

Process-Tolerant Low-Power Design for the Nano-meter Regime

Kaushik Roy

Electrical & Computer Engineering
Purdue University

Exponential Increase in Leakage

Silicon Micro- electronics

$$\frac{I_{ON}}{I_{OFF}} = 10^6$$

Silicon Nano- electronics

$$\frac{I_{ON}}{I_{OFF}} = 10^3$$

Non-Silicon Technology

$$\frac{I_{ON}}{I_{OFF}} \sim 10^{2\sim6}$$

Technology Trend

Design methods to exploit the advantages of technology innovations

Variation in Process Parameters

Device parameters are no longer deterministic

Reliability

Temporal degradation of performance -- NBTI

Pessimistic Design Hurts Performance

- Substantial variation in leakage across dies
- 4X variation between nominal and worst-case leakage
- Performance determined at nominal leakage
- Robustness determined at worst-case leakage

Global and Local Variations

$$\delta V_{t} = \Delta V_{t-GLOBAL} + \delta V_{t-LOCAL}$$

Process Tolerance: Memories

S. Mukhopadhaya, Mahmoodi, Roy VLSI Circuit Symposium 2006, JSSC 2006, TCAD

Parametric Failures: Read Failure

Read failure => Flipping of Cell Data while Reading

Parametric Failures in SRAM

Parametric failures

- Read Failures
- Write Failures
- Access Failures
- Hold Failures

Parametric failures can degrade SRAM yield

Process Variations in On-chip SRAM

Parametric failures → Yield degradation

Inter-die Variation & Cell Failures

Inter-die Variation & Memory Failure

Memory failure probabilities are high when inter-die shift in process is high

Self-Repairing SRAM Array

Reduce the dominant failures at different inter-die corners to increase width of low failure region

Post-Silicon Repair: Proposed Approach

Apply correction to the global variation to reduce number of failures due to local variations

Self-Repairing SRAM Array

Reduce the dominant failures at different inter-die corners to increase width of low failure region

How to identify the inter-die Vt corner under a large intra-die variation?

Monitor circuit parameters, e.g. leakage current

Effect of inter-die variation can be masked by intra-die variation

Array Leakage Monitoring

$$Y = \sum_{i=1}^{N} X_i \Longrightarrow \frac{\sigma_Y}{\mu_Y} = \frac{1}{\sqrt{N}} \frac{\sigma_X}{\mu_X}$$

 Adding a large number of random variables reduces the effect of intra-die variation

Leakage of entire SRAM array is a reliable indicator of the inter-die Vt corner

Self-Repair using Leakage Monitoring

Yield Enhancement using Self-Repair

Self-Repairing SRAM using body-bias can significantly improve design yield

Test-Chip of Self-Repairing SRAM

Technology: IBM 0.13 μm

128KB SRAM

Dual-Vt Triple-well tech.

Number of Trans: ~ 7 million

Die size: 16mm2

VLSI CKT Symp. 2006, ITC 2005

Simulation results for 1MB array designed in IBM 0.13µm

Continuous vs Quantized Body Bias

Quantized (3 Level: FBB, ZBB, RBB) body bias scheme is a cost effective solution with good yield enhancement possibility

Process Tolerance: Register Files

Kim et. al. VLSI Circuit Symposium 2004

Process Compensating Dynamic Circuit Technology

Conventional Static Keeper

Keeper upsizing degrades average performance

Process Compensating Dynamic Circuit Technology

C. Kim et al., VLSI Circuits Symp. '03

Opportunistic speedup via keeper downsizing

Robustness Squeeze

5X reduction in robustness failing dies

Delay Squeeze

10% opportunistic speedup

On-Die Leakage Sensor For Measuring Process Variation

C. Kim et al., VLSI Circuits Symp. '04

High leakage sensing gain – 90nm dual-Vt,
 Vdd=1.2V, 7 level resolution, 0.66 mW @80C^o

Leakage Binning Results

Output codes from leakage sensor

Self-Contained Process Compensation

Fab

Wafer test

Process detection

Leakage measurement

On-die leakage sensor

Program
PCD
using
fuses

Customer

Package test

Burn in

Assembly

Self-Repair: Architecture Level

Agarawal, Roy TVLSI 2005

Fault-Tolerant Cache Architecture

- BIST detects the faulty blocks
- Config Storage stores the fault information Idea is to resize the cache to avoid faulty blocks during regular operation

Mapping Issue

Resizing is transparent to processor → same memory address

Fault Tolerant Capability

- Proposed architecture can handle more number of faulty cells than ECC, as high as 890 faulty cells
- Saves more number of chips than ECC for a given N_{Faulty-Cells}

CPU Performance Loss

- Increase in miss rate due to downsizing of cache
- Average CPU performance loss over all SPEC 2000 benchmarks for a cache with 890 faulty cells is ~ 2%

Logic: Process Tolerance

Logic: A New Paradigm for Low-Voltage, Variation Tolerant Circuit Synthesis Using Critical Path Isolation (CRISTA)

Razor Approach

- Post-Silicon technique for dynamic supply scaling and timing error detection/correction
- Error correction overhead is 1% for a 10% error rate

Vdd Scaling and Process Tolerance: Conventional Solutions

- Low power:
 - Reduce the supply voltage
 - Error rate increases
 - Dual-Vt/dual-VDD assignment
 - Number of critical paths increases
- Robustness:
 - Increase supply voltage
 - Power dissipation increases
 - Upsize the gates
 - Switching capacitance increases

Low power and robustness: conflicting requirements

CRISTA: Basic Idea

- Important points:
 - Scale down the supply while making delay failures predictable
 - Avoid the failures by adaptive clock stretching
 - Ensure that critical paths are activated rarely

Design Considerations for CRISTA

- Few predictable critical paths
- Low activation probability of critical paths
- Slack between critical and non-critical paths under variations

Case Study: Adder

- Interesting features:
 - Single critical path (activated by P₀P₁P₂P₃=1 & C_{i,0}=1)
 - Low activation probability of critical path

$$VDD = 1V$$
, $TCLK = 260ps$

VDD = 0.8V, TCLK = 260ps

Crit. path delay=260ps longest non-crit. path delay=165ps P = 13uW (1-cycle) Crit. path delay=330ps longest non-crit. path delay=260ps P = 7.4uW (rare 2-cycles, decoder)

44% power saving by reducing voltage and, operating critical path at 2-cycle and other paths at 1-cycle

Can we apply same technique to any random logic?

Carry Select Adder

~20% power saving with ~6% area overhead

Carry Save Multiplier

25% power saving with ~5% area overhead

Wallace Tree Multiplier

29% power saving with ~4% area overhead

Simulation Results

Random Logic: Shannon's Expansion

$$f(x_1,...,x_i,...,x_n) = x_i \bullet f(x_1,...,x_i = 1,...,x_n) + x_i' \bullet f(x_1,...,x_i = 0,...,x_n)$$

$$= x_i \bullet CF_1 + x_i' \bullet CF_2$$

$$CF_1 = f(x_1,...,x_i = 1,...,x_n); \quad CF_2 = f(x_1,...,x_i = 0,...,x_n)$$

Activation probability of cofactors can be reduced How to choose *Control Variable*?

Further Isolation and Slack Creation by Sizing

- Slack creation strategy
 - Lagrangian Relaxation based sizing (B.C. Paul et. al., DAC 2004) is used
 - Non-critical paths are selectively made faster
 - Critical paths are slightly slowed down

Simulation Results

- Average power saving = ~50%
- Average area overhead = 18%
- Avg performance penalty=5.9% (with 4 control variables) for signal prob=0.5

Two-Stage Pipeline with Test Logic

~40% power saving with ~13% performance penalty

VDD Scaling, Process Variation, and Quality Trade-off: DCT

Basic Idea

- All computations are "not equally important" for determining outputs
- Identify important and unimportant computations based on output "sensitivity"
- Compute important computations with "higher priority"
- Delay errors due to variations/ Vdd scaling "affect only" non-important computations
- "Gradual degradation" in output with voltage scaling and process variations

DCT Based Image Compression Process

- DCT is used in current international image/video coding standards
 - JPEG, MPEG, H.261, H.263

Energy Distribution of a 2D-DCT Output

High energy components (important outputs 75% energy)
 Low energy components (less important outputs)

Can important components be computed with higher priority?

Design Methodology

Path Delays for 1D-DCT outputs

Proposed DCT under Vdd scaling

M/

1D-DCT Path Delay Comparisons

Effect of Vdd Scaling

Different Architectures at Nominal Voltage

	Convention al WTM DCT	CSHM DCT (2 alphabet)	Proposed DCT
1.0 V			
0.9 V	FAILS	FAILS	
0.8 V	FAILS	FAILS	

1.0V	CSHM DCT (2 alphabets)	DCT with WTM	Proposed DCT
Power (mW)	25.1	29.8	26
Delay (ns)	3.2	3.64	3.57
Area (um²)	80490	108738	90337
PSNR (dB)	21.97	33.23	33.22

Proposed Architecture at Reduced Voltage

	Proposed DCT Vdd=0.9V	Proposed DCT Vdd=0.8V
Power (mW)	17.53(41.2%)	11.09(62.8%)
PSNR (dB)	29	23.41

- Graceful degradation of proposed DCT architecture under Vdd scaling (Vdd can be scaled to 0.75V)
- Conventional architectures <u>fails</u>

Temporal Degradation: NBTI

Kang, Roy, et. al. – TCAD, DAC-07

Temporal Reliability Issues in CMOS Technology

- HCI Hot Carrier Injection
- NBTI Negative Bias Temperature Instability
 - ▶ Increase in V_T of PMOS with time
 - > The dominant reliability factors in scaled tech.
- TDDB, etc.

NBTI: Negative Bias Temperature Instability

Interface trap generation due to Si-H bond breaking

- Interface trap (N_{IT}) generation at the channel interface due to the Si-H bond breaking, when negative gate bias is applied
- With time, V_T increases, subthreshold slope (S) increases, mobility degrades,
- Drive current (I_{DS}) reduces and affect the PMOS speed
- Overall reduces the lifetime of PMOS

NBTI: Experimental Data

- PMOS V_T degrades as a power of time due to NBTI
- Fixed exponent of 1/6 matches the simulation data*

Power-law V_T degradation Model

NBTI degrades in time of exponent 1/6

Mobility degradation factor

- Mobility degradation due to NBTI is expressed in an additional V_T shift, noted as m
- Overall temporal V_T shift model is expressed as,

$$\Delta V_T = (1+m) \frac{q\chi \sqrt{E_{ox}} e^{\left(\frac{E_{ox}}{E_0}\right)} \cdot t^{0.25}}{C_{ox}}$$

Impact of NBTI on circuit performance

Circuit Performance Degradation

- Performance (delay) degradation also follows the power trend with same 0.17 exponent
- In CMOS logic, only the rising (L2H) delay's are affected

Circuit Performance degradation cont.

- Delay degradation in ISCAS c432
- Activity factor (switching activity) does not affect much on the delay degradation
 - > In reality, activity factor's are balanced in the normal operations

Design method considering the NBTI degradation

NBTI-aware design method

- Over-design is required to guarantee a lifetime stability of the circuit
- LR sizing is used to optimize the circuit
 - ➢ Size the circuit considering the worst-case V_T degradation over the lifetime

LR Sizing considering NBTI

Simulation results

1. Delay degradation in ISCAS85 benchmark circuits after 10 years

Circuit	No. of	Nominal	% delay degrad. (10 yrs)	
	Trans.	delay (ps)	S _i = 1	S _i < 1
c432	590	525	8.90	7.32
c499	1816	368	9.20	8.06
c1908	1582	513.5	9.18	8.53
c3540	3638	597.3	9.00	7.86
c74181	372	194.6	9.89	8.68
c74182	92	77.2	10.35	9.63
c74283	188	131.9	7.90	6.83
c74L85	148	115.1	9.50	7.60

^{*} All benchmarks are synthesized in BPTM 70nm technology

Simulation results cont.

2. Area overhead in NBTI-aware sizing

Circuit	Nominal		% Area overhead	
	delay (ps)		S _i = 1	S _i < 1
c432	385	196.7	14.8	13.6
c499	340	581.47	7.82	6.71
c1908	470	489.67	7.13	6.68
c3540	500	1146.5	3.44	3.31
c74181	180	111.1	9.45	9.0
c74182	80	31.1	11.3	11.2
c74283	125	66.71	10.0	10.0
c74L85	120	42.59	5.85	5.8

^{*} All benchmarks are synthesized in BPTM 70nm technology

Negative Bias Temperature

- PMOS specific Aging Effect
- Generation of (+) traps
- Reaction-Diffusion (RD) model*
- Time exponent ~ 1/6

$$N_{IT}(t) = \sqrt{\frac{k_F N_0}{2k_R}} \left(D_H t\right)^{\frac{1}{6}}$$

$$\Delta V_T = \frac{q \cdot \Delta N_{IT}}{C_{OX}}$$

NBTI in Digital Circuits

Logic Circuits

- f_{MAX} decreases↓
- Timing failure with time

- Static Noise Margin (SNM)↓
- Read & Write Stability
- Parametric Yield↓

Temporal V_{Th} increase in PMOS affects critical performance factors of digital VLSI circuits

NBTI: Random Logic Circuits

Delay Degrad. STD cells

Logic Cell	fanin	Delay (ps)		. (0()
		t=0	3 years	Δ (%)
INV	1	13.77	16.77	21.8
NAND	2	16.86	19.88	17.9
NAND	3	19.57	22.45	14.8
NOR	2	17.26	21.89	26.8
NOR	3	23.80	30.19	26.9

- ISCAS'85 Benchmark Circuits, PTM 65nm
- Gate delay: analytical delay model considering NBTI
- Circuit delay: NBTI-aware Static Timing Analysis (STA)
- Circuit f_{MAX} → time exponent n ~ 1/6

NBTI: 6T SRAM Cell

- □ SNM degrades by more than 10% in 3 years
- □ % SNM Degradation → time exponent n ~ 1/6
- **WM improves with time under NBTI**

Design for Reliability under NBTI

□ Simulation Setup

- > Synthesized in PTM 65nm
- > 1/6 V_{Th} degradation model
- > 125°C Stress temperature
- > 50% Signal Probability at Pl's

- ☐ Gate Sizing applied to guarantee lifetime functionality of design
- □ 11.7% overhead for Cell-based sizing
- □ 6.13% overhead for TR-based sizing
 - > 45% improvement in area overhead
 - > Runtime complexity for TR-based sizing is identical to that of Cell-based sizing

I_{DDQ} based NBTI Characterization

Technology	CMOS 130nm
Die Size	20 (mm ²⁾
I/O Pin	209
T_{ox}	1.6 (nm)
V_{DD}	1.2 (V)

- Test Circuit Fabricated
- 1000 stage INV chain
- DC Stress signal @V_{in}
- I_{DDQ} measurement @ GND

Correlation between I_{DDQ} & f_{MAX}

- Clear signature of NBTI
- Correlation between I_{DDQ} and f_{MAX} can be used to predict circuit performance degradation under NBTI

I_{DDQ} degradation → n~1/6 during

$$\begin{split} R_{leak} &= \frac{\Delta I_{leak}(t)}{I_{leak}(0)} \propto t^{1/6} \propto \frac{\Delta f_{MAX}(t)}{f_{MAX}(0)} = R_{freq} \\ R_{freq} &= K \times R_{leak} \quad (K \text{ :constant}) \end{split}$$

I_{DDQ} based Characterization Technique

Design phase

Post-silicon phase

- Circuit-level NBTI Reliability
 Characterization
- I_{DDQ} test is used
- Expensive f_{MAX} testing is avoided (or minimized)
- Accurate circuit level performance degradation can be predicted
- IC specific burn-in to qualify the target produce
- Efficient way of field monitoring: dynamic local signature of produce usage
- Possible usage in other reliability sources: HCI

Conclusions

- Process Variation and Process
 Tolerance is becoming important
- There is a need to optimize designs considering power/performance/yield