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Impact of Leakage on |C Testing?

Our Focus

Higher intrinsic leakage challenges current based
test techniques

Ippg test method well established and widely
accepted for defects and is necessary

Ippq testability issue - sensitivity?

Novel testing solutions




Problem Statement

= Can lppq and current based test methods be
effective and survive the prohibitive
increase in intrinsic leakage posed by
technology scaling?

= How do we discriminate high speed leaky
| Cs from defective ones?

Transistor Leakage Mechanisms
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= Subthreshold Leakage & SCE dominate

lppo Testing

v Measures current in power supply (Vpp) during circuit
guiescent state (when all logic states have settled)
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= Choice of input vector matters in complex circuits




Gate Oxide Defect & 1p4

v I ppo Most effectivein detecting defects

v Example: NM OS gate oxide defect creating a Vp to
V4 leakage path Ve, Vv

DD

_* Gate oxide defect

= Circuits become more susceptible to defects with scaling
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P |55 Distributions

Limit concept on cumulative probability plots
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State-of-the-art in Current Testing

Transient Current Testing [1,2]
Current Signatures and Ratios [3,4]
Deltalppg [5]

Divide and conquer techniques [6,7]

Forcing stacked transistors by input
vector selection [8]

= Not sufficient to address the problem
= Our solution not in conflict with above
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Parameters Influencing
lorrs Ibpo & Standby Power

Substrate (Body) Bias

Temperature

L owering Power Supply Voltage

Combined Effects




| oer / Leakage Reductions

 Temperature
— Factor of ~ 350 from room to -50°C
 Substrate backbiasing (RBB) - Vgq
— Factor of ~3000at ~|2|V
» Lowered Vg
— Factor of ~10from 2.7V to15V

« MultipleV;

Two parameter Test Solution

» Scaling

* Functional and Delay Fault Testing

Ibbg

» Components of transistor leakage
 Leakage reduction techniques

» Two-parameter test solution

» Sensitivity enhancement by RBB

» Sensitivity enhancement by Temperature




Ippotail? Fast or Defective ICs?
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; 5% of the ICs are in the Iy, distribution tail?
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Two-Parameter Test Concept:
L eakage vs Speed

A e Defects
----- Upper Limit

— Fuax VSlppg

Ibpg
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Two-Parameter Test:
Decision Table & Adjustable Limit

Table 6.1. IC decision matrix for Ippg
and Fyax testing.

oo Fuax | Decisonon IC

H H Good - Fast

Defect

H L
L H Unlikely
L L Good - Slow




P Circuit I 5pq VS Fyax

lppg = f (lore Vi Le)
Fuax = f (I(SAT), V4, L) -

Normalized Static Iopg

Normalized Maximum Frequency (Fyax)

= Empirical relationship derived from existing test methods
= Data include die-to-die parameter variation
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= Limit may be established by currently available statistical methods
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Two-Parameter Test Practical

Limitations
® Defects
----- Upper Limit Thermal Runaway or Reliability Limit
— Fuax VSlppg \. ......
L e .b" ‘

Single Threshold Limit

IDDQ

Adjustable Limit

o Assumed leakage to frequency dependency

FMAX

Addressing issues raised by the
problem statement

» High intrinsic leakage
= Our solution places I,y in context of Fyay
* Highlpp, leakage not an issuein itself
= High leakage at high speed is OK
" Ippg effectiveness and sensitivity
» Two-parameter test extends I, effectiveness
= More on improving sensitivity by RBB
= Discriminates high speed leaky 1Cs from
defective ones
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How does our solution compare to
state-of-the-art in I testing?

= NO extra cost, no new hardware or
Instrumentation, uses established tests

= |t complements the existing methods
such as lowering Vg, lowering
temperature, and increasing V; by RBB
or multiple V;

Two-Parameter Test
L eakage in context of Speed

® Defects
----- Upper Limit

- FMAXVSI .
o8
IDDQ

(=]

/ / Assumed leakage to frequency dependency

Detectable| with Two-Parameter testing

FMAX
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|C Chip Measurements

Delay Chain and RO Circuits

Leakage Current & Power Measurements
on an I1C with 20,000 transistors

=

Toggle
Flip
Flop

Direct measurement of circuit leakage & delay:

Delay tracks microprocessor clock frequency change
in response to transistor performance change

|mproving the Sensitivity

Two-Parameter Test + RBB and/or T

Detectable

IDDQ

with two-parameter testing
Original test & its limit

Test & its limit after RBB or T
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L eakage with RBB

L eakage vs Frequency with RBB

Normalized IDDQ Leakage (X Ratio)
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100Circuit L eakage Reduction by RBB
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Sensitivity Enhancement by RBB

100

by 1.8X & frequency ~ by 10% 2 . s
o Leakage reduction : intrinsic=1.8X & i et el i .. @
defective=1.45X Nl B e
o Sensitivity enhanced by 1.8/1.45=1.25X .‘ B
or 25% g X s
= 25% improvement not very effective in L = - M
scaled technologies e Frequency Rl Cormalized

S/N Ratio of Two-Parameter Test

What do we mean by S/N ratio?

v Signal ® defective IC leakage
v Noise ® intrinsic IC leakage

= Intrinsic leakage noiseis predictable

= RBB & T shiftstheintrinsic leakage noise
= Signal shiftslessby RBB or T resulting in
widening of spread between S& N
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Focus on leakage reduction only
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Sensitivity Adjustment
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Improving Sensitivity by T

Adjusting Sensitivity

Leakage reduction: intrinsic=36X & defective=2.6X
Sensitivity and S/N ratio enhanced by 36/2.6=13.8X

= More leakage reduction is possible at a higher cost (T0)

Issues in DSM Era

Signal integrity

DSM defects

— capacitive and inductive coupling

— voltage drop - charge share

— power supply noise

— functional/delay faults

New DSM fault models should support
— test generation

— self-test capability

IDDQ testabilty

Diagnosis
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High Speed Circuit Testing for
Cross-Talk Defects

» Crosstalk -- One of the major noise injection
mechanismsin DSM circuits

» Determine nodes that are susceptible to these
faults in high-speed circuits.
— Helpsto generate the test pattern.
— Provide guidelines to design noise tolerant circuits

Noise Sourcesin DSM Circuits

e Cross-talk coupling
» Power supply noise
» Charge redistribution
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Why Noise Modeling?

» To determine the circuit immunity to
Noi se.

— Helps in designing noise tolerant circuit.
— Reduces the number of nodes to be tested.

Static Noise Margin

NM_ = [V, - Vo Vou

NMy = [Vou - Viul
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Requirement of New Technique

New technique for testing of high-speed DSM monotonic logic
circuits

Dynamic Noise Modeling

Static NM - not sufficient

Dynamic NM - new metric to check functional violation
Detection of functional/delay faultsin acircuit

Estimate propagated noise at a victim node

Comparison with dynamic noise margin
Analysis of noise immunities of high speed circuits

High Speed Circuit Testing for
Cross-Talk Defects

* Crosstalk -- One of the major noise injection
mechanismsin DSM circuits

» Determine nodes that are susceptible to these
faults in high-speed circuits.
— Helpsto generate the test pattern.
— Provide guidelines to design noise tolerant circuits




Dynamic Noise Model

e Linear relation :

—1 Ga f
aggressor

Cc
Gd

io(Vi)z gm' (Vi . Von) -Vi 3 Von

drive Cv T
Vd

* Dynamic noise margin :

1

Simulation Based Verification

*  Domino OR aate

Im dvnoise . Von)dt _

| SO-static NM contour plot
Linearity !
Different gates

with different noise inputs

=NM;
Cf
NM ; >C;
p (Vn0|se' Von)xT = I L -4 Input
M >C; 6 1 - 16 Input

20



Testing for Functional Faults

Algorithm:

|GATE Library | | CIRCUIT | LAYOUT |
—_— —_—

CIRCUIT Levelization / R,L, & C Extraction
Static Timing Analysis

v

| DNM calculation
=~

| Coupled noise : V(1)
~

| Propagated noise

~
Propagated Noise > DNM ? I

Testing for Functional Faults

A 4 bit full adder circuit isverified

Noise Peak vs. DC NM

- Propagated Noisevs. 12 possible fault sites

DNM

S

E
T L WU MMJMUL

b i i

Results are also verified with HSPICE simulation

DNM B erification
Canﬁ%\l/n rletljucfng the cost for testing.
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Delay Faults
S

Ga

aggressor Voult(t)

Wt
viks.Q e L ORl@) ¢
Gv
. victim
\ vin() V(t) + Coupled Noise Voltage

Vin(t) » Victim Gate Input Transition

del(Gv) » GateDelay
Delta + Delay induced dueto coupling

Cc

Gd
drive Cv

Vd

i

C. can be qualitative measure for delay fault ‘

New layout architecture can help in reducing delay
fault probability through C. minimization

Conclusions

o Two-Parameter test with speed-adjusted
leakage limit has a better S/N ratio

« |t discriminates high speed leaky 1Cs from
defective ones

» Reverse Body Bias (RBB) enhances the test
sensitivity (S/N ratio) modestly

» Temperature improves the sensitivity by
more than an order of magnitude (14X)
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Conclusions

» Cross-talks faults are becoming increasing
important for high-speed DSM circuits

» Thereisaneed for good test and
verification methodology for cross-talk
defects




