requests per second
with approximately 5 µs average latency. For fixed-length key-
value items, FaRM-em provides the lowest latency among the three
systems because it requires only one network round trip (unlike
Pilaf-em-OPT) and no computation at the server (unlike HERD).
For variable length values, however, FaRM’s variable length mode
requires two RTTs, yielding worse latency than HERD.

The PUT latency for all three systems (not shown) is similar be-
cause the network path traversed is the same. The measured latency
for HERD was slightly higher than that of the emulated systems
because it performed actual hash table and memory manipulation
for inserts, but this is an artifact of the performance advantage we
give Pilaf-em and FaRM-em.

5.5 Scalability
We conducted a larger experiment to understand HERD’s number-
of-clients scalability. We used one machine to run 6 server processes
and the remaining 186 machines for client processes. The experi-
ment uses 16 byte keys and 32 byte values.

Figure 12 shows the results from this experiment. HERD delivers
its maximum throughput for up to 260 client processes. With even
more clients, HERD’s throughput starts decreasing almost linearly.
The rate of decrease can be reduced by increasing the number of
outstanding requests maintained by each client, at the cost of higher
request latency. Figure 12 shows the results for two window sizes: 4
(HERD’s default) and 16. This observation suggests that the decline
is due to cache misses in RNICS, as more outstanding verbs in a
queue can reduce cache pressure. We expect this scalability limit
to be resolved with the introduction of Dynamically Connected
Transport in the new Connect-IB cards [1, 8],

Another likely scalability limit of our current HERD design is
the round-robin polling at the server for requests. With thousands
of clients, using WRITEs for inbound requests may incur too much
CPU overhead; mitigating this effect may necessitate switching to
a SEND/SEND architecture over Unreliable Datagram transport.
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Figure 13: Throughput as a function of server CPU cores

Figure 5 shows there is a 4-5 Mops decrease to this change, but
once made, the system should scale up to many thousands of clients,
while still outperforming an RDMA READ-based architecture.1

We expect the performance of the SEND/SEND architecture rela-
tive to WRITE-SEND to increase with the introduction of inlined
RECVs in Connect-IB cards. This will reduce the load on RNICs by
encapsulating the RECV payload in the RECV completion.

5.6 HERD CPU Use
The primary drawback of not using READs in HERD is that GET
operations require the server CPU to execute requests, in exchange
for saving one cross-datacenter RTT. While at first glance, it might
seem that HERD’s CPU usage should be higher than Pilaf and FaRM-
KV, we show that in practice these two systems also have significant
sources of CPU usage that reduce the extent of the difference.

First, issuing extra READs adds CPU overhead at the Pilaf and
FaRM-KV clients. To issue the second READ, the clients must poll
for the first READ to complete. HERD shifts this overhead to the
server’s CPU, making more room for application processing at the
clients.

Second, handling PUT requests requires CPU involvement at the
server. Achieving low-latency PUTs requires dedicating server CPU
cores that poll for incoming requests. Therefore, the exact CPU
use depends on the fraction of PUT throughput that server is pro-
visioned for, because this determines the CPU resources that must
be allocated to it, not the dynamic amount actually used. For exam-
ple, our experiments show that, even ignoring the cost of updating
data structures, provisioning for 100% PUT throughput in Pilaf and
FaRM-KV requires over 5 CPU cores. Figure 13 shows FaRM-em
and Pilaf-em-OPT’s PUT throughput for 48 byte key-value items and
different numbers of CPU cores at the server. Pilaf-em-OPT’s CPU
usage is higher because it must post RECVs for new PUT requests,
which is more expensive than FaRM-em’s request-region polling.

In Figure 13, we also plot HERD’s throughput for the same work-
load by varying the number of server CPU cores. HERD is able to
deliver over 95% of its maximum throughput with 5 CPU cores. The
modest gap to FaRM-em arises because the HERD server in this
experiment is handling hash table lookups and updates, whereas the
emulated FaRM-KV is handling only the network traffic.

We believe, therefore, that HERD’s higher throughput and lower
latency, along with the significant CPU utilization in Pilaf and FaRM-
KV, justifies the architectural decision to have the CPU involved on
the GET path for small key-value items. For a 50% PUT workload,
for example, the moderate extra cost of adding a few more cores—or
using the already-idle cycles on the cores—is likely worthwhile for
many applications.

1Figure 5 uses SENDs over UC, but we have verified that similar throughput is
possible using SENDs over UD.
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Figure 14: Per-core throughput under skewed and uniform workloads.
Note that the y-axis does not begin at 0.

5.7 Resistance to skew
To understand how HERD’s behavior is impacted by skew, we tested
it with a workload where the keys are drawn from a Zipf distribution.
HERD adapts well to skew, delivering its maximum performance
even when the Zipf parameter is .99. HERD’s resistance to skew
comes from two factors. First, the back-end MICA architecture [18]
that we use in HERD performs well under skew; a skewed workload
spread across several partitions produces little variation in the par-
titions’ load compared to the skew in the workload’s distribution.
Under our Zipf-distributed workload, with 6 partitions, the most
loaded CPU core is only 50% more so than the least loaded core,
even though the most popular key is over 105 times more popular
than the average.

Second, because the CPU cores share the RNIC, the highly loaded
cores are able to benefit from the idle time provided by the less-used
cores. Figure 13 demonstrates this effect: with a uniform work-
load and using only a single core, HERD can deliver 6.3 Mops.
When the system is configured to use 6 cores—the minimum re-
quired by HERD to deliver its peak throughput—the system delivers
4.32 Mops per core. The per-core performance reduction is not be-
cause of a CPU bottleneck, but because the server processes saturate
the PCIe PIO throughput. Therefore, even if the workload is skewed,
there is ample CPU headroom on a given core to handle the extra
requests.

Figure 14 shows the per-core throughput of HERD for a skewed
workload. The experimental configuration is: 48-byte items, read-
intensive, skewed workload, 6 total CPU cores. The per-core
throughput for a uniform workload is included for comparison.

6. RELATED WORK
RDMA-based key-value stores: Other than Pilaf and FaRM, sev-
eral projects have designed memcached-like systems over RDMA.
Panda et al. [14] describe a memcached implementation using a
hybrid of UD and RC transports. It uses SEND/RECV messages
for all requests and avoids the overhead of UD transport (caused
by a larger header size than RC) by actively switching connections
between RC and UD. Although their cluster (ConnectX, 32 Gbps)
is comparable to Susitna (ConnectX-3, 40 Gbps), their request rate
is less than 1.5 Mops. Stuedi et al. [25] describe a SoftiWARP [28]
based version of memcached targeting CPU savings in wimpy nodes
with 10GbE.

Accelerating systems with RDMA: Several projects have used
verbs to improve the performance of systems such as HBase, Hadoop
RPC, PVFS [30, 13, 20]. Most of these use only SEND/RECV verbs
as a fast alternative to socket-based communication. In a PVFS
implementation over InfiniBand [30], read() and write() oper-
ations in the filesystem use both RDMA and SEND/RECV. They
favor WRITEs over READs for the same reasons as in our work,
suggesting that the performance gap has existed over several gen-
erations of InfiniBand hardware. There have been several versions
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of MPI over InfiniBand [16, 19]. MPICH2 uses RDMA writes
for one-sided messaging: the server polls the head of a circular
buffer that is written to by a client. HERD extends this messag-
ing in a scalable fashion for all-to-all request-reply communication.
While [30, 13, 20, 16, 19] have benchmarked verbs performance
before, it has been for large messages in the context of applications
like NFS and MPI. Our work exploits the performance differences
that appear only for small messages and are relevant for message
rate-bound applications like key-value stores.

User level networking: Taken together, we believe that one
conclusion to draw from the union of HERD, Pilaf, FaRM, and
MICA [18] is that the biggest boost to throughput comes from
bypassing the network stack and avoiding CPU interrupts, not nec-
essarily from bypassing the CPU entirely. All four of these systems
use mechanisms to allow user-level programs to directly receive
requests or packets from the NIC: the userlevel RDMA drivers for
HERD, Pilaf, and FaRM, and the Intel DPDK library for MICA. As
we discuss below, the throughput of these systems is similar, but
the batching required by the DPDK-based systems confers a latency
advantage to the hardware-supported InfiniBand systems. These
lessons suggest profitable future work in making user-level classical
Ethernet systems more portable, easier to use, and lower-latency.
One ongoing effort is NIQ [10], an FPGA-based low-latency NIC
which uses cacheline-sized PIOs (without any DMA) to transmit
and receive small packets. Inlined WRITEs in RDMA use the same
mechanism at the requesters’s side.

General key-value stores: MICA [18] is a recent key-value sys-
tem for classical Ethernet. It assigns exclusive partitions to server
cores to minimize memory contention, and exploits the NIC’s capa-
bility to steer requests to the responsible core [3]. A MICA server
delivers 77 Mops with 4 dual-port, 10 Gbps PCIe 2.0 NICs, with
50 µs average latency (19.25 Gbps with one PCIe 2.0 card). This sug-
gests that, comparing the state-of-the-art, classical Ethernet-based
solutions can provide comparable throughput to RDMA-based so-
lutions, although with much higher latency. RAMCloud [23] is a
RAM-based, persistent key-value store that uses messaging verbs
for low latency communication.

7. CONCLUSION
This paper explored the options for implementing fast, low-latency
key-value systems atop RDMA, arriving at an unexpected and novel
combination that outperforms prior designs and uses fewer network
round-trips. Our work shows that, contrary to widely held beliefs
about engineering for RDMA, single-RTT designs with server CPU
involvement can outperform the “optimization” of CPU-bypassing
remote memory access when the RDMA approaches require multi-
ple RTTs. These results contribute not just a practical artifact—the
HERD low-latency, high-performance key-value cache—but an im-
proved understanding of how to use RDMA to construct future
DRAM-based storage services.
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