Deep Sub-micron Test: High Leakage Current and Its Impact on Test; Cross-talk Noise

Kaushik Roy
Electrical & Computer Engineering
Purdue University

Impact of Leakage on IC Testing?

Our Focus

- Higher intrinsic leakage challenges current based test techniques
- I_{DDQ} test method well established and widely accepted for defects and is necessary
- I_{DDO} testability issue sensitivity?
- Novel testing solutions

Problem Statement

- Can I_{DDQ} and current based test methods be effective and survive the prohibitive increase in intrinsic leakage posed by technology scaling?
- How do we discriminate high speed leaky ICs from defective ones?

Gate Oxide Defect & I_{DDQ}

- ✓ I_{DDO} most effective in detecting defects
- ✓ Example: NMOS gate oxide defect creating a V_{DD} to V_{SS} leakage path V_{DD} V_{-1}

⇒ Circuits become more susceptible to defects with scaling

State-of-the-art in Current Testing

- Transient Current Testing [1,2]
- Current Signatures and Ratios [3,4]
- Delta I_{DDO} [5]
- Divide and conquer techniques [6,7]
- Forcing stacked transistors by input vector selection [8]
- Not sufficient to address the problem
- Our solution not in conflict with above

References:

- [1] M. Sachdev, et al., "Defect Detection with Transient Current Testing and its Potential for Deep Submicron ICs," *Int. Test Conf.*, pp. 204-213, Oct. 1999.
- [2] E.I. Cole Jr., et al., "Transient Power Supply Voltage (v_{DDt}) Analysis for Detecting IC Defects," *Int. Test Conf.*, pp. 23-31, Nov. 1997.
- [3] A. E. Gattiker et al., "Current Signatures," VLSI Test Symposium, pp. 112-117, 1996.
- [4] P. Maxwell, et al., "Current Ratios: A Self-Scaling Technique for Production IDDQ Testing," Proc. of International Test Conference, pp. 738-746, Oct. 1999.
- [5] C. Thibeault, et al., "Diagnosis Method Based on Delta IDDQ Probabilistic Signatures: Experimental Results," *Int. Test Conf.*, pp. 1019-1026, 1998.
- [6] K. Wallquist, "Achieving IDDQ/ISSQ Production Testing with Quic-Mon," IEEE Design and Test of Computers, Fall 1995.
- [7] W. Maly, et al., "Design of ICs Applying Built-in Current Testing," J. of Electronic Testing: Theory and Applications, pp. 111-120, Dec. 1992.
- [8] Y. Ye, et al., "A New Technique for Standby Leakage Reduction in High-Performance Circuits," *Symp. on VLSI Ckts*, p. 40, June 1998.

Parameters Influencing I_{OFF}, I_{DDO} & Standby Power

- Substrate (Body) Bias
- Temperature
- Lowering Power Supply Voltage
- Combined Effects

I_{OFF} / Leakage Reductions

For a 0.35 micron CMOS Technology

- Temperature
 - Factor of ~ 350 from room to -50°C
- ullet Substrate backbiasing (RBB) V_{BS}
 - Factor of ~ 3000 at $\sim \mid 2 \mid V$
- Lowered V_{DD}
 - Factor of ~ 10 from 2.7 V to 1.5 V
- Multiple V_T

Two parameter Test Solution

- Scaling
- Functional and Delay Fault Testing
- I_{DDQ}
- Components of transistor leakage
- Leakage reduction techniques
- - Two-parameter test solution
 - Sensitivity enhancement by RBB
 - Sensitivity enhancement by Temperature

Two-Parameter Test: Decision Table & Adjustable Limit

Table 6.1. IC decision matrix for I_{DDQ}		
and F _{MAX} testing.		
I_{DDQ}	$\mathbf{F}_{\mathbf{MAX}}$	Decision on IC
Н	Н	Good - Fast
Н	L	Defect
L	Н	Unlikely
L	L	Good - Slow

μP Circuit I_{DDQ} vs F_{MAX}

- ⇒ Empirical relationship derived from existing test methods
- ⇒ Data include die-to-die parameter variation

Adjustable Limit for I_{DDQ} vs F_{MAX}

⇒ Limit may be established by currently available statistical methods

Addressing issues raised by the problem statement

- High intrinsic leakage
 - Our solution places I_{DDQ} in context of F_{MAX}
 - ${\color{blue} \bullet}$ High I_{DDQ} leakage not an issue in itself
 - High leakage at high speed is OK
- lacksquare I_{DDQ} effectiveness and sensitivity
 - $\ \ \$ Two-parameter test extends I_{DDQ} effectiveness
 - More on improving sensitivity by RBB
- Discriminates high speed leaky ICs from defective ones

How does our solution compare to state-of-the-art in I_{DDO} testing?

- No extra cost, no new hardware or instrumentation, uses established tests
- It complements the existing methods such as lowering V_{DD}, lowering temperature, and increasing V_T by RBB or multiple V_T

Issues in DSM Era

- Signal integrity
- DSM defects
 - capacitive and inductive coupling
 - voltage drop charge share
 - power supply noise
 - functional/delay faults
- New DSM fault models should support
 - test generation
 - self-test capability
- IDDQ testabilty
- Diagnosis

High Speed Circuit Testing for Cross-Talk Defects

- Crosstalk -- One of the major noise injection mechanisms in DSM circuits
- Determine nodes that are susceptible to these faults in high-speed circuits.
 - Helps to generate the test pattern.
 - Provide guidelines to design noise tolerant circuits

Noise Sources in DSM Circuits

- Cross-talk coupling
- Power supply noise
- Charge redistribution

Why Noise Modeling?

- To determine the circuit immunity to noise.
 - Helps in designing noise tolerant circuit.
 - Reduces the number of nodes to be tested.

Static Noise Margin

$$\mathbf{NM_{L}} = |\mathbf{V_{IL}} - \mathbf{V_{OL}}|$$

 $\mathbf{NM_{H}} = |\mathbf{V_{OH}} - \mathbf{V_{IH}}|$

Requirement of New Technique

New technique for testing of high-speed DSM monotonic logic circuits

Dynamic Noise Modeling

Static NM - not sufficient

Dynamic NM - new metric to check functional violation

Detection of functional/delay faults in a circuit

Estimate propagated noise at a victim node

Comparison with dynamic noise margin

Analysis of noise immunities of high speed circuits

High Speed Circuit Testing for Cross-Talk Defects

- Crosstalk -- One of the major noise injection mechanisms in DSM circuits
- Determine nodes that are susceptible to these faults in high-speed circuits.
 - Helps to generate the test pattern.
 - Provide guidelines to design noise tolerant circuits

Conclusions

- Two-Parameter test with speed-adjusted leakage limit has a better S/N ratio
- It discriminates high speed leaky ICs from defective ones
- Reverse Body Bias (RBB) enhances the test sensitivity (S/N ratio) modestly
- Temperature improves the sensitivity by more than an order of magnitude (14X)

Conclusions

- Cross-talks faults are becoming increasing important for high-speed DSM circuits
- There is a need for good test and verification methodology for cross-talk defects