

Top-Down: S0 = any point in ms(root) Recursively: Given location(v) lovation(u) = q in ms (u) s.t. d(q, location(v)) is minimized location(w) = q in ms (w) s.t. d(q, location(v)) is minimized

sk	ew(ps)	r1	r2	r3	r4	r5
0	CL+6	0.1253347	0.2483754	0.3193801	0.6499660	0.972372
0	BME	0.1307637	0.2647476	0.3344828	0.6934030	1.106689
	IME	0.1445555	0.2907593	0.3605778	0.7255455	1.0706940
1	BME	0.1223125	0.2397494	0.3427426	0.6415233	0.947000
	IME	0.1274819	0.2526961	0.3060284	0.6571435	0.989665
10	BME	0.1087703	0.2155481	0.2789321	0.5411937	0.814018
	IME	0.1112512	0.2353202	0.2727299	0.5350241	0.8065110
100	BME	0.0926205	0.2201023	0.2515178	0.4860958	0.7375204
	IME	0.0930426	0.1978378	0.2366874	0.4953715	0.7003990
1000	BME	0.0793498	0.1839666	0.2506399	0.4971769	0.7134697
	IME	0.0861561	0.1995665	0.2097784	0.4740962	0.6280007
10000	BME	0.0780100	0.1668872	0.2102182	0.4017261	0.6136574
	IME	0.0790285	0.1574153	0.1998007	0.4326234	0.5912472

Experimental Results												
	Pewer (mW)		Rise Time (ns)		Buffer area		#buffers/drivers					
Benchmark	GRIN	Reet*	GRIN	Reot	CR N	Root	GRIN	Reot				
R1	11.3	33.0	0.42	1.42	15	235	6					
R2	22.9	42.3	1.03	1.93	35	235	7					
R3	337	\$\$. 7	0.3E	3.21	3 2	638	7	7				
R4	59.2	113	1.24	5.44	90	632		7				
R5	97.3	244	12.3	19.3	238	1735	10	8				

 Tradeoff between wirelength and buffer area 10% wirelength reduction with 3X increase in buffer area

- Skew sensitivity and delay minimization using dynamic programming
- Construct a lookup table B[b,l,s] bottom-up
 - B[b, I, s]: min.skew sensitivity with b buffer levels,
 - first level buffers at I, buffer size s
 - SS[I, s, I', s']: skew sensitivity for buffers at levels I and I'
 - with sizes s and s', respectively
 - At level I, compute B[b, I, s] = min {SS[I, s, I's, s'] + B[b-1, I', s']}
 - At root, I = 0, choose the smallest B[b, 0, s], and trace back to get optimal buffering levels, and buffer types
- Buffers at same level have identical size \Rightarrow Reduce impact of process variations in devices on skew

Buffer Insertion/Sizing and Wiresizig for Clock [Pullela-Menezes-Pileggi, TCAD'97]

- Clock delay and skew sensitivity minimization while satisfying skew bound constraint B
- Assumed n levels of buffers to be placed in a l-level clock tree; determine the buffer levels in the tree exhaustively
- Divide skew resource B evenly s.t. each buffer level and each level of clock tree has same skew resource = B/(I+n)
- For each DC-connected subtree (defined by buffers/driver)
 - Compute the min. required width of a branch s.t. the maximum change in delay induced by a process variation <= B/2(l+n)
 - \Rightarrow the worst case skew under process variations <= B
 - Achieve zero-skew routing within subtree by wiresizing with possible detour wirelength (similar to [Edahiro, ICCAD'93])

