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Course Overview
• Targeted for graduate students who have 

already taken basic VLSI design classes
• Real world challenges and solutions in 

designing high-performance and low-power 
circuits

• Relations to VLSI Design
– Recent developments in digital IC design
– Project oriented
– Student participation: class presentation
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Prerequisite
• MOS VLSI Design or equivalent

– MOS transistor
– Static, dynamic logic
– Adder

• Familiarity with VLSI CAD tools
– Magic or Cadence: LVS, DRC
– HSPICE

• Basic knowledge on solid-state physics
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Class Materials
• Lecture notes: primary reference
• K. Roy, S. Prasad, Low Power CMOS VLSI 

Circuit Design, John Wiley
• A. Chandrakasan, W. Bowhill, F. Fox, Design of 

High-Performance Microprocessor Circuits, 
IEEE Press, 2001.

• Y. Taur, T. Ning, Fundamentals of Modern VLSI 
Devices, Cambridge University Press, 2002.

• J. Rabaey, A. Chandrakasan, B. Nikolic, Digital 
Integrated Circuits: A Design Perspective, 
Prentice Hall, 2nd edition, 2003. (prerequisite)
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Class Organization
• One exam (40% of overall grade)
• Term-long project (60%)

– Proposal (5%)
– Midterm presentation (15%) – background 

material and proposed work
– Final presentation (20%)
– Final report (20%)
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CAD Tools
• Cadence

– Schematic editor, layout editor, DRC, LVS
• HSPICE, awaves
• Technology files

– TSMC 0.18μm, BPTM 70nm, …
• Synopsys design compiler, library compiler
• Taurus-device, Taurus-medici

• Everyone should have some experience with 
these tools
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Term Project
• Single person project
• Proposal (~week 3)

– 2 pages
– Topic, problem statement, research plan, references

• Midterm presentation (~week 7)
– 15 mins
– Literature survey
– Off campus students can give presentations over the 

phone
• Final presentation (early December)

– 20 mins
– Background, final results, contributions

• Final report (Dec. 10) 
– Publishable quality
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Project Topic
• Students pick the research topic they want to work on
• After the literature survey, choose a paper that you 

would like to evaluate yourself
• Has to be on digital VLSI circuit DESIGN

– Op-amp design alone is not acceptable
– Op-amp design for digital applications is acceptable

• Show the paper’s claim using your own simulations
• Your contribution must be clearly shown at the end

– Improve previous design
– New circuit, modeling technique
– Show limitation of previous techniques

• Talk to the instructor in case you need help
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How to Find a Project Topic?
• Conferences

– International Solid-State Circuits Conference (ISSCC, 
top conference!): slides posted on IEEExplore

– Symposium on VLSI Circuits (VLSIC), DAC, ICCAD
– Custom Integrated Circuits Conference (CICC)

• Journal
– IEEE TVLSI, IEEE TCAD, IEEE TED
– IEEE Journal of Solid-State Circuits (JSSC)
– Intel Technology Journal
– IBM Journal on R & D
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How to Find a Project Topic?
• Funding agencies

– Research needs document (www.src.org)
• Presentation

– University of Michigan VLSI seminar series 
(www.eecs.umich.edu/vlsi_seminar/)

– Design automation conference (www.dac.com)

• Pick a recent issue in VLSI design (< 5 years)
• I suggest you start doing the literature survey 

ASAP (deadline coming up in 3 weeks)
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Academic Misconduct
• Students caught engaging in an academically 

dishonest practice will receive a failing grade 
for the course. 

• University policy on academic dishonesty will 
be followed strictly.
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Course Topics
• Scaling issues
• High performance design

– High performance logic family, clocking strategies, 
interconnects

• Low power design
– Low voltage designs, leakage control techniques, 

circuit/device/technology issues, low power SRAM
• Variation tolerant design

– Process compensating techniques
• Power delivery, interconnect, reliability
• Bulk and SOI



14

A physical system as a computing 
medium

• We need to create a bit first. Information processing always 
requires physical carrier, which are material particles. 

• First requirement to physical realization of a bit implies creating 
distinguishable states within a system of such material particles. 

• The second requirement is conditional change of state. 

• The properties of distinguishability and conditional change of 
state are two fundamental properties of a material subsystem to 
represent information. These properties can be obtained by 
creating energy barriers in a material system. 
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Particle Location is an Indicator of State
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Two-well bit
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Barrier engineering in 
semiconductors

By doping, it is possible to create a built-in field and energy barriers of 
controllable height and length within semiconductor. It allows one to achieve 
conditional complex electron transport between different energy states inside 
semiconductors that is needed in the physical realization of devices for 
information processing.  

n n

p
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Kroemer’s Lemma of Proven 
Ignorance

• If in discussing a semiconductor 
problem, you cannot draw an Energy-
Band-Diagram, this shows that you 
don’t know what are you talking about

• If you can draw one, but don’t, then your 
audience won’t know what are you 
talking about
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Moore’s Law

z Intel founder and chairman Gordon Moore predicted in 
1965 that the number of transistors on a chip will double 
every 18-24 months
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Transistor Scaling

z Constant E-field scaling: voltage and dimensions (both 
horizontal and vertical) are scaled by the same factor k, 
(~1.4), such that the electrical field remains unchanged.
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Technology Scaling
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IC Frequency & Power Trends
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Vdd vs. Vt scaling

• Recently: 
constant e-field 
scaling, aka
voltage scaling

• VCC ⌫ 1V

• VCC & modest VT

scaling
• Loss in gate 
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Performance significantly degrades when VDD approaches 3VT.
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VT Scaling: VT and IOFF Trade-off
Performance vs Leakage:

VT ↓ IOFF ↑ ID(SAT) ↑ Low VT

High VT
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Ð As VT decreases, sub-threshold leakage increases

Ð Leakage is a barrier to voltage scaling
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Constant Field Scaling
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Scaling in the Vertical Dimension

• Transistor Vt rolls off as the channel length is 
reduced

• Shallow junction depth reduces Vt roll-off
• However, sheet resistance increases
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Scaling in the Vertical Dimension

• Vertical dimension scales less than horizontal
• Aggravates short channel effect (Vt roll-off)
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Constant Voltage Scaling
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Constant Voltage Scaling
• More aggressive scaling than constant field
• Limitations

– Reliability problems due to high field
– Power density increases too fast

• Both constant field and constant voltage 
scaling have been followed in practice

• Field and power density has gone up as a 
byproduct of high performance, but till now 
designers are able to handle the problems
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ITRS Roadmap

• International Technology Roadmap for Semiconductors 
2002 projection (http://public.itrs.net/)
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Transistor Scaling

z 90nm is in production, 65nm in research phase
z New technology generation introduced every 2-3 years
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Cost per Transistor

z You can buy 10M transistors for a buck
z They even throw in the interconnect and package for free 
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Transistors Shipped Per Year

z Today, there are about 100 transistors for every ant 
- Gordon Moore, ISSCC ‘04
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Transistors per Chip

z 1.7B transistors in Montecito (next generation Itanium)
z Most of the devices used for on-die cache memory
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Moore’s Wrong Prediction
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Chip Frequency

z 30% higher frequency every new generation



38

Die Size

z ~15% larger die every new generation
z This means more than 2X increase in transistors per chip
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Supply Voltage Scaling

z Supply voltage is reduced for active power control
fVCP ddactive

2∝
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4 Decades of Transistor Scaling:
Itanium 2 Processor
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Power Density
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Active and Leakage Power
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Leakage Power Crawling Up in Itanium 2

z Transistor leakage is perhaps the biggest problem
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Leakage Power versus Temp.
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z Leakage power is problematic in active mode for 
high performance microprocessors
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Thermal Runaway
Increased 

heating

z Destructive positive feedback mechanism
z Leakage increases exponentially with temperature
z May destroy the test socket Æ thermal sensors required

Higher 
leakage

Higher power 
dissipation

Increased 
static current
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Gate Oxide Thickness

z Electrical tox > Physical tox
z Due to gate depletion and carrier quantization in the 

channel
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Gate Tunneling Leakage 

z MOSFET no longer have infinite input resistance
z Impacts both power and functionality of circuits
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Process Variation in Microprocessors

z Fast chips burn too much power
z Slow chips cannot meet the frequency requirement
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Process Variation in Transistors
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Sources of Process Variation

z Intrinsic parameter variation (static)
- Channel length, random dopant fluctuation

z Environmental variation (dynamic)
- Temperature, supply variations
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Sub-wavelength Lithography
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Line Edge/Width Roughness

• Ioff and Idsat impacted by LER and LWR
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Random Dopant Fluctuation

z Vt variation caused by non-uniform channel 
dopant distribution
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Supply Voltage Integrity

• IR noise due to large current consumption
• Ldi/dt noise due to new power reduction 

techniques (clock gating, power gating, body 
biasing) with power down mode
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Supply Voltage Integrity
• Degrades circuit 

performance
• Supply voltage 

overshoot causes 
reliability issues

• Power wasted by 
parasitic resistance 
causes self-heating

• Vdd fluctuation should 
be less than 10%

Courtesy IBM
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Productivity Gap

z Design complexity surpasses manpower
z Effective CAD tools, memory dominated chips
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Lithography Tool Cost

z What will end Moore’s law, economics or physics?
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Interconnect Scaling
• Global interconnects get longer due to larger 

die size
• Wire scaling increases R, L and C

• Example: local vs. global interconnect delay
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z Local interconnect has sped up (shorter wires)
z Global interconnect has slowed down (RC doesn’t scale)

1997 SIA 
technology 
roadmap

Interconnect Delay Problem
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Interconnect Metal Layers

z Local wires have high density to accommodate the 
increasing number of devices

z Global wires have low RC (tall, wide, thick, scarce wires)

M1
M2
M3
M4

M5

M6



Interconnect distribution scaling trends
• RC/µm scaling trend is only one side of the story...
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Power Delivery & Distribution Challenges

• High-end microprocessors approaching > 10 GHz
• How to deliver and distribute ~100A at < 1V for < $20!
• On-die power density >>> hot-plate power density

• crossover happened back in 0.6µm technology! 
• di/dt noise only worsening with scaling: drivers are one of the sources.
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Example multi-layer system

0.80 x 1.6µm

0.64µm

1.6µm

0.32 x 0.64µm0.64µm
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K. Soumyanath et. al. [2]
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z As wires are brought closer with scaling, capacitive 
coupling becomes significant

z Adjacent wires on same layer have stronger coupling

Cross Talk Noise



65

Cross Talk Noise

z Multiple aggressors multiple victims possible
z Cross talk noise can cause logic faults in dynamic circuits
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Cross Talk and Delay
z Capacitive cross talk 

can affect delay
z If aggressor(s) switch 

in opposite direction, 
effective coupling 
capacitance is doubled 

z On the other hand, if 
aggressor(s) switch in 
the same direction, Cc 
is eliminated

z Significant difference in 
RC delay depending on 
adjacent switching 
activity
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Soft Error In Storage Nodes

Logic 1 Logic 0

Vinduced

• Soft errors are caused by 
– Alpha particles from package materials
– Cosmic rays from outer space
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Soft Error In Storage Nodes

• Error correction code
• Shielding
• SOI
• Radiation-hardened 

cell
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More Roadblocks
z Memory stability
z Long term reliability
z Mixed signal design issues
z Mask cost
z Testing multi-GHz processors
z Skeptics: Do we need a faster computer?
z …

z Eventually, it all boils down to economics
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Summary
z Digital IC Business is Unique

z Things Get Better Every Few Years
z Companies Have to Stay on Moore’s Law Curve to 

Survive
z Benefits of Transistor Scaling

z Higher Frequencies of Operation
z Massive Functional Units, Increasing On-Die Memory
z Cost/MIPS Going Down

z Downside of Transistor Scaling
z Power (Dynamic and Static)
z Process Variation
z Design/Manufacturing Cost
z ….
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