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Course Overview
Targeted for graduate students who have 
already taken basic VLSI design classes
Real world challenges and solutions in 
designing high-performance and low-power 
circuits
Relations to VLSI Design
» Recent developments in digital IC design
» Project oriented
» Student participation: class presentation
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Prerequisite
MOS VLSI Design or equivalent
» MOS transistor
» Static, dynamic logic
» Adders, Multipliers,..
» ….

Familiarity with VLSI CAD tools
» Magic or Cadence: LVS, DRC
» HSPICE

Basic knowledge on solid-state physics
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Class Materials
Lecture notes: primary reference
K. Roy, S. Prasad, Low Power CMOS VLSI 
Circuit Design, John Wiley
A. Chandrakasan, W. Bowhill, F. Fox, Design of 
High-Performance Microprocessor Circuits, 
IEEE Press, 2001.
Y. Taur, T. Ning, Fundamentals of Modern VLSI 
Devices, Cambridge University Press, 2002.
J. Rabaey, A. Chandrakasan, B. Nikolic, Digital 
Integrated Circuits: A Design Perspective, 
Prentice Hall, 2nd edition, 2003. (prerequisite)
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Approximate Course Outline
Introduction -- Importance of Power, Speed, & Reliability in scaled 
technologies and technology requirements

» Digital computing and transistor as a switch. Basic switch characteristics 
required for efficient and low-energy computing

» Ion/Ioff ratio and CV/I as a measure of device “good-ness”
» Power dissipation and the minimum energy required for computing –

comparison with today’s power dissipation and computational needs. What 
can possibly be done to improve power while being speed-efficient.

Transistors and scaling of technology
» Bottom-up approach starting from molecules to bulk
» Bulk-Si, Double-gate, Tri-gate devices and possible circuit implications
» Emerging technologies and possible circuit implications

Device/Circuit co-design for speed/power/reliability
» Inverters, Logic
» Memory bit-cell
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Course Outline (cont’d)
Leakage components, estimation and leakage tolerant design 
techniques

» Subthreshold, Gate, Junction tunneling, GIDL, Diode leakage etc.
» Memory and logic design for leakage tolerance
» Scalability of leakage tolerant design techniques

Parameter variations – spatial and temporal – due to process, NBTI, 
Hot-electron, TDDB

» OPC
» Sensors to detect process corners/reliability degradation
» Failure analysis for memories and logic

Design with unreliable components
» Logic and memories

Low-voltage design including digital subthreshold operations
Interconnects and its impact on scaled technologies. Possible 
solutions at the technology, circuit, architecture level
Low-power and process-tolerant design solutions at the algorithm and 
architecture level

» Digital signal processing applications
» General purpose computing
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Grading etc.
Semester long project (report due on the last week of 
class) – 60% of the grade
» Project of your choice but discuss with me to get approval
» If you have difficulty finding a topic, I can help
» Presentation of your work – mid-semester and end-of the 

semester
» Project should be of publishable quality and the report 

should be of normal conference paper format (6 pages, 
double column etc.) 

» Best and second best project (determined by a panel of 
judges) will be rewarded with a cache prize (~$350-500/per 
student) and a plaque. Funded by AMD. So do your best.

Homeworks and presentations on topics of current 
interest – 40% of grade. Problems will be given 
throughout the semester. Each student will take turns 
to post the homework solutions.
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CAD Tools
Cadence
» Schematic editor, layout editor, DRC, LVS

HSPICE, awaves
Technology files
» TSMC 0.18μm, BPTM 70nm, …

Synopsys design compiler, library compiler
Taurus-device, Taurus-Medici

Everyone should have some experience with 
these tools
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Project Topic
Students pick the research topic they want to work on
After the literature survey, choose a paper that you 
would like to evaluate yourself
Has to be on digital VLSI circuit/system
» Op-amp design alone is not acceptable
» Op-amp design for digital applications is acceptable

Show your work’s claim using your own simulations
Your contribution must be clearly shown at the end
» Improve previous design
» New circuit/system, modeling technique
» Show limitation of previous techniques

Talk to the instructor in case you need help
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How to Find a Project Topic?
Conferences
» International Solid-State Circuits Conference (ISSCC, 

top conference!): slides posted on IEEExplore
» Symposium on VLSI Circuits (VLSIC), DAC, ICCAD
» Custom Integrated Circuits Conference (CICC)
» ……

Journal
» IEEE TVLSI, IEEE TCAD, IEEE TED
» IEEE Journal of Solid-State Circuits (JSSC)
» Intel Technology Journal
» IBM Journal on R & D
» …..

12
Nano-electronic Research Lab. Kaushik Roy

How to Find a Project Topic?
Funding agencies
» Research needs document (www.src.org)

Presentation
» University of Michigan VLSI seminar series 

(www.eecs.umich.edu/vlsi_seminar/)
» Design automation conference (www.dac.com)

Pick a recent issue in VLSI design (< 5 years)
I suggest you start doing the literature survey 
ASAP
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Academic Misconduct
Students caught engaging in an academically 
dishonest practice will receive a failing grade 
for the course. 
University policy on academic dishonesty will 
be followed strictly.
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Vision of Digital Convergence by 1000X 
(Source: GeorgiaTech PRC)

Digital + Analog + RF + 
Optical+Sensors

•Computing/Internet

•Digital Audio

•Digital Imaging/Video

•Cellular/Wireless

•GPS/Satellite 

•Sensors

•And, of course, timekeeping!
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Package & IC Integration to 3D SOP
3D Metric: Transistors / cm3 or Components/cm3
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A physical system as a computing 
medium

We need to create a bit first. Information processing always 
requires physical carrier, which are material particles. 

First requirement to physical realization of a bit implies creating 
distinguishable states within a system of such material particles. 

The second requirement is conditional change of state. 

The properties of distinguishability and conditional change of 
state are two fundamental properties of a material subsystem to 
represent information. These properties can be obtained by 
creating energy barriers in a material system. 

18
Nano-electronic Research Lab. Kaushik Roy

Particle Location is an Indicator of State

1 1 0 0 1 0
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Barrier engineering in 
semiconductors

n n

p

By doping, it is possible to create a built-in field and energy barriers of 
controllable height and length within semiconductor. It allows one to achieve 
conditional complex electron transport between different energy states inside 
semiconductors that is needed in the physical realization of devices for 
information processing.  
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Moore’s Law

Intel founder and chairman Gordon Moore predicted in 
1965 that the number of transistors on a chip will double 
every 18-24 months
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Transistor Scaling

Constant E-field scaling: voltage and dimensions (both 
horizontal and vertical) are scaled by the same factor k, 
(~1.4), such that the electrical field remains unchanged.
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Technology Scaling
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IC Frequency & Power Trends

Clock 
frequency 
improves 
50%
Gate delay 
improves 
~30% 
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Vdd vs. Vt scaling

Recently: 
constant e-field 
scaling, aka
voltage scaling
VCC ⌫ 1V

VCC & modest VT

scaling
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VT Scaling: VT and IOFF Trade-off

As VT decreases, sub-threshold leakage increases

Leakage is a barrier to voltage scaling

Performance vs Leakage:
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Constant Field Scaling
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Scaling in the Vertical Dimension

Transistor Vt rolls off as the channel length is 
reduced
Shallow junction depth reduces Vt roll-off
However, sheet resistance increases
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Scaling in the Vertical Dimension

Vertical dimension scales less than horizontal
Aggravates short channel effect (Vt roll-off)
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Constant Voltage Scaling
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Constant Voltage Scaling
More aggressive scaling than constant field
Limitations
» Reliability problems due to high field
» Power density increases too fast

Both constant field and constant voltage 
scaling have been followed in practice
Field and power density has gone up as a 
byproduct of high performance, but till now 
designers are able to handle the problems
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ITRS Roadmap

International Technology Roadmap for Semiconductors 
2002 projection (http://public.itrs.net/)
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Transistor Scaling

65nm is in production, 45-30nm in research phase
New technology generation introduced every 2-3 years

36
Nano-electronic Research Lab. Kaushik Roy

Cost per Transistor

You can buy 10M transistors for a buck
They even throw in the interconnect and package for free 
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Transistors Shipped Per Year

Today, there are about 100 transistors for every ant 
- Gordon Moore, ISSCC ‘04
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Transistors per Chip

1.7B transistors in Montecito (next generation Itanium)
Most of the devices used for on-die cache memory
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Chip Frequency

30% higher frequency every new generation
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Die Size

~15% larger die every new generation
This means more than 2X increase in transistors per chip
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Supply Voltage Scaling

Supply voltage is reduced for active power control
fVCP ddactive

2∝
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4 Decades of Transistor Scaling:
Itanium 2 Processor
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Active and Leakage Power
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Leakage Power Crawling Up in Itanium 2

Transistor leakage is perhaps the biggest problem
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Leakage Power versus Temp.

Leakage power is problematic in active mode for 
high performance microprocessors
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Thermal Runaway

Destructive positive feedback mechanism
Leakage increases exponentially with temperature
May destroy the test socket thermal sensors required

Increased 
heating

Higher 
leakage

Higher power 
dissipation

Increased 
static current
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Gate Oxide Thickness

Electrical tox > Physical tox
Due to gate depletion and carrier quantization in the 
channel
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Gate Tunneling Leakage 

MOSFET no longer have infinite input resistance
Impacts both power and functionality of circuits
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Process Variation in Processors

Fast chips burn too much power
Slow chips cannot meet the frequency requirement



52
Nano-electronic Research Lab. Kaushik Roy

Process Variation in Transistors

More than 2X variation in Ion, 100X variation Ioff
Within-dies, die-to-die, lot-to-lot
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Sources of Process Variation

Intrinsic parameter variation (static)
- Channel length, random dopant fluctuation

Environmental variation (dynamic)
- Temperature, supply variations
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Sub-wavelength Lithography
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Line Edge/Width Roughness

Ioff and Idsat impacted by LER and LWR
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Random Dopant Fluctuation

Vt variation caused by non-uniform channel 
dopant distribution
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Supply Voltage Integrity

IR noise due to large current consumption
Ldi/dt noise due to new power reduction 
techniques (clock gating, power gating, body 
biasing) with power down mode
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Supply Voltage Integrity
Degrades circuit 
performance
Supply voltage 
overshoot causes 
reliability issues
Power wasted by 
parasitic resistance 
causes self-heating
Vdd fluctuation should 
be less than 10%

Courtesy IBM
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Design complexity surpasses manpower
Effective CAD tools, memory dominated chips

Productivity Gap
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Lithography Tool Cost

What will end Moore’s law, economics or physics?
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Interconnect Scaling
Global interconnects get longer due to larger 
die size
Wire scaling increases R, L and C

Example: local vs. global interconnect delay
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Interconnect Delay Problem

Local interconnect has sped up (shorter wires)
Global interconnect has slowed down (RC doesn’t scale)

1997 SIA 
technology 
roadmap
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Interconnect Metal Layers

Local wires have high density to accommodate the 
increasing number of devices
Global wires have low RC (tall, wide, thick, scarce wires)

M1
M2
M3
M4

M5

M6
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Interconnect distribution scaling trends

• RC/μm scaling trend is only one side of the story...
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Power Delivery & Distribution Challenges

• High-end microprocessors approaching > 10 GHz
• How to deliver and distribute ~100A at < 1V for < $20!
• On-die power density >>> hot-plate power density

• crossover happened back in 0.6μm technology! 
• di/dt noise only worsening with scaling: drivers are one of the sources.
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Example multi-layer system

0.80 x 1.6μm

0.64μm

1.6μm

0.32 x 0.64μm0.64μm
0.25 x 0.48μm0.50μm

M4

M5

M3

M2

M1
Poly
Substrate

0.32 x 0.64μm

1.00 x 1.80μm2.00μm

M6

1.00 x 1.80μm2.00μm

M7 Al

0.80 x 1.6μm
1.6μm

K. Soumyanath et. al. [2]
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Cross Talk Noise

As wires are brought closer with scaling, capacitive 
coupling becomes significant
Adjacent wires on same layer have stronger coupling
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Cross Talk Noise

Multiple aggressors multiple victims possible
Cross talk noise can cause logic faults in dynamic circuits
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Cross Talk and Delay
Capacitive cross talk 
can affect delay
If aggressor(s) switch 
in opposite direction, 
effective coupling 
capacitance is doubled 
On the other hand, if 
aggressor(s) switch in 
the same direction, Cc 
is eliminated
Significant difference in 
RC delay depending on 
adjacent switching 
activity
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Soft Error In Storage Nodes

Soft errors are caused by 
» Alpha particles from package materials
» Cosmic rays from outer space

Logic 1 Logic 0

Vinduced
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Soft Error In Storage Nodes

Error correction code
Shielding
SOI
Radiation-hardened 
cell
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More Roadblocks

Memory stability
Long term reliability
Mixed signal design issues
Mask cost
Testing multi-GHz processors
Skeptics: Do we need a faster computer?
…

Eventually, it all boils down to economics
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Summary
Digital IC Business is Unique

Things Get Better Every Few Years
Companies Have to Stay on Moore’s Law Curve to 
Survive

Benefits of Transistor Scaling
Higher Frequencies of Operation
Massive Functional Units, Increasing On-Die Memory
Cost/MIPS Going Down

Downside of Transistor Scaling
Power (Dynamic and Static)
Process Variation
Design/Manufacturing Cost
….


