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Topics
• Long channel MOSFET: review

– Strong inversion (linear, saturation mode)

• Short channel MOSFET
– Velocity saturation
– Vt roll-off
– Drain induced barrier lowering
– Series resistance
– Narrow width effect
– Weak inversion (Vt, S-swing)
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Compact Modeling
• We already know how to run SPICE. Why 

do we need to learn about models?
– SPICE can accurately model the device 

using many parameters (30-100)
– SPICE is nothing other than a matrix solver 

(KCL, KVL, linearized I-V equations)
• We need a reasonable compact model 

– To reason about circuit parameters 
(functionality, delay, power, robustness, …)

– For hand/computer (e.g. Matlab) optimization
– To check the SPICE simulation
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Basic Operation (1)

• Device is in cut-off region
• Simply, two back-to-back reverse biased pn diodes.   
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Basic Operation (2)

• With a positive gate bias, electrons are pulled toward the 
positive gate electrode

• Given a large enough bias, the electrons start to “invert”
the surface (p����n type), a conductive channel forms

• Threshold voltage Vt
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Basic Operation (3)

• Current flows from drain to source with a positive drain 
voltage

• What is current in terms of Vgs, Vds, Vbs?
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Assumptions

• Current is controlled by mobile charge in the channel
• Gradual channel: variation of E-field mainly perpendicular 

to the channel
• v= eE (not true in short channel devices) 
• Gen. & recomb. current is negligible: same Ids across 

channel
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MOS Current

• From EE559, Qn= Cox(Vgs-Vt-V(y))
• By Ohm’s law, Ids= Qn • v • W

= Cox(Vgs-Vt-V(y)) • eE • W
= Cox(Vgs-Vt-V(y)) • e • (dV(y)/dy) • W

���� Ids • dy= Cox(Vgs-Vt-V(y)) • e • W • dV(y)
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MOS Current

• Integrate this over the channel
Ids • dy= Cox(Vgs-Vt-V(y)) • e • W • dV(y)
Ids • L= eCoxW ((Vgs-Vt) Vds-0.5Vds

2)

Ids = eCoxW/L ((Vgs-Vt) Vds-0.5Vds
2) : linear mode
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MOS Current

• Qn= Cox(Vgs-Vt-V(y)) ���� what if V(y) > Vgs-Vt

• Pinch-off: channel near drain disappears
– Electrons which move along the channel to the pinch-off region are 

sucked across by the field, and enter the drain
– Current through the channel is fixed

Ids = eCoxW/(2L) (Vgs-Vt)2 : saturation mode
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Bulk Charge Model
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• More accurate than the square law model
• Considers inversion charge and bulk depletion charge
• Due to body effect across the channel
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Channel Length Modulation
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• Pinch-off depletion layer width increases as the drain 
voltage increases

• Extreme case of this is punch-through
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Simulation versus Model (NMOS)

• The square-law model doesn’t match well with simulations
• Only fits for low Vgs, low Vds (low E-field) conditions
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Simulation versus Model (PMOS)

• Not as bad as the NMOS device
• Still large discrepancies at high E-field conditions
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Simulation versus Model (Ids vs. Vgs)

• Saturation current does not increase quadratically
• The simulated curves looks like a straight line
• Main reason for discrepancy: velocity saturation
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Velocity Saturation

• E-fields have gone up as dimensions scale
• Unfortunately, carrier velocity in silicon is limited
• Electron velocity saturates at a lower E-field than holes
• Mobility ( e=v/E) degrades at higher E-fields
• Simple piecewise linear model can be used
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Velocity Saturation
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JSSC, 8/1988]

• Modeled through a variable mobility
• n=1 for PMOS, n=2 for NMOS
• To get an analytical expression, let’s assume n=1

must be determined for a given Vgs
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Velocity Saturation
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• Plug it into the original current equation
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Velocity Saturation Point
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Simulation versus Model

• Model incorporating velocity saturation matches fairly 
well with simulation 
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Alpha Power Law
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• Simple empirical model for short channel MOS

• Parameter is between 1 and 2
• =1-1.2 for short channel 

devices
• Parameters and Vt are fitted 

to measured data for minimum 
square error ���� fitted Vt can be 
different from physical Vt

[Sakurai and Newton, 
JSSC 1990]
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Improving Short Channel MOS Model
• MOS current model

= square law device (long channel)
+ body effect across channel (bulk charge model, long 

channel)
+ channel length modulation (long channel)
+ velocity saturation (short channel)

• Vt model
= standard expression (long channel)
+ body effect (body bias, long channel)
+ Vt roll-off (barrier lowering, short channel)
+ Drain induced barrier lowering (short channel)
+ ...
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Remember the Standard Vt Equation?
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• Detailed derivation given in Taur’s book
• Basically, three terms

– Flat band voltage
– 2 B: the magic number for on-set of inversion
– Oxide voltage
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Body Effect (Back Bias)
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• Body effect degrades transistor stack performance
• However, we need a reasonable body effect for post silicon 

tuning techniques
• Reverse body biasing, forward body biasing

Drain

Gate

Source

Body

+
-
Vsb

Vsb > 0 : RBB
Vsb < 0 : FBB 
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Body Effect (Back Bias)

• Vt can be adjusted by applying FBB or RBB
– Essential for low power and high performance 
– Will talk about body biasing extensively later on
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Substrate Sensitivity
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Short Channel Effect: Vt roll-off

• Ability of gate & body to control channel charge diminishes 
as L decreases, resulting in Vt-roll-off and body effect 
reduction

n+ poly gate

p-type body

n+ source n+ drain

Short Channel

n+ source n+ drain

n+ poly gate

p-type body

Long Channel

depletion

Ec Ec

Charge sharing
Charge sharing

Vt

Leff

3� L variation

• 3� Vt variation increases in short channel devices

Short Channel Effect: Vt roll-off
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n+ source n+ drain

n+ poly gate

p-type body

Long Channel

• Increase in VDS reduces Vt and increases Vt-roll-off: DIBL

n+ poly gate

p-type body

n+ source n+ drain

Short Channel

depletion

Short Channel Effect: Drain Induced 
Barrier Lowering (DIBL)

Ec Ec

Vds ↑↑↑↑ Vds ↑↑↑↑
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Vt

Leff

DIBL+Vt roll-off
(Vds=Vdd)

Vt roll-off (Vds~0V)

Short Channel Effect: Drain Induced 
Barrier Lowering (DIBL)
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• DIBL coefficient

• DIBL increases leakage current
• Dynamic Vdd can reduce leakage because of DIBL

Short Channel Effect: DIBL
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Short Channel Vt Equation
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Improving Short Channel MOS Model
• MOS current model

= square law device (long channel)
+ body effect across channel (bulk charge model, long 

channel)
+ channel length modulation (long channel)
+ velocity saturation (short channel)

• Vt model
= standard expression (long channel)
+ body effect (body bias, long channel)
+ Vt roll-off (barrier lowering, short channel)
+ Drain induced barrier lowering (short channel)
+ ...
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Transistor Scaling Challenges - Xj
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Effect of Series Resistance

38

Effect of Series Resistance
(10nm Device)
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Sub-Threshold Conduction

• NPN BJT is formed in sub-threshold region
• Only difference with a real BJT is that the base voltage is 

controlled through a capacitive divider, and not directly 
by a electrode

• Like in a BJT, current is exponential to Vbe

40

Sub-Threshold Current
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Sub-Threshold Swing

• Smaller S-swing is better
• Ideal case: m=1 (Cox>>Csub)

– Fundamental limit = 1 * 26mV * ln10 
= 60 mV/dec @ RT

– Can only be achieve by device geometry (FD-SOI)
• Typical case: m 1.3

– S = 1.3 * 26mV * ln10 80 mV/dec @ RT
– At worst case temperature (T=110C), S 100 mV/dec
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Vdd and Vt Scaling

���� As Vt decreases, sub-threshold leakage increases
���� Leakage is a barrier to voltage scaling

Performance vs Leakage:
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Vdd and Vt Scaling
• Vt cannot be scaled indefinitely due to increasing leakage 

power (constant sub-threshold swing)
• Example

CMOS device with S=100mV/dec has Ids=10 A/ m 
@ Vt=500mV
Ioff=10 A/ m x 10-5 = 0.1 nA/ m

Now, consider we scale the Vt to 100mV
Ioff=10 A/ m x 10-1 = 1 A/ m

Suppose we have 1B transistors of width 1 m
Isub=1 A/ m x 1B x 1 m = 100 A !!
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S-Swing & Substrate Sensitivity
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Leakage Components

[Keshavarzi, Roy, and Hawkins, ITC 1997]
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Gate Oxide Tunneling Leakage
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Gate Oxide Tunneling Leakage
• Quantum mechanics tells us that there is a finite 

probability for electrons to tunnel through oxide
• Probability of tunneling is higher for very thin 

oxides
• NMOS gate leakage is much larger than PMOS
• Gate leakage has the potential to become one of 

the main showstoppers in device scaling
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Band-to-Band Tunneling Leakage
EC

EC

EV

EV

p(+)-side 
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q(Vbi+Vapp)

S/D junction BTBT Leakage

• Reversed biased diode band-to-band tunneling
– High junction doping: “Halo” profiles
– Large electric field and small depletion width at the junctions
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Gate Induced Drain Leakage (GIDL)
• Appears in high E-field region under gate/drain 

overlap causing deep depletion
• Occurs at low Vg and high Vd bias
• Generates carriers into substrate from surface 

traps, band-to-band tunneling
• Localized along channel width between gate and 

drain
• Thinner oxide, higher Vdd, lightly-doped drain 

enhance GIDL
• High field between gate and drain increases 

injection of carriers into substrate
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Punch Through

• If the channel length becomes too short, the drain side 
depletion region can touch the source side

• Reduces the barrier for electron injection from source to 
drain

• Sub-surface version of weak inversion conduction
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Narrow Width Effect

Vt

W
Channel

Gate

Side view of MOS transistor

Extra depletion 
region

• Depletion region extends 
outside of gate controlled 
region
• Opposite to Vt roll-off
• Depends on isolation 
technology

width
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Leakage Components

[IEEE press, 2000]
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Temperature Dependence
• Mobility degrades at higher temperatures

– Scattering increases with vibrating atoms
– Temp change from 27C to 130C decreases current to 0.65. 
– The circuit will run 1.6 times slower.

• Vt decreases at higher temperatures
– Electrons on the source side gain more energy
– Sub-threshold leakage will increase
– The circuit will run faster

• Question: What happens to circuit performance 
at high temperatures? Slower or Faster?
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Positive Temperature Dependence

• Depending on Vdd and Vt, positive dependency can occur
– Advantageous phenomenon for low Vdd design
– Will change the design validation process for worst case 

conditions

K. Kanda, 
JSSC 2001
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Summary
� IC designers should be aware of the technology 

issues
� Short channel behaviors

� Velocity saturation
� Vt roll-off
� Drain induced barrier lowering
� Series resistance
� Leakage: sub-threshold, gate, BTBT, punchthrough
� Positive temperature dependence
� Gate depletion, quantum confinement

� The issues can be dealt with at different levels of 
abstraction (technology, circuits, CAD, 
architecture, software, etc)


