
EE695K VLSI Interconnect

Prepared by CK 1

High-Speed Clock Routing

Performance-Driven Clock Routing

• Given:
– Locations of sinks {s1,  s2, … ,sn} and clock source s0

– Skew Bound B >= 0
• If B = 0, zero-skew routing

– Possibly other constraints:
• Rise/fall time at sink
• Clock phase delay

• Construct:
– Clock routing tree T with skew

Max-Delay(T) - Min-Delay(T) ≤ B
+ meeting other specified constraints

– Minimize cost (e.g. total wirelength, power dissipation)



EE695K VLSI Interconnect

Prepared by CK 2

High-Speed Clock Routing

• Given:
– Locations of sinks {S1,S2, … , Sn} and clock source S0

– Skew Bound B

• Construct:
– Clock routing tree with skew <= B
– Minimize cost (e.g. total wirelengthe, power dissipation)

Minimum-Skew Clock Routing Techniques

• Top-down tree generation
[Jackson-Srinivasan-Kuh, DAC’90]

• Bottom-up clock tree synthesis
[Kahng-Cong-Robins,1991][Tsay,1991]

• Deferred merging embedding for a given topology
     [Edahino, DAC’93&ICCAD’93][Chao-Hsu-Ho, DAC’92][Boese-Kahng,

ASIC’92]

• Planar clock routing
      [Zhu-Dai, ICCAD’92][Kahng-Tsao, ICCAD’94]

• Wiresizing and buffer insertion
[Pullela et al, DAC’93][Chung-Cheng, ICCAD’94][Lin-Wong, ICCAD’94]

• Bounded-skew clock routing tree
      [Cong-Koh, ISCAS’95][Huang-Kahng-Tsao,DAC’95][Cong et al,

ICCAD’95]



EE695K VLSI Interconnect

Prepared by CK 3

Top-Down Clock Tree Generation

• Method of Means and Medians [Jackson-Srinivasan-Kuh,
DAC’90]

– Partition the sinks S into two sets SL and SR of equal size
– Connect the center of mass of S to those of SL and SR

– Recursively partition SL and SR in the orthogonal direction

• Given n sinks in a unit square
– Total wirelength grows as

– Maximum path length skew grows proportional to

n
2

3

n

1

Bottom-Up Clock Tree Synthesis

• Matching-based clock routing[Kahng-Cong-Robins,
DAC’91]
– Recursively match subtrees at each level

– Minimize skew in each subtree

• Achieve zero-skew routing under pathlength delay
model



EE695K VLSI Interconnect

Prepared by CK 4

Enhancement of Bottom-Up Clock Tree
Construction [Tsay, ICCAD’91]

• Use Elmore delay model instead of linear delay model
Linear-time hierarchical computation of Elmore delay

• Consider multi-staged clock tree(buffered clock tree)

Capacitance of subtree at buffer output will not be “carried over”
• Allow “wire snaking” for a achieving exact zero-skew

multi-staged clock tree

wire snaking

Deferred-Merge Embedding(DME) Algorithm
[Chao-Hsu-Ho, DAC’92][Boese-Kahng,

ASIC’92][Edahiro, NEC’92]

Given a Topology G

Bottom-Up:

Given sinks are all zero-skew trees
For each internal node v in topology in bottom up fashion

let u and w be children of v

Merging Segment ms(v)=zero-skew-merge(ms(u), ms(w))
• Maintain zero-skew at each sub-tree
• Find good placements of internal nodes

v

u w



EE695K VLSI Interconnect

Prepared by CK 5

Top-Down:
S0 = any point in ms(root)
Recursively: Given location(v)

lovation(u) = q in ms (u) s.t. d(q, location(v)) is
minimized
location(w) = q in ms (w) s.t. d(q, location(v)) is
minimized

Deferred-Merge Embedding(DME) Algorithm
[Chao-Hsu-Ho, DAC’92][Boese-Kahng,

ASIC’92][Edahiro, NEC’92]

Pathlength Delay Model

t(u,v) = ∑ )(elength
edge e in
u-v path

D(u,v): Manhattan Distance
u

t(u,v)
e

v

length(e)



EE695K VLSI Interconnect

Prepared by CK 6

An Example of DME Algorithm: Bottom Up

s2

s1

s0

s4

s3

A=Merge(s1,s2)

t(A)=3

B=Merge(s3,s4)

t(B)=2

C=Merge(A, B)

t(C)=6

s

C

A B

4321

Topology

An Example of DME Algorithm: Top Down

s2

s1

s0

s4

s3
t(s0)=9



EE695K VLSI Interconnect

Prepared by CK 7

Merging Two Zero Skew Trees

• Given two zero-skew trees T(v), T(v)
t(u)=delay from u to its sinks
t(w)=delay from w to its sinks

• Given location(u) & location(w), Find possible locations of  v
t(v)=lengths(eu) + length(ew)

• Merging Cost=length(eu) + length(ew)

v

u w

If u, w are sinks, t(u) = t(w) = 0,
then for minimum merging cost

uo v

w
o 2

w)d(u,Length(eu) = length(ew) = 

Merging Segment, ms(v)

Minimum Cost Merging Segment

• Sink si, ms(si) = location(si)
• Internal node v, children u and w:

set of possible locations of v s.t.

skew(v)=0

merging cost lengths(eu) + length(ew) minimized

v

u w

Manhattan arc: slope+1 or -1

ms(u)
ms(v) ms(w)



EE695K VLSI Interconnect

Prepared by CK 8

Construction of Merging Segment

• Merging Cost is at least d(u,w)
• If |t(u) - t(w)| <= d(u,w) merging cost = d(u,v)

length(eu) =

length(ew) =

• Otherwise, merging cost=|t(u)-t(w)|, detour occurs
– if t(u) <= t(w) length (eu) = |t(u)-t(w)|

length (ew) = 0

– if t(w) <= t(u) length (ew) = |t(u)-t(w)|

length (eu) = 0

2

)()(),( wtutwud +−

2

)()(),( utwtwud +−

Construction of Merging Segment

(1)
TRR(u)=Expand ms(u) by length(eu)
TRR(w)=Expand ms(u) by length(ew)
TRR: Tilted Rectangle Region

TRR(u)

ms(v)

TRR(w)

length(eu)

ms(u)
length(ew)

ms(w)

no detour TRR(w)

length(ew)

ms(w)

(2)
ms(v)=TRR(u)�TRR(w)

ms(v)

length(eu)=0
ms(u)=TRR(u)



EE695K VLSI Interconnect

Prepared by CK 9

Circuit Model for Elmore Delay

Delay of Edge E =

Where rE: wire resistance of E
            cE: wire cap. of E
            CE: total cap. rooted at E

)
2

( Ccr E
E

E
+

rev1=unit res. r
cev1=unit cap. c ✕ length(ev1)

rev1

2
1cev

s0

v1

s1

s2

s3

cev1

Elmore delay from source to sink si

t(Ni)=∑ Delay of Edge E
E in Path
to sink si

Construction of Merging Segment under
Elmore Delay

• t(v) =  delay of edge eu+t(u) = delay of edge ew+t(w)

• Solve

• if 0 ≤ x ≤ d(u,w)  length(eu) = x
    length(ew) = d(u,w) - w

• Otherwise detour, if t(u) ≤ t(w) length(ew)=0

– solve                                             for length(eu)

)()
2

()()
2

( wt
e

e
e

ut
e

e
e c

c
rc

c
r

w

w

wu

u

u

++=++

),((

)),(
2
1

)(,()()(

wudc
ee

r

wudc
e

wudrutwt
x

cc
c

wu

w

×++

×+×+−
=

)()()
2

( wtut
e

e
e c

c
r

u

u

u

=++



EE695K VLSI Interconnect

Prepared by CK 10

Bounded-Skew Tree Construction with DME (BST/DME)
[Cong-Koh, ISCAS’95][Huang-Kahng-Tsao, DAC’95]

Bottom-Up:

while more than 1 tree do

Compute nearest neighbor graph (NNG)

Select a matching M in NNG
For each edge e = uw in M do

Merging Region MR(v)=merge MR(u) and MR(w)

u w
…...

u

w

Top-Down:

N0=any point in MR(root)
Recursively: Give location(v)

location(u) = q in MR(u) s.t. d(q, location(v)) is minimized

location(w) = q in MR(w) s.t. d(q, location(v)) is minimized

v

u w

Bounded-Skew Tree Construction with DME
(BST/DME)

[Cong-Koh, ISCAS’95][Huang-Kahng-Tsao, DAC’95]



EE695K VLSI Interconnect

Prepared by CK 11

An Example of BST/DME Algorithm

s0

s1

s2

s4

s3

s

C

A B

4321

Skew Bound = 2

Bottom-up Merging

Top-down Embedding

An Example of BST/DME Algorithm

C

A B

4321s

s0

s1

s2

s4

s3

s0

s1

s2

s4

s3

s0

s1

s2

s4

s3

Skew Bound = 2

Bottom-up
Merging

Top-Down
Embedding



EE695K VLSI Interconnect

Prepared by CK 12

Shortest Distance Feasible Region (Bottom-Up)

• Internal node v, children u and w:

region of possible location of v s.t.

MD(v) -md(v) ≤ skew  bound B
merging cost length(vu) + length(vw) minimized

• Difficult to compute

• Approximation by shortest distance merging condition:

p in MR(u) merges with q in MR(w)

only if d(p,q)=d(MR(u), MR(w))

v

u w

MR(u)
MR(v) MR(w)

Shortest Distance Merging Condition

• Merging of Parallel  Manhattan arcs

• Merging of parallel rectilinear line segments

Not used for merging

Not used for merging



EE695K VLSI Interconnect

Prepared by CK 13

Properties of SDFR

• Octilinear property: SDFRs are convex octilinear polygons

• Boundary property: Boundary segments of SDFR

– Manhattan arc: constant max-delay & constant min-delay

– Well-Behaved Rectilinear line segment

max-delay

min-delay

skew

Skew Turning Points

Merging of Parallel Manhattan Arcs

md = 8

MD=10

md = 9

MD=13

md =12

MD=16

md =11

MD=15

Balance  MD’s

Balance  MD’su

w

md = 8

MD=10

md = 9

MD=13

md = 9

MD=13

md = 9

MD=13

After expanding

(1) Compute Core

 skew(core)=max(skew(u),skew(w))

 balance md, MD(as in zero-skew)

(2) slack(r) = B-skew(r)

 Expand by slack(r)/2



EE695K VLSI Interconnect

Prepared by CK 14

Merging of Parallel Rectilinear Segments

(11,3) (11,3)(8,6) (8,6)(7,5) (7,5)(10,2) (10,2)

(11,7) (11,7)(9,9) (9,9)(14,4) (14,4)

(1) Compute SDFSs at all

      skew turning points

(2) Perform a walk to join

      all vertices

Dynamic Topology Change to Reduce Merging Cost
[Huang-Kahng-Tsao, DAC’95]

• DME always merge at root

• Lower merging cost by changing topology

– Effective for large skew bound
• Re-rooting operation

– Consider all edges uv in T

– Make u and v the children of new topology

– O(n) topologies

– O(    ) connections between 2 trees
– Least cost for Nearest neighbor

2

r

1T
2T

r

'
1T

'
2T

r

v

u u

v

r’



EE695K VLSI Interconnect

Prepared by CK 15

Pathlength Skew
vs.

HSPICE Skew

Elmore Skew
vs.

HSPICE Skew

HSPICE
Skew
(ps)

HSPICE
Skew
(ps)

Elmore Delays and Skew along Well-Bahaved Line
Segment

• Max-delay n1 piecewise-linear concave
min-delay n2 piecewise-linear convex

• skew ≤ n1+ n2 - 1 piecewise-linear concave

+ Quadratic Term+

2xrc ⋅+

x=distance from a

=

=

=

a b a b

a b

max-delay

min-delay



EE695K VLSI Interconnect

Prepared by CK 16

Construction of Merging Region for
Boundary Merging and Embedding(BME)

mr(v)

mr(b)

mr(a)

La

Lb

mr(v)

mr(b)

mr(a)

La

Lb

Skew
turning
points

Skew
turning
points

Manhattan Arcs with constant

max-delay and min delay

Line segments with well-behaved

max-delay and min-delay

Each point in the region has the same total capacitance

Boundary Segments vs. Interior points Merging

slack(x)=0

x(62.5,62.5)

mr(x)

mr(y)
s2

s3

s4

s0

Merging interior points
gives larger mr(y)

Cost(T) = 25.0

slack(x)=0

x(94.5,34.5)

mr(x)

mr(y)

s1 s1

s2

s3

s4

s0

Merging boundaries
gives smaller mr(y)

Cost(T) = 26.5

10fF

10fF
30fF

80fF

• Interior merging uses less skew resources
• Preserve skew resource for merging cost reduction at an upper level

•e.g., merge mr(s) with s3 followed by merging mr(y) with s4
•Merging boundaries gives smaller mr(y), final cost = 26.5
•Merging interior points gives larger mr(y), final cost = 25.0



EE695K VLSI Interconnect

Prepared by CK 17

Boundary Segments vs. Interior points
Merging

slack(x)=0

x(94.5,34.5)

mr(x)

mr(y)

slack(x)=0

x(62.5,62.5)

mr(x)

mr(y)

s1 s1

s2 s2

s3 s3

s4 s4

s0

s0

Slack(p) = Skew bound - skew(p)

Merging boundaries
gives smaller mr(y)

Cost(T) = 26.5

Merging interior points
gives larger mr(y)

Cost(T) = 25.0

s1 s2 s3 s4

s1

x

y

10fF

10fF

30fF

80fF

Advantages of Interior Merging and Embedding
(IME)

• Conserve slack for upper level use
– larger merging region and

less merging cost

• Eliminate the needs of detour
– Merge pq with p’q’, merging cost 2.5
– Merge pq with p’’q’’, merging cost 2

• Ambiguity of max-delay and min-delay of a point

p

q

P’

P”

q’ q”

30fF, (96,72)

(22,22)

22fF
(34.5,10.5)

Difficult y of Merging Interior Points

a

b b’

a’
V has different delays due to
merging of different interior point



EE695K VLSI Interconnect

Prepared by CK 18

IME using Sampling and Dynamic Programming

• An Internal node has a set of merging regions

• Each region sampled by s Manhattan arcs

• Merging two regions gives     merging regions

• Problem: exponential growth

O(     ) merging regions at root of n merging regions
• Solution: keep at most k regions per node

1. Merge children to get        merging regions

2. Remove “redundant” regions

R redundant if Cap(R) > Cap(R’)  &

          min_skew(R) > min_skew(R’)
3. Choose “best” k out of m irredundant regions

Optimal (m,k)-Sampling by  dynamic programming

2s

ns

2)(ks

S=5

Optimal (m.k)-Sampling Problem

• Given m irredundant merging regions

IMR = {R1, R2, …, Rm}

• Find 2 ≤ k ≤ m merging regions
IMR’ = {R1= Rπ(1), Rπ(2), …, Rπ(k-1), Rm = Rπ(k)}

• Error is minimum

error = area(IMR’) - area(IME)

skew

Rm

R2

R1

Cap.

Cap.(R1)

min_skew(R)

area(v)

error of new staircase

step removed

Cap(Ri-1)-Cap(Ri)
Min_skew(Ri+1)
-min_skew(Ri)

   Irredundant Regions from a staircase Error in removing a step
= new bigger area - original area



EE695K VLSI Interconnect

Prepared by CK 19

Optimal (m,k)-Sampling Algorithm

Si[m’, k’] = Optimal Solution for {Ri, Ri+1, …, Ri+m’-1}
erri[m’, k’] = Error for Si[m’, k’]

nexti[m’, k’] = next region after Ri in Si[m’, k’]

(1) If m’ = k’, select all, zero error
 erri[m’, m’] = 0  & nexti[m’, m’] = i+1

(2) If m’ > k’, k’ = 2, retain Ri & Ri+m’-1

erri[m’, m’] = (min_skew(Ri+m’-1) - min_skew(Ri+m’-2)) ✕

(Cap(Ri) - Cap(Ri+m’-2)) + erri[m’-1, 2]

nexti[m’, 2] = i+m’-1

erri[m’-1,2]
i+m’-2

i+m’-1

min_skew(Ri+m’-1)-
min_skew(Ri+m’-2)

skew

Cap(Ri) -
Cap(Ri+m’-2)

(3) if m’>k’, k’>2,

      erri[m’,k’] =

      nexti[m’,k’] = best i’ in [i+1, m’-k’+i+1]
Complexity
•             Algorithm

     For 2 ≤ m’ ≤ m
            2 ≤ k’ ≤ k ≤ m
            1 ≤ i ≤ m-m’+1
            Find erri[m’, k’] & nexti[m’, k’]
• Restrict m’ = m-i+1 for case (3);

)( 3kmO

)( 2kmO

















−+−
+

+−

++−+∈
]1',''[

]2,1'[

min

'

]1'',1['

kiimerr

iierr

i

i

ikmii

skew



EE695K VLSI Interconnect

Prepared by CK 20

Performance of BME/IME

skew(ps) r1 r2 r3 r4 r5

0 CL+6 0.1253347 0.2483754 0.3193801 0.6499660 0.9723726

0 BME
IME

0.1307637
0.1445555

0.2647476
0.2907593

0.3344828
0.3605778

0.6934030
0.7255455

1.1066897
1.0706940

1 BME
IME

0.1223125
0.1274819

0.2397494
0.2526961

0.3427426
0.3060284

0.6415233
0.6571435

0.9470000
0.9896655

10 BME
IME

0.1087703
0.1112512

0.2155481
0.2353202

0.2789321
0.2727299

0.5411937
0.5350241

0.8140187
0.8065110

100 BME
IME

0.0926205
0.0930426

0.2201023
0.1978378

0.2515178
0.2366874

0.4860958
0.4953715

0.7375204
0.7003996

1000 BME
IME

0.0793498
0.0861561

0.1839666
0.1995665

0.2506399
0.2097784

0.4971769
0.4740962

0.7134697
0.6280007

10000 BME
IME

0.0780100
0.0790285

0.1668872
0.1574153

0.2102182
0.1998007

0.4017261
0.4326234

0.6136574
0.5912472

Wirelength and
Skew Tradeoff

• r3 benchmark

• skew from 0 to 150ps

Wirelength
(cm)

HSPICE Power and
Skew Tradeoff

• Single buffer at root

• Clock rate 50Mhz

Power
(mW)



EE695K VLSI Interconnect

Prepared by CK 21

Topology and Buffer insertion
[Vittal-Marek-Sadowska, DAC’95]

• Buffer can be used to balance sink delay
 (Instead of using “detour” wirelength)

 Insertion of buffer to improve rise/fall time
• However, may increase delay/skew sensitivity due to

process variations

Greedy Internal Buffering Algorithm (Grin)

• DME-style bottom-up merging

• Min-cost merging”

 cost = linear combination of
            tree length + buffer area

• Consider buffer insertion at each merging:

 ms(v): merging segment when no buffer is inserted
 Va:  buffer inserted right after v, the parent node
 V’a: buffer inserted right before a

• Insert buffer to meet rise/fall time constraint after
merging if necessary



EE695K VLSI Interconnect

Prepared by CK 22

Experimental Results

• Tradeoff between wirelength and buffer area
 10% wirelength reduction with 3X increase in buffer

area

*Root:  cascade drivers at root

Wiresizing and Buffering Optimization for Clock

• Optimization objectives for a given clock tree:
– minimize clock skew, clock delay
– minimize sensitivity of clock skew to process variations

• Basic Approach:
– Guide sizing optimization process by delay or skew

sensitivity w.r.t. wire width and/or buffer size

• Delay sensitivity:  how delay changes w.r.t. to a
change in the wire width or buffer size
– Easy to compute, especially for closed-form expression such

as Elmore delay

• Skew sensitivity:  how skew changes w.r.t. to a
change in the wire width or buffer size
– Difficult to compute, estimated by:

(1) Perturb the sizing solution by a change

(2) Calculate the worst-delay and best-delay

(3) skew sensitivity = worst-delay - best-delay



EE695K VLSI Interconnect

Prepared by CK 23

Wiresizing for Clock Skew Minimization
[Zhu-Dai-Xi, ICCAD’93]

• Can handle general RLC clock network with loops

• Iterative wiresizing:

– Given an initial sizing solution,

– Compute delay sensitivity matrix and fastest sink delay tf

– Compute a new sizing solution by Gauss-Marquardt’s
method [Marquardt, SIAM’63]

• Goal:  minimize the sum of squares of difference (ti - tf)
 ti is sink delay

• 2-10× skew reduction with 2× increase in area

• Skew reduction is more significant for trees than
meshes

⇒ meshes are more reliable

Wiresizing for Clock Delay Minimization
[Edahiro, ICCAD’93]

• Delay minimization for zero-skew tree routing

• Modified DME with consideration of wiresizing

– Given a routing tree, modified DME embeds the Steiner
points

– Compute wire widths for merging bottom-up
• Approximate upstream resistance (e.g., assume nominal width

in upstream edges of given routing tree)

• Use delay sensitivity to compute optimal width of the branches
• Construct merging segment as in original DME

• For better solution, apply the modified DME several time, each
time using the previous wiresizing solution to estimate upstream
resistance

• Achieve 10-50% shorter clock delay compared to unsized
solution



EE695K VLSI Interconnect

Prepared by CK 24

Buffer Insertion and Wiresizing for Clock
[Chung-Cheng, ICCAD’94]

• Skew sensitivity and delay minimization using dynamic
programming

• Construct a lookup table B[b,l,s] bottom-up

– B[b, l, s]:  min.skew sensitivity with b buffer levels,

 first level buffers at l, buffer size s

– SS[l, s, l’, s’]:  skew sensitivity for buffers at levels l and l’

 with sizes s and s’, respectively

– At level l, compute B[b, l, s] = min {SS[l, s, l’s, s’] + B[b-1, l’,
s’]}

– At root, l = 0, choose the smallest B[b, 0, s], and trace back to
get optimal buffering levels, and buffer types

• Buffers at same level have identical size
⇒ Reduce impact of process variations in devices on skew

Buffer Insertion and Wiresizing
for Clock (cont’d)

• Consider wiresizing in computation of SS[l, s, l’, s’]

– Compute wire widths for branches from level l to level l’
based on delay sensitivity

– Perturb the wire widths according to possible process
variations, and compute worst-case skew as skew sensitivity

• Post-processing relocates buffers to reduce total
wirelength

• 87-144× reduction in worst-case skew

• 2-11× reduction in clock delay



EE695K VLSI Interconnect

Prepared by CK 25

Buffer Insertion/Sizing and Wiresizig for Clock
[Pullela-Menezes-Pileggi, TCAD’97]

• Clock delay and skew sensitivity minimization while satisfying
skew bound constraint B

• Assumed n levels of buffers to be placed in a l-level clock tree;
determine the buffer levels in the tree exhaustively

• Divide skew resource B evenly s.t. each buffer level and each
level of clock tree has same skew resource = B/(l+n)

• For each DC-connected subtree (defined by buffers/driver)

– Compute the min. required width of a branch s.t. the
maximum change in delay induced by a process variation
<= B/2(l+n)
⇒ the worst case skew under process variations <= B

– Achieve zero-skew routing within subtree by wiresizing with
possible detour wirelength (similar to [Edahiro, ICCAD’93])

Buffer Insertion/Sizing and Wiresizig for Clock,
(cont’d)

• Buffer sizing optimization for DC-connected subtrees
at the same level:
– To minimize impact of process variation on devices on

skew, buffers at the same level are of identical size

– Problem:  Loads do not match
⇒ difficult to use buffers of identical size

● Solution:  Add a properly sized stub between a buffer and
its subtree to achieve

 (i)   Identical loading (under effective cap. model) for all
buffers

 (ii)  Identical buffer-to-sink delays, i.e., zero-skew

● Use the smallest buffer size such that the maximum change
in skew under device process variations <= B/(l+n)

• 25× delay reduction for large circuits compared to
wiresizing only

• Buffer insertion reduces max. wire width used



EE695K VLSI Interconnect

Prepared by CK 26

Other Studies on Clock Routing
for Power Minimization

• Hierarchical Routing for Low Power
 [Zhu, et al., IWLPD’94]

• Gated Clock Tree for Low Power
 [Tellez-Farrahi-Sarrafzadeh, ICCAD’95]

• Device or Interconnect Sizing for Low Power
 [Xi-Dai, DAC’95]
 [Desai-Cvijetic-Jensen, DAC’96]

• Clock Scheduling with Gate Sizing for Low Power
 [Xi-Dai, DAC’96]

•

•
•

Hierarchical Routing
[Zhu et al., IWLPD’94]

• Applicable to multi-chip module (MCM) technology

• Flip chip technology: area pads distributed over chip
Several clock area pads for each chip

• Two-level clock routing
– Routing on MCM substrate:
 Planar clock routing to connect from
 clock source to clock area pads
 [Zhu-Dai,  ICCAD’92]

– Routing in chip:

 Partition a chip into small size regions
 Clock pins in each region connected to a clock area pad

• Up to 76% clock power reduction



EE695K VLSI Interconnect

Prepared by CK 27

Activity-Driven Gated Clock Tree
[Tellez-Farrahi-Sarrafzadeh, ICCAD’95]

• Applicable when module activity patterns are known in advance
– DSP circuits -- data activity is known
– Microprocessors -- module activity sampled from simulations

• Difficult for circuits where high level behavior is data dependent

• Recursive matching to merge subtrees with similar activities

• Bottom-up dynamic programming to insert gates

• Insert buffers/gates to balance skew

Power Reduction by Using Matching and Gating

Activity pattern
generated randomly:

(i) Randomly set k out
of u time periods to be
active

(ii) Apply (i), and
duplicate the pattern
d times

Gated clock can
reduce power, even
with random matching

More power reduction
when activity-driven
matching is used



EE695K VLSI Interconnect

Prepared by CK 28

Different Styles of Clock Network

Tree: Minimum area
Algorithms just presented, and more

Trunk: Simple, good for small area
Trunk-style routing algorithms:

[Lin-Wong, ICCAD’94]
[Seki et al., ICCAD’94]

Mesh: Robust, large area and power
Wiresizing for mesh:
[Desai-Cvijetic-Jensen, DAC’95]
[Zhu-Dai-Xi, ICCAD’93]


