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Process Variation in Nano-scale Transistors

Inter and Intra-die Variations

Device parameters are no longer deterministic
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Process Variations: Failures, Test, Self-
Calibration, and Self Repair

• Memories (Caches and Register Files)
– Failure analysis
– Updated March Test for process induced failures
– Process/Defect tolerant caches
– Self-Repairing SRAM’s
– Leakage and delay sensors for self-repair

• Logic
– Failure analysis in pipelines and robust pipeline design
– Delay sensor to measure critical path delays and integrated 

test generation for robust segment delay coverage
• Updated scan chain logic

– FLH and FLS (First level hold and scan flip-flops) for low-
power (dynamic and leakage) and efficient delay testing

• Temperature control to prevent thermal runaway during burn-in



SRAM Memory Cell Failure

AF: Access time failure
RF: Read failure 
WF: Write failure
HF: Hold failure

RF: Read failure

VR

VL

Flipping

WF: Write failure

No
writing

VR

VL

Process variation:
Device miss-match → Cell failure

Primary source:
Random dopant fluctuation

→ Vth miss-match

Results in three types of failures

TACCESS > TMAX
AF: Access time failure



Mechanisms of Parametric Failures  
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Read Failure (RF)
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Write Failure (WF)
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The write failures mostly  
comes from the long tail   
of the distribution.       
Non−Central F distribution 
matches the tail of the    
distribution better.       
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Hold Failure (HF)
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Access Time Failure (AF)
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Basic Modeling Approach
• Estimation of the mean and the variance of a function several independent 

normal random variable

– Expand ‘f’ in Taylor series with respect to Vt1,…,Vt6 around their mean 
and consider up to 2nd order terms.

– Estimate the mean and the variance as:  

• Estimation of the probability distribution function of Y 
– Assume a normal pdf with the estimated mean and variance. 

• The δVt of each transistors are assumed to be independent normal random 
variables.
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Estimation of Overall SRAM Cell 
Failure Probability (PF)
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Estimation of Memory Failure Probability 
(PMEM)

• PCOL: Probability that any of the cells in a column fails
• PMEM: Probability that more than NRC (# of redundant 

columns) fail
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Estimation of Yield
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Snapshot: Transistor Sizing and Yield

Proposed failure analysis assists SRAM designers to 
achieve maximum memory yield
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Parametric Failures in SRAM Cell 

σVt ≈ 30mv, using BPTM 45nm technology

Yield ≈ 33%
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SRAM Failure Mechanisms and Logic Fault Models

• Deceptive read destructive faults are overlooked in conventional test 
sequences

• Hold failures not detectable in conventional test sequences

Random Dopant Fluctuations; W, L, Tox Variations

Instability in 
SRAM cells

Vt mismatch in 
Sense-amplifiers

Delay variations in 
address decoders

Hold 
Failure

Access 
Failure

Sense-amp 
Functional Failure

Write 
Failure

Flipping 
Read 

Failure

Low Supply Data 
Retention Fault

Data Retention 
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Random 
Read Fault

Incorrect 
Read Fault

Transition 
Fault Read 

Destructive 
Fault

Deceptive 
Read 

Destructive 
Fault

Logic 
Fault 
Models

Physical 
Failure 
Mechanisms

Circuit 
Level 
Deviations

Process 
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Efficient Testing of SRAM*
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Optimized Test SequencesOptimized Test Sequences
to improve fault coverageto improve fault coverage

Novel DFT CircuitNovel DFT Circuit
to reduce test timeto reduce test time

Failures due to Process VariationsFailures due to Process Variations

** IEEE VLSI Test SymposiumIEEE VLSI Test Symposium, May 2005, May 2005



Test: Optimized March Test Sequence

+ Good fault coverage
- Test time increases

( W0) ( R0 W1) ( R1 W0) ( R0 W1)  (HOLD)

 ( R1 R1 W0) (HOLD) ( R0 R0)

⇑ ⇑ ⇓

⇓

1. Optimized March C-

+ Reduce the test time 
+ Cover all the fault models induced by process variations
- Not able to detect Transition Coupling Fault and Address Decoder

Fault

2. March Q 
( W 0) (H O LD ) ( R 0 W 0 W 1 R 1)
(H O LD ) ( R 1 W 1 W 0 R 0) ( R 0)
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March test sequence comparison
Logic Fault Models Conventional Test Sequences Proposed Sequences

March C- March B March SR Opt. March 
C- March Q

Address Decoder Fault + + - + -

Data Retention Fault - - + + +

Low Supply Data Retention Fault - - - + +

Stuck-at Fault + + + + +

Transition Fault + + + + +

Random Read Fault +- +- +- +- +-

Read Destructive Fault + + + + +

Deceptive Read Destructive Fault - - + + +

Incorrect Read Fault + + + + +

State Coupling Fault + - + + +

Disturb Coupling Fault + - + + +

Incorrect Read Coupling Fault + - + + +

Read Destructive Coupling Fault + - + + +

Transition Coupling Fault + +- + + +-

Test Time 10N 17N 14N 12N 10N
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Double Sensing: A Novel DFT Circuit to Reduce Test Time

• In order to reduce test time, double sensing is used to detect 
Deceptive Read Destructive Fault in one cycle

• The content of the cell flips after the WL is 
activated.

• No time left to detect the flipping since the 
WL is disabled soon after that.

• The WL can be extended so as for the flipping to show 
itself on bitlines 

• Another parallel sense-amp is fired at the time the WL is 
dis-activated.
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• Then the required WL extension time is minimized.



Parametric Failures and Yield
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What is the effect of Inter-die 
variation on Parametric Failures?



Inter-die Variation and Cell Failure

• Inter-die shift in process parameter amplifies the failure 
due to intra-die variations.

Read (RF)

Hold (HF)

Write (WF)

Access (AF)
RF/HF high AF/WF high

LVT HVTNom. Vt



Inter-die Variation and Memory Failure 

Reg. A
High RF/HF

Reg. B
Low Failures 

Reg. C
High AF/WF

Col. Fail. Prob.

Cell. Fail. Prob.

Mem. Fail. Prob.

• Memory failure probabilities are high at high when inter-
die (global) shift in process is high.  

LVT HVTNom. Vt



How can we improve  yield 
considering both inter-die and 

intra-die variations? 



Adaptive Repairing of SRAM Array

• Reduce the dominant failures at different inter-die 
corners to increase width of low failure region. 

Region A Region B Region C

PMEM ≈1 PMEM ≈1

PMEM ≈0

Mem. Fail. 
Probability

Region C 
HVT Corner

Access & Write 
failures dominate 

Reduce 
AF & WF  

Region A 
LVT Corner

Read & Hold 
failures dominate 

Reduce 
RF & HF  

LVT HVTNom. Vt



How can we reduce the 
dominant failures at different 

inter-die corners? 



Body Bias and Parametric Failures

Write (WF)

Access (AF)

Hold (HF)

Read (HF)

Overall 
Cell Fail. Prob

• Proper body bias can reduce parametric failures
–Forward bias reduces Access & Write failures 
–Reverse bias reduces Read & Hold failures

BLBL BRBR

WLWL

VDDVDD

GNDGND
VBBVBB



Adaptive Repair using Body Bias

• Reduce the dominant failures at different inter-die 
corners to increase width of low failure region. 

Region A Region B Region C

PMEM ≈0

Mem. Fail. 
Probability

Region C 
HVT Corner

Access & Write 
failures dominate 

Apply FBB  

Region A 
LVT Corner

Read & Hold 
failures dominate 

Apply RBB  

LVT HVTNom. Vt

RBB FBB
ZBB



Self-Repair Technique in SRAM

Enhanced YieldEnhanced Yield

PostPost--Silicon Adaptive Repair Silicon Adaptive Repair 

PrePre--Silicon Design of Circuit and ArchitectureSilicon Design of Circuit and Architecture

SRAM ArraySRAM Array

Separation of interSeparation of inter--die process corners die process corners –– Vt BinningVt Binning

Adaptive Repair using Body Bias Adaptive Repair using Body Bias 

Self-Repairing SRAM



How we can identify the inter-die Vt
corner under a large random intra-

die variation ? 

• Monitor circuit parameters e.g. delay and leakage
–Effect of inter-die variation can be masked by that of 
intra-die variation

• Adding a large number of random variables 
reduces the effect of intra-die variation   
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Vt Binning by Leakage Monitoring

ΔVt Inter = 100mV

ΔVt Inter = 0mV

ΔVt Inter 
= -100mV

ΔVt Inter 
= -100mV

ΔVt Inter 
= 0mV

ΔVt Inter 
= -100mV

Nom. Vt Low VtHigh Vt
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Self-Repair using Leakage Monitoring
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Current Monitor Circuit

• On-chip monitoring of leakage 
of entire array

• Body-bias is generated based 
on leakage monitor output

• Leakage monitored is bypassed 
in normal operating mode 



265KB SRAM with 
No Body-Bias

265KB Self-Repairing
SRAM

Yield Enhancement using Self-Repair

• Self-Repairing SRAM using body-bias can significantly 
improve design yield.



Self-Repairing SRAM: Die Photo

64KB
High-Vt
SRAM

64KB
Low-Vt
SRAMSelf-Repair Circuit
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Schematic and measurement of self-repair mechanisms

FBB signal

Body voltage 
(Forward Bias)

Body voltage 
(Zero bias 

Measured waveform of body voltage for 
Forward bias with On-chip FBB generator 

Measured waveform of body voltage for 
Reverse bias with On-chip RBB generator 

Body voltage 
(Zero bias Body voltage 

(Reverse Bias)

RBB signal

Bodybias generation logic (MUX switches are designed 
with level converter for negative bias, not shown here)   

Schematic of the Self-repairing SRAM
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Failure Probability in SRAM Memory Cells
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MONTE CARLO simulation
using BPTM 45nm tech. 

Intrinsic Fluctuation of Vth due to random dopant effect
PFault = PAF U PRF U PWF
In 45nm technology σVth≈ 30mV → PFault > 1.0x10-3

Large number of faulty cells in nano-scale SRAM 
under process variation



Fault Statistics in 32K Cache
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Fault statistics

NFaulty-Cells

σVt ≈ 30mv, using BPTM 45nm technology

NFaulty-Cells = PFault X  NCells (total number of cells in a cache)

Conv. Yield
≈ 33.4%

Conventional 32K cache results in only 33.4% yield
Need a process/fault-tolerant mechanisms to improve 

the yield in memory

MONTE CARLO simulation of 1000 chips



Basic Cache Architecture

Index = Row Address + Column Address 
Multiple cache blocks are stored in a single row

Minimize delay, area, routing complexity
Column MUX selects one block



Basic Cache Architecture

# of Block in a Row 1 Block 2 Blocks 4 Blocks

Decoder Delay 0.086ns 0.085ns 0.084

Wordline Delay 0.069ns 0.075ns 0.128ns

Bitline to Q Delay 0.452ns 0.355ns 0.313ns

Total Delay 0.608ns 0.515ns 0.525ns

Energy 0.166nJ 0.181nJ 0.195nJ

For 32K cache best # of cache blocks/row = 2 
We choose 4 blocks in a row for our design

Results in higher yield – 16.25% increase
2% cache access penalty
7% energy overhead

BPTM 45nm technology, 32KByte direct mapped cache



Fault-Tolerant Cache Architecture

BIST detects the faulty blocks
Config Storage stores the fault information

Idea is to resize the cache to avoid faulty blocks 
during regular operation

Faulty



Resizing the Cache

Force the column MUX to select a non-faulty block
in the same row if the accessed block is faulty

Controller alters the
column address  

Config Storage is accessed
in parallel with cache

Feeds the fault information
to controller

“00”

Handle large number of faults without significantly 
reducing the cache size



Mapping Issue

More than one INDEX
are mapped to same

block

Include column 
address bits into 

TAG bits

Resizing is transparent to processor → same memory address



Config Storage

One bit fault information per cache block
Bits are determined by BIST at the time of testing
Accessed using row address part of INDEX
Provides the fault information of all the blocks in 
a cache row to controller

Cache
32KByte

Config
Storage 

1Kbit

Blocks per row 4 x

Block Size 32Byte 4bit

4 bit fault information about 4 blocks 
stored in a single cache row

Accessed in parallel 
with cache



Controller
Column address selection based on fault location

Accessed Column Address
00 01 10 11

Forced Column Address
↓ ↓ ↓ ↓

None 0000 00 01 10 11
3rd Block 0010 00 01 00 11
2nd &3rd Block 0110 00 00 11 11
1st, 2nd & 3rdBlock 1110 11 11 11 11
All four Blocks 1111 NA NA NA NA

Faulty Blocks in 
Accessed Row

Fault Information 
by Config Storage

Based on 4 bits read from Config Storage controller 
alters the column address



Controller
Column address selection based on fault location

Accessed Column Address
00 01 10 11

Forced Column Address
↓ ↓ ↓ ↓

None 0000 00 01 10 11
3rd Block 0010 00 01 00 11
2nd &3rd Block 0110 00 00 11 11
1st, 2nd & 3rdBlock 1110 11 11 11 11
All four Blocks 1111 NA NA NA NA

Faulty Blocks in 
Accessed Row

Fault Information 
by Config Storage

One block in a row is faulty

Selects the first available non-faulty block 
e.g 3rd block → 1st block



Controller
Column address selection based on fault location

Accessed Column Address
00 01 10 11

Forced Column Address
↓ ↓ ↓ ↓

None 0000 00 01 10 11
3rd Block 0010 00 01 00 11
2nd &3rd Block 0110 00 00 11 11
1st, 2nd & 3rdBlock 1110 11 11 11 11
All four Blocks 1111 NA NA NA NA

Faulty Blocks in 
Accessed Row

Fault Information 
by Config Storage

Two blocks in a row is faulty

Selects two non-faulty blocks respectively
e.g 2nd block → 1st block

3rd block → 4th block



Controller
Column address selection based on fault location

Accessed Column Address
00 01 10 11

Forced Column Address
↓ ↓ ↓ ↓

None 0000 00 01 10 11
3rd Block 0010 00 01 00 11
2nd &3rd Block 0110 00 00 11 11
1st, 2nd & 3rdBlock 1110 11 11 11 11
All four Blocks 1111 NA NA NA NA

Faulty Blocks in 
Accessed Row

Fault Information 
by Config Storage

Three blocks in a row is faulty
All the blocks are mapped to non-faulty block, e.g 4th block

One non-faulty block in each row, this architecture 
can correct any number of faults



Energy, Performance, and Area Overhead 
of Config Storage and Controller

BPTM 45nm technology, 32KByte Cache, 1Kbit Config Storage

Energy and 
Performance

32KB
Cache

Config Storage &
Controller

Delay (ns) 0.45 0.22

Area overhead NA 0.5%

Energy overhead NA 1.8%

Controller changes the column address before 
data reaches at column MUX
Does not affect the cache access time
Negligible energy and area overhead 
(excluding BIST)



Results: Pop (ECC, Redundancy and 
Proposed Scheme) 

Pop: Probability that a chip with NFaulty-cells can be
made operational

Faults are randomly distributed across chip
Yield is defined as:

Each scheme add some extra storage space
Pop includes the probability of having faults 
in these blocks
To consider area, yield is redefined as:
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% of the chips with 105 faulty cells which can be 
saved by

Proposed scheme ~ 65% (high fault tolerant capability)
ECC ~ 6% 
Redundancy ~ 0%

Results: Pop



Results: Pop
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Adding redundant rows 
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NFaulty-Cells

Pop improves with redundant rows in config storage

r = 2 is optimum for 32K cache with 1Kbit config
storage



Results: Pop
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Adding redundant rows (R) in cache in proposed 
scheme improves the Pop further 

(optimum is R =8 for 32K cache)



Effective Yield of 32K Cache 
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Fault Tolerant Capability  
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≈ 33.4%

Process Tolerance: Fault Statistics in 64K 
Cache

σVt ≈ 30mv, using BPTM 45nm technology

NFaulty-Cells = PFault X  NCells (total number of cells in a cache)
Conventional 64K cache results in only 33.4% yield

Need a process/fault-tolerant mechanisms to improve 
the yield in memory



Process-Tolerant Cache Architecture

BIST detects the faulty blocks
Config Storage stores the fault information

Resize the cache to avoid faulty blocks during  
regular operation



Fault Tolerant Capability  
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Proposed architecture can handle more number of faulty
cells than ECC,  as high as 890 faulty cells with marginal perf loss



CPU Performance Loss
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Increase in miss rate due to downsizing of cache

Average CPU performance loss over all SPEC 2000
benchmarks for a cache with 890 faulty cells is ~ 2%



Register File: Self-Calibration using 
Leakage Sensing

C. Kim, R. Krishnamurthy, & K. Roy



Process Compensating Dynamic Circuit 
Technology

clk

. . .
RS0 RS7

D0 D7

RS1

D1

LBL0

LBL1

N0

Keeper upsizing degrades average performance

Conventional Static Keeper



Process Compensating Dynamic Circuit 
Technology

3-bit programmable keeper

clk

. . .
RS0 RS7

D0 D7

RS1

D1

LBL0

LBL1

N0

b[2:0]

W 2W 4Ws s s

Opportunistic speedup via keeper downsizing

C. Kim et al. , VLSI Circuits Symp. ‘03



5X reduction in robustness failing dies

0

50

100

150

200

250

0.7 0.8 0.9 1.0 1.1 1.2
Normalized DC robustness

N
um

be
r o

f d
ie

s

Conventional
This work

Noise 
floor

saved      
dies

Robustness Squeeze



10% opportunistic speedup
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Process detection

Self-Contained Process Compensation
Fab

Assembly

Wafer test

Burn inPackage testCustomer

Leakage measurement

On-die leakage sensor

Program 
PCD 
using 
fuses



On-Die Leakage Sensor For Measuring 
Process Variation

C. Kim et al. , VLSI Circuits Symp. ‘04

83μm

73
μ

m

current 
reference

compa
rators

current 
m

irrors

VBIAS
gen.

NMOS 
device

test interface

High leakage sensing gain 
Compact analog design sharing bias generators
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Leakage Current Sensing Circuits

Susceptible to P/N skew and supply fluctuation
Large area due to multiple analog bias circuits
Limited leakage sensing gain

+
- d0

IREF
d0VBIAS

+-

VSEN

VDD/2

VSEN

T. Kuroda et al., JSSC, Nov. 1996 M. Griffin et al., JSSC, Nov. 1998
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Single Channel Leakage Sensing Circuit

Basic principle: Drain induced barrier lowering
Low sensitivity to P/N skew and supply 
fluctuation

IREF

M1 (saturation)

M2 (subthreshold)

+-

VBIAS
+
- d0

VREF

VSEN
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PV Insensitive Current Reference (IREF)

• Sub-1V process, voltage compensated MOS 
current generation concept

• Reference voltage, external resistor not required
• Scalable, low cost, flexible solution

2/0.4

2/0.4

6/0.4

6/0.4

1/1.6

18/0.4

18/0.4

18/0.4

6/0.4 2/0.4

6/0.8 6/0.8 4/0.8 4/0.8

IREF

Vt generation circuit Subtraction circuit

S. Narendra et al., VLSI Circuits Symp. 2001
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PV Insensitive Bias Voltage (VBIAS)

8/0.4 1/0.4

96/0.2

2/0.2
IREF

VBIAS )(
2

1

W
Wlog=

q
kT

(W1=96μm, W2=2μm)

E. Vittoz et al., JSSC, June 1979

• PTAT containing no resistive dividers
• Based on weak inversion MOS characteristics
• Desired output voltage achieved via sizing
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Comparator

• 2-stage differential amplifier
• Already designed IREF is used for bias current

4/0.4 4/0.4

8/0.4
8/0.4 8/0.4

4/0.44/0.4

+
- =

(+)
(-)

output

IREF

Subtraction circuit
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PV Sensitivity of  Designed IREF, VBIAS

• IREF variation < 4%, VBIAS variation < 2%
• Under realistic process skews, ±100mV supply 

voltage fluctuations 

1.2V, 90nm CMOS, 80˚C

VDD (V)

1.00 0.991.000.99 1.00 1.00

0.0
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1.011.000.99 1.000.99 1.01

0.0
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0.6
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1.0

1.2

fast typical slow

Process skew

IREF
VBIAS
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Proposed Leakage Current Sensing

IREF

M1 (saturation)

M2 (sub-threshold)

+-

VBIAS
+
- d0

VREF

VSEN

PMOS M1

0 0.2 0.4 0.6 0.8 1 1.2

VSEN (V)

I ds

fast
typical
slow

0 0.2 0.4 0.6 0.8 1 1.2

VSEN (V)

I ds

fast
typical
slow

NMOS M2

1.2V, 90nm CMOS, 80˚C
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Superimposed I-V Curves

• 1.9-10.2X higher VSEN swing than prior-art
• Process-voltage insensitive design

0 0.2 0.4 0.6 0.8 1 1.2

VSEN (V)

I d
s

slow
typical
fast

1.2V, 90nm CMOS, 80˚C

∆VSEN=0.93V
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6-Channel Leakage Sensor Test Chip

IREF
+
-

VBIAS

-+

WP 2WP 3WP 4WP 6WP 9WP

WN

V
SEN

1

VREF

Bubble
rejection

circuit

V1 V2 V3 V4 V5 V6

V1
V2
V3
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V4
V6

OUT[2]

OUT[1]

OUT[0]

WN WN WN WN WN

V
SEN

2

V
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3

V
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4

V
SEN

5

V
SEN

6

Incremental mirroring ratio for multi-bit 
resolution leakage sensing
Shared bias generators compact design
Process-voltage insensitive IREF, VBIAS gen.

-+ -+ -+ -+ -+
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Multi-Bit Resolution Leakage Sensing

Leakage level determined by comparing VSEN1 
through VSEN6 with VREF
6-channel leakage sensor gives 7 level 
resolution

0
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Process skew

1.2V, 90nm CMOS, 80˚C
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Example: Operation at Fast 
Process Corner

IREF
+
-

VBIAS
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circuit
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Fast corner: output code ‘101’
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Example: Operation at Typical 
Process Corner
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current reference

compar
ators

current 
m

irrors

VBIAS
gen.

NMOS 
devices

test interface

Technology 90nm dual Vt CMOS
VDD 1.2V

Resolution 7 levels
Power consumption 0.66 mW @80Cº

Dimensions 83 X 73 μm2

On-Die Leakage Sensor Test Chip



Output codes from leakage sensor

001 010 011 100 101 110 111

Leakage Binning Results



Conclusion
Statistical Failure Analysis Helps Enhance 
Yield

Post Silicon Tuning/Calibration is 
Becoming Promising for Si Nano systems

Built-In Leakage/Delay Sensors Provide 
Information on Intra-Die Process Variations
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