

Nano-electronic Research Lab.

Kaushik Roy

PURDUE

	Grading etc.						
	 Semester long project (report due on the last week of class) – 60% of the grade Project of your choice but discuss with me to get approval If you have difficulty finding a topic, I can help Presentation of your work – mid-semester and end-of the semester Project should be of publishable quality and the report should be of normal conference paper format (6 pages, double column etc.) Best and second best project (determined by a panel of judges) will be rewarded with a cache prize (~\$350-500/per 						
 Homeworks and presentations on topics of current interest – 40% of grade. Problems will be given throughout the semester. Each student will take turns to post the homework solutions. 							
Nand	-electronic Research Lab. Kaushik Roy						

Constant Field Scaling						
	Device and circuit parameters					
Scaling assumptions	Device dimensions (t _{ox} , L, W, X _j) Doping concentration (N _a , N _d)	1/k k				
	Voltage (V)	1/k				
Device	Electric field (E)	1				
parameters	Capacitance (C=εA/t)	1/k				
	Current (I)	1/k				
	Channel resistance (R _{ch})	1				
Circuit	Delay (CV/I)	1/k				
parameters	Power (VI)	1/k ²				
	Switching energy (CV ²)	1/k ³				
	Circuit density (1/A)	k²				
	Power density (P/A)					
Nano-electronic Research Lab. Kaushik Roy						

Constant Voltage Scaling						
	Device and circuit parameters	Factor				
Scaling	Device dimensions (t _{ox} , L, W, X _i)	1/k				
assumptions	Doping concentration (N _a , N _d)	k				
	Voltage (V)	1				
Device	Electric field (E)	k				
parameters	Capacitance (C=εA/t)	1/k				
	Current (I)	k				
	Channel resistance (R _{ch})	1/k				
Circuit	Delay (CV/I)	1/k ²				
parameters	Power (VI)	k				
	Switching energy (CV ²)	1/k				
	Circuit density (1/A)	k ²				
	Power density (P/A)	k ³				
Nano-electronic Rese	harch Lab. Kaushik Roy	PURDUE				

2001	2003	2005	2007	2010	2013	2016
130	100	80	65	45	32	22
97M	153M	243M	386M	773M	1.55G	3.09G
8	8	10	10	10	11	11
65	45	32	25	18	13	9
1.2	1.0	0.9	0.7	0.6	0.5	0.4
1.7	3.1	5.2	6.7	11.5	19.3	28.8
130	150	170	190	218	251	288
	2001 130 97M 8 65 1.2 1.7 130	2001 2003 130 100 97M 153M 8 8 65 45 1.2 1.0 1.7 3.1 130 150	2001 2003 2005 130 100 80 97M 153M 243M 8 8 10 65 45 32 1.2 1.0 0.9 1.7 3.1 5.2 130 150 170	2001 2003 2005 2007 130 100 80 65 97M 153M 243M 386M 8 8 10 10 65 45 32 25 1.2 1.0 0.9 0.7 1.7 3.1 5.2 6.7 130 150 170 190	2001 2003 2005 2007 2010 130 100 80 65 45 97M 153M 243M 386M 773M 8 8 10 10 10 65 45 32 25 18 1.2 1.0 0.9 0.7 0.6 1.7 3.1 5.2 6.7 11.5 130 150 170 190 218	2001 2003 2005 2007 2010 2013 130 100 80 65 45 32 97M 153M 243M 386M 773M 1.55G 8 8 10 10 10 11 65 45 32 25 18 13 1.2 1.0 0.9 0.7 0.6 0.5 1.7 3.1 5.2 6.7 11.5 19.3 130 150 170 190 218 251

Summary							
 Digital IC Business is Unique 							
Things Get Better Every Few Years							
 Companies Have to Stay on Moore's Law Curve to Survive 							
 Benefits of Transistor Scaling 							
 Higher Frequencies of Operation 							
Massive Functional Units, Increasing On-Die Memory							
Cost/MIPS Going Down							
Downside of Transistor Scaling							
 Power (Dynamic and Static) 							
Process Variation							
Design/Manufacturing Cost							
•							
Nano-electronic Research Lab.	Kaushik Roy	J	PURDUE				