Leakage Tolerant Circuits, Sub-threshold Logic

Kaushik Roy
Electrical & Computer Engineering
Purdue University

Outline

- High Performance and Low-Power Circuits
 - Leakage control (CAD and circuit techniques)
 - Stacked CMOS with Gated-Vdd (Application: DRIcache)
 - Multiple VT
 - Dynamic VT
 - Circuit techniques:
 - MTCMOS, VTCMOS, DTMOS, SCCMOS, etc.
 - SOI implementation
- Ultra low voltage digital sub-threshold logic
 - Medical applications, bursty versus non-bursty mode

Constant Voltage vs Field Scaling

- Recently: constant e-field scaling, aka voltage scaling
- $V_{CC} \rightarrow 1V$
- V_{CC} & modest V_T scaling
- Loss in gate overdrive (V_{CC}-V_T)

1.4 1.0 0.8 0.6 .35 .25 .18 Technology Generation (μm)

 $\ \square$ Voltage scaling is good for controlling IC's active power, but it requires aggressive V_T scaling for high performance $\ _3$

Delay

$$\boldsymbol{t}_{d} = \frac{C_{L}V_{DD}}{I_{D}}$$

$$\boldsymbol{t}_{d} = \frac{C_{L}}{(\frac{W}{2L})\boldsymbol{m}C_{ax}V_{DD}(1-\frac{V_{T}}{V_{DD}})^{2}}$$

$$\boldsymbol{t}_{d} = \frac{C_{L}}{WC_{ax}\boldsymbol{u}_{SAT}(1-\frac{V_{T}}{V_{DD}})}$$
Short Channel MOSFET

$$t = \frac{CL^{0.5}T_{ox}^{0.5}}{V_{DD}^{0.3}(0.9 - V_{DD}^{1.3})^{1.3}} (\frac{1}{W_n} + \frac{2.2}{W_p})$$
[1]

[1] C. Hu, "Low Power Design Methodologies," Kluwer Academic Publishers, p. 25.

Performance significantly degrades when V_{DD} approaches $3V_{\text{T}}$.

ļ

V_T Scaling: V_T and I_{OFF} Trade-off

 \Rightarrow As V_T decreases, sub-threshold leakage increases

⇒ is a barrier to voltage scaling

5

Barriers to Voltage Scaling

- Leakage power
- Short-channel effects
- Soft error
- Special circuit functionality

6

Why Excessive Leakage an Issue?

- Leakage component to active power becomes significant % of total power
- Approaching ~10% in 0.18 μm technology
- Acceptable limit less than ~10%, implies serious challenge in $V_{\rm T}$ scaling!

7

Low-Vdd Low-Vt Design

- Stacked CMOS
- Dual-threshold CMOS
- Dynamic-threshold CMOS

Leakage control techniques

Sources of Leakage

• From Keshavarzi, Roy, & Hawkins (ITC 1997)

Motivation

- Reduce Vdd
 - Switching energy αVdd^2
 - Increase delay

Reduce Vt

- Decrease delay
- $\begin{array}{ccc} \ Leakage & energy \\ \alpha \ e^{(-Vt)} \end{array}$
- Leakage Control permits
 - lower voltage
 - lower Vt

Leakage Control

- Needed most when circuit is idle
 - inputs latched & clocking removed
 - supply voltage is still applied
- Can exploit input dependence
 - turn off stacks of transistors
 - intrinsic self-reverse biasing
- Multiple V, useful
 - High V_{th}: suppress sub-threshold leakage
 - Low V_{th}: achieve high performance

Leakage Control using Self Reverse Bias

- Subthreshold current dominant in sub-µ
 - this is the component we concentrate on
- Drain induced barrier lowering (DIBL) and body effect modeled as V_t shift
- Gate induced drain leakage (GIDL) and gate oxide tunneling may be problem in future
- · Subthreshold current model based on BSIM
 - body effect linear for small V_S

$$I \text{ subth } = A \times e^{\frac{-1}{h u_T} (V_G - V_S - V_{TH \ 0} - g'V_S + h V_{DS})} \times \begin{pmatrix} \frac{-V_{DS}}{u_T} \\ 1 - e \end{pmatrix}$$

Self-reverse bias

- Primary effect:
 - $-\ V_{GS}\!<\!0$
 - move down subthreshold slope
- Secondary effects:
 - Drain InducedBarrier Lowering
 - Body effect

$$V_{DS} \downarrow \Rightarrow V_{T} \uparrow$$

$$V_{S} \uparrow \Rightarrow V_{T} \uparrow$$

"Stacking Effect"

ullet Intrinsic self-reverse biasing of V_{GS} in stack

• Consider 4 input NAND $(V_{DD} = 1.5V, V_T = 0.25V)$

Input dependence of leakage

• Consider 4 input NAND $(V_{DD} = 1.5V, V_T = 0.25V)$

Input dependence of leakage

• Consider 4 input NAND $(V_{DD} = 1.5V, V_T = 0.25V)$

Input dependence of leakage

Model of stacking

- In a simple transistor stack
 - ignore transistors which are ON
 - calculate V_{DS} of each transistor
 - use I_{subth} equation to calculate leakage

Selection of Standby Mode Inputs

- At gate level
 - evaluate all possible inputs
 - for each input vector
 - replace ON transistors by shorts
 - decompose remaining circuit into disjoint leakage paths
 - apply stack leakage model to each path
- For more complex circuits
 - build look-up table for each sub-circuit
 - use ATPG or GA approach to select minimum leakage input vectors

Results

Circuit & Input vector	Model Iddq [nA]	HSPICE Iddq [nA]	Comments
4 input NAND			
ABCD=0000	0.72	0.60	Best
ABCD=1111	23.2	24.1	Worst
3 input NOR			
ABC=111	0.13	0.13	Best
ABC=000	29.9	29.5	Worst
Full Adder			
A,B,Ci=111	7.5	7.8	Best
A,B,Ci=001	56.0	62.3	Worst
4 bit ripple Add			
A=B=0000, Ci=0	102.6	91.3	Best
A=B=1111, Ci=1	102.6	94.0	Best
A=B=0101, Ci=1	258.9	282.9	Worst

Results

Circuit & Input vector	Model Iddq [nA]	HSPICE Iddq [nA]	Comments
8 Bit Carry Select			Uses 4 bit stages
A=B=11111111,Ci=1	259.0	246.2	Best
A=B=01010101,Ci=1	690.4	759.6	Worst
4 Bit Manchester Carry Ch	ain		Dynamic
All Gi, Pi=1, CLK=1	16.8	13.5	Best
All Gi, Pi=0, CLK=0	15.6	15.9	Best
All Gi, Pi=1, CLK=0	49.7	55.3	Worst
4 Bit MCC based Adder			
CLK=1, others=1	154.4	126.6	Best
CLK=0, others=0	144.4	134.4	Best
CLK=0, others=1	198.8	190.4	Worst

Application: ICALP

- Integrated Circuit/Architecture Approach to Low Power application of trans. stacking
 - Leakage power (DRI cache) using transistor stacking (gated-Vdd) and simple hardware monitors
 - Dynamic power (L1 & L2 caches)

ICALP: An Integrated Approach

- Use both circuit & architecture techniques
 - aggressive low power circuit techniques
 - architecture techniques to configure hardware
- Customize hardware to fit app demand
 - e.g., caches, functional units, etc.
 - simple hardware monitors
 - compiler estimates
- Use circuit to reconfigure hardware

ICALP Goals

- Minimize both leakage and dynamic power
- Redefine architecture from power perspective
 - both architectural & compiler techniques
 - propose & evaluate power-aware systems
 - e.g., our design for a power-aware I-Cache
- Develop the first integrated evaluator
 - cycle-driven performance estimator
 - accurate power estimators

Power Management Trigger

- ICALP ISA
 - augment ISA with power mgt instructions
- Compiler + ICALP ISA
 - e.g., loop size => required I-cache size
 - e.g., estimate ILP => required issue width
- Simple hardware monitors
 - e.g., monitor miss rate and compare to threshold

ICALP I-Cache: An Example

- RAM cells large fraction of #transistors
- Potentially large fraction of leakage
- Illustrate usage of Gated-Vdd
- Integrate circuit/architecture schemes

DRI-Cache: Overview

Dynamically Resizable I-Cache (DRI-Cache)

- Monitor dynamic miss rate
- Upsize if miss rate > threshold
- Downsize if miss rate < threshold
- Turn-off power to unused cache blocks
 using Gated-Vdd
- Simple hardware implementation

DRI-Cache Resizing: When?

Monitor miss rate for an interval

• Hardware register tracks miss rate

At end of interval

- Compare with threshold
- Shift size mask right if lower miss rate
- Shift size mask left if higher miss rate

DRI-Cache: Architectural Issues

Resizing may cause aliasing

As many tag bits as minimum size

- Larger tag RAM
- Slower tag compares

Size mask in address path

• May affect access time

Extending to D-Cache has problems

• Dirty data needs to be written back

DRI-Cache: Layout Issues

Extra transistor for Vdd or Gnd

- Less than 3% area increase
- Amortize over one/many cache blocks

DRI-Cache: Preliminary Results

Simulation Parameters

- Simplescalar simulator
- SPEC95 benchmarks
- 2-way, 64K L1 I- and D-Cache
- 4-way, out-of-order issue
- Sense interval : 256K I-Cache accesses
- Threshold set to base case miss rate
- Measure size estimate power

DRI-Cache: Conclusions

DRI-Cache results are encouraging

- Within 3% of base performance on average
 - size reduction by 11% 96%
- Relatively simple hardware

Actual power reduction

- Using spice simulations on our layout
 - average static power reduction of 62%

Dual Threshold CMOS

- Low-V_{th} transistors in critical path for high performance
- Some high-V_{th} transistors in non-critical paths to reduce leakage

Dual Threshold CMOS (cont'd)

• Due to the complexity of a circuit, not all the transistors in non-critical paths can be assigned a high-V_{th}, otherwise, the critical path may change.

 \bullet How to selectively assign dual V_{th} to achieve the best leakage saving under performance constraints?

Leakage of 32-bit Adder

 $\hbox{ Mixed-$V_{th}$ design technique can provide 20\% more leakage savings than gate-level dual-V_{th} technique }$

Total Power of 32-bit Adder

- Total power can be reduced by 9% for high activity
- Total power can be reduced by 22% at low activity

Mixed-V_{th} (MVT) CMOS Schemes

- Mixed-V_{th} (MVT) CMOS Schemes
 - Scheme I (MVT1)
 - There is no mixed $\boldsymbol{V}_{\text{th}}$ in p pull-up or n pull-down trees.
 - Scheme II (MVT2)
 - Mixed- $V_{\rm th}$ is allowed anywhere except for the series connected transistors.

• Due to the process variation, the worst case corner should be used in the analysis.

MTCMOS

- Multi-Threshold CMOS (From S. Mutoh, etc. JSSC 1995)
- In active mode:
 - SL=0, MP and MN are "on VDDV and VSSV almost function as VDD and VSS.
- In standby mode:
 - SL=1, MP and MN are "off leakage is suppressed.

MTCMOS (cont'd)

• Only one type of high-Vth sleep control transistor is enough

• NMOS size smaller

NMOS insertion is preferable

MTCMOS (cont'd)

- Advantage:
 - Effective for standby leakage reduction
 - Easily implemented based on existing circuits
 - 1-V MTCMOS DSP chip for mobile phone application (1996)
- Disadvantage:
 - Increase area and delay
 - If data retention is required in standby mode, an extra high-V_{th} memory circuit is needed

SCCMOS

- Super Cut-off CMOS (From H. Kawaguchi, ISSCC, 1998)
- Single-low-V_{th} circuit
 - Low- V_{th} sleep control transistor with smaller size
 - Minimal V_{dd} is lower than that of MTCMOS
- A gate bias generator is required

VTCMOS

- Variable Threshold CMOS (from T. Kuroda, ISSCC, 1996)
- In active mode:
 - Zero or slightly forward body bia for high speed
- In standby mode:
 - Deep reverse body bias for low leakage
- Triple well technology required

DTMOS

- Dynamic Threshold CMOS
 - from F. Assaderaghi, IEDM, 1994
- Vth altered dynamically to suit the operation state of the circuit
- Vdd<0.6V
- Triple well required for BULK silicon technology
- DTMOS in partially-depleted SOI

DGDT SOI CMOS

- Double Gate Dynamic Threshold SOI CMOS
 from L.Wei, Z. Chen, K.Roy, IEEE SOI Conf., 1997
- Asymmetrical double gate fully-depleted SOI MOSFET
- Front gate: conducting gate Back gate: controlling gate

Conclusions

- Efficient leakage control technique required to maintain high performance in future designs
- For some niche applications (where performance is of secondary concern) ultra low power sub-threshold digital circuits can be used

Digital Sub-threshold Logic

- Operate in sub-threshold region $(V_{gs} < V_{th})$
- Uses leakage current as the operating switching current
- Suitable for ultra-low power applications where performance is of secondary importance
- Utilizes sub-threshold characteristics of MOS transistors

Application Areas

• Primary requirement: *Ultra-low Power*

• Bursty applications

Sub-threshold Characteristics of MOS Transistor

$$I_{ds} = \mathbf{m}_{eff} C_{ox} \frac{W}{L} (m-1) \left(\frac{kT}{q}\right)^{2} e^{\frac{(V_g - V_{th})}{mkT/q}} \left(1 - e^{-\frac{V_{ds}}{kT/q}}\right)$$

Sub-threshold Characteristics of MOS Transistor

$$I_{ds} = \mathbf{m}_{eff} C_{ox} \frac{W}{L} (m-1) \left(\frac{kT}{q}\right)^{2} e^{\frac{\left(V_{g} - V_{th}\right)}{mkT/q}} \left(1 - e^{-\frac{V_{ds}}{kT/q}}\right)$$

- *m* is body-effect coefficient i.e. $m = 1 + \frac{C_{depl}}{C_{ox}} = 1 + \frac{3t_{ox}}{W_{depl}}$
- C_{depl} is bulk depletion capacitance i.e $C_{depl} = \frac{\mathbf{e}_{Si}}{W_{depl}}$
- C_{ox} is oxide capacitance per unit area i.e. $C_{ox} = \frac{e_{ox}}{t_{ox}}$

Sub-threshold Characteristics of MOS Transistor

$$I_{ds} = \mathbf{m}_{eff} C_{ox} \frac{W}{L} (m-1) \left(\frac{kT}{q}\right)^2 e^{\frac{(V_g - V_{th})}{mkT/q}} \left(1 - e^{-\frac{V_{ds}}{kT/q}}\right)$$

$$I_{ds} \propto e^{V_{gs}}$$

$$g_m \equiv \frac{\partial I_{ds}}{\partial V_{gs}} |_{V_{ds} = const}$$

Threshold Voltage

$$V_{th} = V_{fb} + 2\mathbf{y}_{b} + \frac{\sqrt{2\mathbf{e}_{Si}qN_{A}(2\mathbf{y}_{b} - V_{sb})}}{C_{ox}}$$

$$\Delta V_{th} = V_{th}(V_{sb}) - V_{th}(V_{sb} = 0) = \frac{\sqrt{2\mathbf{e}_{Si}qN_{A}}}{C_{ox}} \left(\sqrt{2\mathbf{y}_{b} - V_{sb}} - \sqrt{2\mathbf{y}_{b}}\right)$$

$$= a\mathbf{b} \left(\sqrt{\frac{2\mathbf{y}_{b} - V_{sb}}{\mathbf{b}}} - \sqrt{\frac{2\mathbf{y}_{b}}{\mathbf{b}}}\right) \quad \bullet V_{fb} \text{ is the flat-band voltage}$$

$$\bullet \mathbf{y}_{b} = V_{fermi} - V_{intrinsic of bulk Si}$$

$$\bullet \mathbf{e}_{Si} \text{ is the permittivity of Silicon}$$

$$\bullet C_{ox} = \mathbf{e}_{ox}/t_{ox} \text{ i.e. oxide capacitance/unit area}$$

$$\bullet \mathbf{b} = \mathrm{kT/q} \text{ i.e. thermal voltage}$$

$$\bullet L_{D} = (\mathbf{b}\mathbf{e}_{Si}/(qN_{A}))^{1/2} \text{ i.e. extrinsic Debye length}$$

Temperature Effect on V_{th}

$$V_{th} = V_{fb} + 2\mathbf{y}_{b} + \frac{\sqrt{2\mathbf{e}_{Si}qN_{A}(2\mathbf{y}_{b} - V_{sb})}}{C_{ox}}$$

$$\frac{dV_{th}}{dT} = \frac{d\mathbf{y}_{b}}{dT} \left(2 + \frac{1}{C_{ox}} \sqrt{\frac{\mathbf{e}_{Si}qN_{A}}{\mathbf{y}_{b}}} \right)$$

$$\frac{d\mathbf{y}_{b}}{dT} = \pm \frac{1}{T} \left(\frac{E_{g}(T=0)}{2q} - |\mathbf{y}_{b}(T)| \right)$$

 E_g is the band-gap energy

Sub-threshold Slope (S)

Gate voltage swing needed to change the drain current by one decade

$$S = \frac{dV_{gs}}{d(\ln I_{ds})} \ln 10 = \mathbf{b} \frac{d \binom{V_{gs}}{\mathbf{b}}}{d(\ln I_{ds})} \ln 10 = \mathbf{b} \left[1 + \frac{C_{depl}}{C_{ox}} \right] \left[1 - \left(\frac{2}{a^2} \right) \left(\frac{C_{depl}}{C_{ox}} \right)^2 \right] \ln 10$$
For $a \gg \left(\frac{C_{depl}}{C_{ox}} \right)$: $S \approx \frac{kT}{q} \left[1 + \frac{C_{depl}}{C_{ox}} \right] \ln 10$

 C_{depl} is the depletion layer capacitance

Temperature Variation

$$I_{ds} = \mathbf{m}_{eff} C_{ox} \frac{W}{L} (m-1) \left(\frac{kT}{q}\right)^{2} e^{\frac{\left(V_{g} - V_{th}\right)}{mkT/q}} \left(1 - e^{-\frac{V_{ds}}{kT/q}}\right)$$

Sub-threshold Static Logic: Sub-CMOS Logic

- CMOS logic operates in sub-threshold region
- $\bullet \quad V_{dd} < V_{th}$
- Near ideal VTC
- High gain
- High g_m
- Better NM

Simulation Results

- Logic Gates (SPICE using 0.35m process)
- 8x8 Carry-Save Array Multiplier (0.35um)

Inversion	Power(W)	Delay(s)	PDP(J)
Strong	9.27e-3	1.883e-9	17.46e-12
Weak	30.1e-9	21.38e-6	0.644e-12

377.4um x 279.1um

Robust Sub-Static Logic: Sub-VT-CMOS logic

- Negative feedback principle:
 - Monitors any change in leakage current (due to process and temperature variations)
 - Stabilizes the circuit by applying appropriate substrate bias

Sub-VT-CMOS Logic

Two components of stabilization scheme:

- Leakage Current Monitor (LCM):
 - Leakage current sensor
 - Activates/De-activates the SSB circuit
- Self-Substrate Bias (SSB) circuit:
 - Uses charge-pump to accumulate charge
 - Applies bias to the substrate

Simulation Results

- 8x8 carry-save array multipliers
- TSMC 0.35um process technology
- 50kHz with Vdd=0.5V and temp=55°C

	Area(um ²)	Power(uW)
CMOS	228.6x10 ³	11.59
Sub-CMOS	$228.6x10^3$	0.163
Sub-Pseudo-NMOS	$210.9x10^3$	1.056
Sub-True-NMOS	202.7x10 ³	1.497

Comparison with other known ultra-low power logic: Energy-Recovery Logic

- To validate the power saving effectiveness of sub-threshold logic
- QSERL (Quasi-Static Energy-Recovery Logic): close resemblance to CMOS logic

- Sinusoidal power supply generator is assumed to have 100% efficiency (In practice, only 80-90% efficiency is achieved)
- Use ideal Schottky diodes instead of diode-connected, low Vth MOS transistors (leaky transistors make it difficult for QSERL to hold the output voltage properly during long hold time)

Conclusions

- Digital sub-threshold logic is used to satisfy the ultra-low power requirement
- Sub-threshold logic is readily implemented and derived from the traditional existing circuits by lowering the V_{dd} to be less than V_{th}
- Improved characteristics including higher gain, better noise margin, and more energy efficient
- Ratio-ed logic (Pseudo/True-NMOS) is comparable to CMOS logic in sub-threshold logic in terms of robustness, noise margin and power consumption
- Sub-dynamic logic is faster, smaller and has better noise margin than sub-CMOS
- Sub-threshold logic is easier to design and more efficient as compared to other known ultra-low power logic, such as energy-recovery logic