
Low-Power Process-Variation Tolerant Arithmetic Units
Using Input-Based Elastic Clocking

Debabrata Mohapatra, Georgios Karakonstantis and Kaushik Roy
ECE School, Purdue University

1285 EE Building, 465 Northwestern Avenue
West Lafayette, IN 47907, USA

+1-765-49{43372, 43372, 42361}
{dmohapat, gkarakon}@purdue.edu and kaushik@ecn.purdue.edu

ABSTRACT
In this paper we propose a design methodology for low-power,
high-performance, process-variation tolerant architecture for
arithmetic units. The novelty of our approach lies in the fact that
possible delay failures due to process variations and/or voltage
scaling are predicted in advance and addressed by employing an
elastic clocking technique. The prediction mechanism exploits
the dependence of delay of arithmetic units upon input data
patterns and identifies specific inputs that activate the critical
path. Under iso-yield conditions, the proposed design operates at
a lower scaled down Vdd without any performance degradation,
while it ensures a superlative yield under a design style
employing nominal supply and transistor threshold voltage.
Simulation results show power savings of upto 29%, energy per
computation savings of upto 25.5% and yield enhancement of
upto 11.1% compared to the conventional adders and multipliers
implemented in the 70nm BPTM technology. We incorporated
the proposed modules in the execution unit of a five stage DLX
pipeline to measure performance using SPEC2000 benchmarks
[9]. Maximum area and throughput penalty obtained were 10%
and 3% respectively.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles –
VLSI (very large scale integration)

General Terms
Design, Reliability

Keywords
Low power, process tolerant, elastic clocking.

1. INTRODUCTION
 As CMOS technology continues to scale aggressively into
the sub-100nm regime, design in the presence of unreliable
components has become exceedingly challenging. Due to
increased levels of process variation in scaled technologies,
delay failures are becoming increasingly frequent upon supply
voltage scaling [1]. Combinational logic blocks which are
designed to meet the target frequency of operation fail, because

the critical path delay of the circuit exceeds the nominal delay
target. Achieving lower power dissipation merely by Vdd
scaling is no longer easy to achieve under severe parameter
variations. Hence there is a growing need for designing not only
low power but also robust, delay failure resilient logic units.
 Though extensive research has been done in the domain of
low power implementation of arithmetic units [2, 3], yet there is
a growing need to address the issue of low power and process
tolerant design jointly. Traditional approaches such as [4]
suggest operation at a conservative target frequency or scaling
up of Vdd in order to meet the target yield. The concept of using
variable latency units to increase the average throughput of
combinational logic blocks has been proposed in [5]. However,
the primary application of [5] is an improvement in performance
and it does not deal with low power and process tolerant design
issues. Recent research such as [6] has focused on issues related
to low power and process tolerance jointly, from a CAD
perspective, by partitioning random logic. However to the best
of our knowledge, no significant research has been conducted
that concurrently targets these two issues for arithmetic units.
 In this work, the novelty of our proposed architecture lies
in the achievement of robustness in design, while operating in
reduced energy per computation (EPC) mode. The central idea
of the paper is that, under voltage scaling, depending upon input
data patterns, we adaptively change the number of clock cycles
required for computation. Hereafter, we call this feature of our
design as elastic clocking. We have observed that a) certain
input patterns take more time to be computed than others and b)
typically the probability of occurrence of such patterns is rare.
We take advantage of this fact by predicting in advance the
input patterns that will activate the critical path as explained in
later sections. By a novel architectural method explained in the
next section we make the activation probability of long latency
paths small. This enables us to operate at a fixed lower scaled
down supply voltage resulting in EPC improvement at the same
frequency of operation. The proposed technique has the
following advantages: a) reduced energy per computation (by
supply voltage scaling) under iso-yield conditions, while
incurring negligible area overhead and throughput penalty, b)
higher yield (due to the reclamation of chips which earlier failed
to meet the target delay in the conventional case), and c) same
frequency of operation (instead of operating at a lower
frequency to attain a higher yield).
 The rest of the paper is organized as follows. Section 2
describes the generic architectural framework for the proposed
design. Section 3 gives a detailed description of the
implementation of our scheme considering different adders and
multipliers. Simulation results are given in section 4 while
section 5 concludes the paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISLPED’07, August 27–29, 2007, Portland, Oregon, USA.
Copyright 2007 ACM 978-1-59593-709-4/07/0008...$5.00.

74

2. PRELIMINARY ANALYSIS
2.1 The Proposed Architectural Framework
 Let us consider a combinational logic with n inputs X1, X2,
X3 …Xn. We choose a function f which partitions the input set V
into two subsets V1 and V2. The input set V is a collection of n
dimension vectors, each of which is a collection of n possible
inputs to the logic block. The subset V1 consists of input vectors
that activate long latency paths, while those in V2 activate short
latency paths. This separation of the set of input vectors V is
based on the idea that delay of a combinational logic unit is
dependent upon input patterns. Let us consider a simple example
of addition of two n bit numbers to illustrate the concept
mentioned above. Let A=0000……0001 and B=1111……1111,
then the carry generated in the first bit position is propagated all
the way to the final bit position. Thus, there is a set of inputs that
activate the worst case delay of the adder block. Let us modify
the inputs to A=1111....0….1111 and B=0000……0001, where
the chain of 1’s in A is broken by insertion of a 0 in the (n/2)th
bit position. For this case there is no carry propagation across
the middle bit and the effective computation time is maximum
of the two delays, one from the 0 to (n/2)th

 bit and the other from
(n/2)th to n-1 bit. Let us define a partition function as f, which
evaluates a value of 1 if the inputs give rise to a long latency
operation and 0 otherwise. For short latency operation, the
supply voltage can be low while for longer latency operation,
clock can be stretched at the same lower supply voltage.
However, one has to ensure that the probability of short latency
operation is large so that the performance penalty is low. Let:

{ 1

2

1,
0 ,() X V

X Vf X ∈
∈= (1)

If P(S) is the probability of activation of short latency and P(L)
is the probability of activation of long latency paths, then we
would like to minimize P(L) for increasing power savings with
minimum performance penalty as explained later. This can be
achieved by a judicious choice of the partitioning function f.
However, we note that the complexity of f grows exponentially
as the number of inputs increases. Thus, our objective is not
only to choose a function f that minimizes P(L) but also
minimizes complexity (for minimizing area and power
overheads). To concurrently minimize complexity and P(L), we
choose a partitioning function f’ of reduced complexity. The
number of inputs to f’ is k where k§n. Let Z=f’ (X’) where X’ =
(Xi’, Xi+1’, Xi+2’ ……. Xi+k-1’) is the vector of k inputs chosen
out of n inputs.

{ 1

2

1, '
0, ''(')

X V
X Vf X
∈
∈= (2)

The relationship between f’ (X’) and f(X) is that the event {f(X)
= 1} implies {f’(X’) = 1} but the converse may not be true.
Since f’ is expanded form of f, P(L) using f’ is smaller than the
P(L) using f. However, we must ensure that P (L) using f’ is
sufficiently close to 0 so that throughput penalty due to elastic
clocking is not excessive.
 There are two issues regarding the choice of a partitioning
function: a) choice of f’ that is of very low-complexity while
achieving P(L) sufficiently close to 0, and b) selection of k
inputs from the set of n inputs to the logic block. Choice of a
reasonable f’ is a non trivial task for complex circuits. However,
for simple arithmetic units like adders and multipliers we choose
f’ to be a function of the propagate signal of a full adder block.
It is because the propagate signal determines if the input carry

will be propagated from, (n/2)th bit to the nth bit or not. This
fundamentally determines whether the blocks before and after
the (n/2)th block can be computed in parallel. Returning to the
other issue related to f’, the two criteria for selection of the k
inputs are: 1) splitting of the critical path should result in two
shorter paths which would enable us to take greater advantage of
Vdd scaling (due to the large slack between the critical and
maximum of the two shorter paths), and 2) P(L) should be
sufficiently close to 0 so that the penalty due to elastic clocking
is minimized. Once we have chosen f’ and X’, we can predict in
advance the nature of latency. Upon detection of a long latency
operation (which is the uncommon case due to proper choice of
f’), the clock is stretched to allow two cycles for the operation to
complete. During short latency operation we evaluate the
computation in one cycle. In this manner, the design achieves
robustness to failures due to process variations.
2.2 Relative Comparison Using a Yield Model
 In this work, we have modeled the process variation (L, Tox,
W etc.), as a lumped variation in the threshold voltage. We
define the delay target of a design to be 1.20T (say) where T is
the nominal path delay (shown in figure 1). A conventional
design will lead to failure of circuits which have path delay
greater than 1.20 times the nominal path delay. Reclamation of
chips that fall beyond the yield cutoff is possible in our design.
This is because the critical path will be activated for certain
input patterns which we predict in advance and evaluate in 2
clock cycles to ensure no delay failures (i.e. have yield
approximately equal to 100%). It should be noted that
conventional techniques for achieving high yield such as scaling
up of supply voltage or aggressive sizing up of transistors
typically increase the power consumption. However, in our
proposed approach, besides superior yield we gain improvement
in EPC, while incurring a negligible degradation in performance.
Let us define two terms Tshort and Tlong which are the short and
long latency delays respectively. Since there is a slack between
Tshort and Tclk, we scale down Vdd to attain energy per
computation savings. However scaling of supply voltage should
take care of two facts: a) short paths maintain a specified yield
under one clock cycle operation (Tshort < Tclk), and b) long
paths maintain 100% yield operating in a two cycle mode (Tlong
< 2Tclk). Assuming the probability of occurrence of long latency
operations to be p, the scaled down supply voltage to be Vddlow
and nominal supply voltage Vdd, equation 3 gives the EPC ratio
of our proposed approach over conventional schemes. The factor
of 2 in equation 3 is due to the fact that in our elastic clocking
scheme we allow two clock cycles for a long latency operation.
It shows that we can improve EPC only when p is close to 0.

2 2

2

(1) * * * 2proposed

conventional

E p Vddlow p Vddlow

E Vdd

− +
= (3)

Delay of critical path (ps)

Mean (μ)

3σ

Yield Cutoff:
(1+20%)μ

C
rit

ic
al

 p
at

h
D

el
ay

 d
ist

rib
ut

io
n Yield

Delay of critical path (ps)

Mean (μ)

3σ

Yield Cutoff:
(1+20%)μ

C
rit

ic
al

 p
at

h
D

el
ay

 d
ist

rib
ut

io
n Yield

 Figure 1. Critical path delay distribution under process variation

75

Table 1. Short Latency probability

X’ {A[16:14]
 B[16:14]}

{A[17:14]
 B[17:14]}

{A[17:13]
 B[17:13]}

{A[18:13]
 B[18:13]}

P (L) 0.1250 0.0625 0.0312 0.0156

3. DESIGN METHODOLOGY
3.1 Analysis & Case Study
 Dependency of subsequent stages upon previous stages is a
major bottleneck in the performance of any system. While
considering arithmetic units such as adders and multipliers this
bottleneck manifests itself in the form of carry propagation.
Subsequent stages have to wait for the correct carry, before they
can generate a valid output. The universal technique employed
for isolating any kind of dependency is via prediction. By
predicting whether there will be carry propagation across blocks
or not, the two paths can be computed in parallel. In order to
illustrate our idea, we describe a 32 bit ripple carry adder
(RCA). We choose a partitioning function f’ given by equation
4, where ∆ denotes bitwise XOR operation and X’ given by the
set {A15, B15}.

 f’(X’) = (A15∆B15) (4)
The choice of f’ and X’ is determined by the following two
criteria: 1) f’ should be a function of low complexity logic that
partitions the input set V into long and short latency sets V1 and
V2 respectively. 2) X’ should be such that: a) splitting of the
critical path should result in 2 shorter paths enabling us to take
maximum advantage of Vdd scaling and b) P(L) should be
sufficiently close to 0 so that the penalty due to elastic clocking
is minimized. The probability of P(L) is the probability of the
event {f’(X’) =1}. From equation 4 we get:
 P(L) = P ({f’ (X’) = 1}) = 2 (1-p’) p’ (5)
The signal probability of input is denoted by p’. Assuming
signal probability to be 0.5 we have P(L) = 0.5 which implies a
50% probability of a long latency operation. It does not satisfy
the second criteria which states that P(L) should be close to 0.
We circumvent this problem by choosing the set X’ to include
more inputs and modify the partitioning function f’. The new X’
is given by the set {A13, B13, A14, B14, A15, B15, A16, B16, A17,
B17} and f’ given by equation 6 where ∏ denotes bitwise AND.
f’(X’)=(A17∆B17)∏(A16∆B16)∏(A15∆B15)∏(A14∆B14)∏(A13∆B13)(6)
With the modified f’ and X’, P(L) is now equivalent to the
probability of carry propagation across the 17th bit of the adder
as shown in figure 2. For this particular choice of f’ and X’, we
define an add operation to be long latency type only when there
is carry propagation across the 17th bit of the adder. In order to
determine the latency type of the add operation, we consider five
full adder blocks FA13 to FA17. If the output carry of FA17
depends on the input carry of FA13 then we classify the
operation as long latency type, with probability P(L). This is
because the probability of carry propagation across one bit adder
block is given by 2 (1-p’) p’ and from the independence
assumption of inputs, carry propagation probability across five
one bit adder blocks is given by [2 (1-p’) p’] 5. Hence P(L) for p’

equal to 0.5 is 0.0312. Since the value of P(L) is small
(approximately 3%), the chosen f’ and X’ are acceptable.
Greater is the number of inputs (k) to the function f’, smaller is
the probability of long latency operation. Table 1 gives the
probability of long latency operation as a function of number of
inputs in set X’ used in the latency prediction process. The
design tradeoff between the number of bits used as input in the
latency prediction process and area and power overhead due f’
implementation is discussed in section 4.
 In figure 2, we observe that the longest critical path is split
into two short latency paths. Let us denote the delay of carry
propagation path from FA0 to FA17 as SLP1 (short latency path
1) and that of path from FA13 to FA31 as SLP2. The worst case
carry propagation path is from FA0 to FA31 and is denoted by
LLP (long latency path). We define the time taken for a short
latency operation Tshort to be the maximum of the two delays
SLP1 and SLP2. Under process variations, a conventional design
may have LLP delay exceeding Tclk by Tdf which will lead to a
delay failure. The relationship between SLP1, SLP2 and Tclk is
given by equation 7. The timing diagram, assuming that Tshort is
equal to SLP1 is given in figure 3.
 Tshort = max (SLP1, SLP2) < Tlong < 2Tclk (7)
Due to the slack available between Tshort and Tclk (slack 1) as
shown in figure 3, we can scale down Vdd to Vddlow such that
Tshort increases by an amount TVddlow. This enables us to achieve
lower power (reflected as lower EPC). Note that we allow
timing slack to be present (slack 2, figure 3) between Tshort and
Tclk to make sure that the short latency paths do not exceed the
one cycle bound under variations. The LLP delay considering
Vdd scaling is TPlong while Td is the increment in path delay due
to process variations. The LLP delay shown in figure 3 under
variations is within the two clock cycle bound given by equation
7. The presence of timing slack in Tlong ensures that there is no
delay failure under process variations.
3.2 Adder Architecture
 In this section we apply our design methodology to a 32 bit
modified cascaded carry select adder (CCSA) besides the 32 bit
RCA, mentioned in section 3.1. For any adder architecture we
consider, our primary goal is to be able to split the critical path
into shorter paths and then use the prediction mechanism on
input data pattern to perform elastic clocking. We do not use the
conventional square root adder because each subsequent stage
has more number of bits than the previous stage, due to which
the resulting short latency path upon splitting, would be
comparable to the critical path delay. Hence, we use a cascaded
form of carry select adder proposed in [2]. For example a 32 bit
conventional square root adder implementation will have {2, 2,
3, 3, 4, 5, 6, 7} bits in stage 1 to 8 respectively (each stage
implemented as RCA). Even if we split the critical path based on
carry propagation across the 4 bits in stage 5, the resulting short

Cout

FA 15FA 17 FA 16 FA 0FA 13

B31 A31

S31

FA 31

Long Latency Critical Path (LLP)
Short Latency Critical Paths (SLP1, SLP2)

FA 14

B17A17 B16 A16 B15A15 B14 A14 B13A13 B0 A0

S17 S16 S15 S14 S13 S0

Inputs to Latency Predictor Block

Cout

FA 15FA 17 FA 16 FA 0FA 13

B31 A31

S31

FA 31

Long Latency Critical Path (LLP)
Short Latency Critical Paths (SLP1, SLP2)

FA 14

B17A17 B16 A16 B15A15 B14 A14 B13A13 B0 A0

S17 S16 S15 S14 S13 S0

Inputs to Latency Predictor Block

Figure 2. Splitting of critical path using partitioning function

*Conventional **Proposed

Tclk

CLK
LLPnominal*

SLP1**

t

TlongLLPvariation*

SLPVddlow**
Slack 1

Slack 2

Tshort

SLPvariation** Td
LLPvariation**

TPLong

TVddlow

Td

2Tclk

Tdf

*Conventional **Proposed

Tclk

CLK
LLPnominal*

SLP1**

t

TlongLLPvariation*

SLPVddlow**
Slack 1

Slack 2

Tshort

SLPvariation** TdTd
LLPvariation**

TPLong

TVddlowTVddlow

TdTd

2Tclk

TdfTdf

Figure 3. Timing diagram

76

latency path may still be comparable to the critical path due to
the presence of higher number of bits in the subsequent stages.
The propagation of carry across the 5 bits in stage 6, followed
by carry propagation through the multiplexers in stage 6 and 7
upto the sum generation block, might be of the same delay as the
critical path. Hence, we need to have a modified adder structure
where the critical path after being partitioned gives rise to
shorter paths. This is achieved by breaking the 32 bit adder into
two 16 bit adders (shown in figure 4), each of which is
implemented as a square root adder. The 32 bit CCSA
implementation will have {2, 2, 3, 4, 5, 2, 2, 3, 4, 5} bits in stage
1 through 10, respectively. By predicting, whether there is carry
propagation across the adders in stages 6 and 7, we can split the
carry propagation path from stage 1 to stage 10 into two short
latency paths: one from stage 1 to stage 7 and the other from
stage 6 to stage 10. Figure 5 shows the general architecture of an
adder (with single critical path) in the purview of our elastic
clocking scheme. The latency predictor block (LPB) is the
hardware implementation of the partitioning function which
predicts the activation of critical path. We choose certain input
operand bits, given by X’, as inputs to the LPB which
determines the nature of operational latency and accordingly
generates an enable signal. An enable signal of value 1 implies a
short latency operation, which allows the output to be written
into the output register in the next clock cycle. Otherwise it
implies a long latency operation which stretches the clock for an
extra period. The result of addition is written into the output
register after one clock cycle delay.
 Figure 6 shows the implementation details of the LPB
which implements the function f’(X’) given by equation 6. The
D flip flop shown is necessary because the LPB needs to
remember the nature of input latency in the previous clock cycle
in order to generate the correct value of enable in the current
cycle. One of the aspects of the LPB that needs special mention
is the use of a negative D latch along with a positive edge
triggered D flip flop. The circuit (shown in figure 6) allows
computation of the enable signal before the next set of inputs
arrive (at the next rising edge of the clock), an aspect which is
extremely critical for the success of our design methodology. Its
importance will be explained in greater detail in section 3.3. The
value of enable latched in the negative clock cycle is used to

determine whether the output register will be written at the next
rising edge of the clock or be delayed by one clock cycle to
implement elastic clocking. Disabling of the write operation to
the input and output registers is achieved by clock gating as
shown in figure 5. While considering the predictor block we
make the important assumption that the latency detection
circuitry is designed to be process tolerant by proper sizing of
the transistors.
3.3 Multiplier Architecture
 We have also applied our technique to two classes of
multipliers namely the carry save (CSM) and the Wallace tree
multipliers (WTM). In figure 7, we show an N x N CSM and its
critical paths. The methodology involved in splitting of the
critical path in case of the multipliers is slightly different than
that of adders. For the adders considered in section 3.2, the
primary input bits in the set X’ were the inputs to the LPB.
However, finding a low complexity f’ and set X’ (consisting of k
out of n primary inputs), which can predict in advance the long
or short latency operation of the multiplier, is extremely difficult
due to the large overhead associated with hardware
implementation of f’. Hence, we relax the constraint that X’
should be a set of k inputs chosen from the primary inputs vector
set. Instead, we allow X’ to be the intermediate stage outputs of
the multiplier. In the two types of multipliers that we considered,
CSM and WTM, the final stage of multiplication consists of a
vector merging adder (VMA). In both the multiplier
architectures, we consider that the VMA is implemented as a
CCSA. We split the critical path in the multiplier by using the
internal bits, which are inputs to the VMA. The resulting short
latency paths (SLP1, SLP2) are shown in figure 7.
 Multipliers have many paths of similar delays and under
variations any one of these paths may become critical. Hence we
make an assumption that all potential critical paths in presence
of variability have in common the carry propagation path of the
VMA. The critical path delay is equal to the sum of path delays
through the non-VMA part of the circuit and the delay through
the VMA. Hence, by breaking the critical path in the adder
stage, we take care of paths that have probability of becoming
critical under variations. Since we use VMA inputs as our inputs

INPUT REGISTER A INPUT REGISTER B

ADDER UNIT

OUTPUT REGISTER

LATENCY

PREDICTOR

BLOCK

CLK

ENABLE

Xin Yin

Result

INPUT REGISTER A INPUT REGISTER B

ADDER UNIT

OUTPUT REGISTER

LATENCY

PREDICTOR

BLOCK

CLK

ENABLE

Xin Yin

Result
Figure 5. Generic adder architecture with elastic clocking

C
i0
=0

Cin= 0

Cout

Co0

Co1

A2

Long latency path (LLP)
Short latency path (SLP1) Short latency path (SLP2)

A2A3A4A5A2A2A3A4A5

A2A2A3A4A5A2A2A3A4A5

C
i1
=1

M1M2M3M4M5M6M7M8M9M10

Ai : i-bit Adder, Mk k-stage MUX

Stage 1Stage 10 Stage 6

C
i0
=0

Cin= 0

Cout

Co0

Co1

A2

Long latency path (LLP)
Short latency path (SLP1) Short latency path (SLP2)

A2A3A4A5A2A2A3A4A5

A2A2A2A3A3A4A4A5A5A2A2A2A2A3A3A4A4A5A5

C
i1
=1

M1M2M3M4M5M6M7M8M9M10

Ai : i-bit Adder, Mk k-stage MUX

Stage 1Stage 10 Stage 6
Figure 4. 32 bit cascaded carry select adder

ENABLE

A [m : n]

B [m : n]

A[m]

A[m-1]

B[n]

B[m-1]

B[m]

DQ

Q_B CLK

CLK

1

0

A[n]

ENABLE

A [m : n]

B [m : n]

A[m]

A[m-1]

B[n]

B[m-1]

B[m]

DQ DQ

Q_B CLK

CLK

1

0

A[n]

Figure 6. Latency predictor block implementation

Short Latency Paths
(SLP1)
(SLP2)

HAHAHA

FAFAFAFA

FA FA FA FAFA

FA FAFA FAFA

LATENCY
PREDICTOR

BLOCK

ENABLE

Critical Path Splitting

Vector Merging Adder
Critical Path (LLP)

Short Latency Paths
(SLP1)
(SLP2)

HAHAHA

FAFAFAFA

FA FA FA FAFA

FA FAFA FAFA

LATENCY
PREDICTOR

BLOCK

ENABLE

Critical Path Splitting

Vector Merging Adder
Critical Path (LLP)

Critical Path Splitting

Vector Merging Adder
Critical Path (LLP)

Figure 7. Critical path in a N x N CSM multiplier

77

(b)(a)

ISO Yield = 100%

0

2000

4000

6000

8 bits 12 bits 16 bits

P
ow

er
 (u

W
) ISO Yield = 100%

1000

3000

5000

12 bits 16 bits

P
ow

er
 (u

W
)

Conventional (Vdd=1.1V) Proposed (Vdd=1V)

(b)(a)

ISO Yield = 100%

0

2000

4000

6000

8 bits 12 bits 16 bits

P
ow

er
 (u

W
) ISO Yield = 100%

1000

3000

5000

12 bits 16 bits

P
ow

er
 (u

W
)ISO Yield = 100%

0

2000

4000

6000

8 bits 12 bits 16 bits

P
ow

er
 (u

W
) ISO Yield = 100%

1000

3000

5000

12 bits 16 bits

P
ow

er
 (u

W
)

Conventional (Vdd=1.1V) Proposed (Vdd=1V)

Figure 9. Power consumption under ISO yield conditions for
 (a) CSM and (b) WTM

ISO Yield = 93%

500

1500

2500

3500

12 bits 16 bits

Po
w

er
 (u

W
)

3.5
3.8
4.1
4.4
4.7
5
5.3

%
 A

re
a

O
ve

rh
ea

d

Conventional
(Vdd=1V)
Proposed
(scale down Vdd)
% Area Overhead

0.9V

0.93V

ISO Yield = 93%

500

1500

2500

3500

12 bits 16 bits

Po
w

er
 (u

W
)

3.5
3.8
4.1
4.4
4.7
5
5.3

%
 A

re
a

O
ve

rh
ea

d

Conventional
(Vdd=1V)
Proposed
(scale down Vdd)
% Area Overhead

0.9V

0.93V

Figure 10. Power consumption under ISO Yield conditions

 and area overhead for CSM

to the LPB, there is a probability that sufficient time may not be
available for the enable to be computed by the time the falling
edge of the clock arrives. We circumvent this problem by using
a negative D latch along with the positive edge triggered D flip
flop (instead of a negative D flip-flop) as shown in figure 6.
 Our technique is also applied to WTM, shown in figure 8,
which consists of a tree part and a VMA part. The tree part
consists of stages, each of which contributes an adder delay to
the critical path. The critical path delay is the sum of the
number of stages in the tree and the delay through the VMA. For
instance, in a 16x16 WTM (using 3:2 compressors), there are 6
stages in the tree part and a 27 bit VMA. Hence, the critical path
delay is the sum of 6 adder delay and the worst case carry
propagation delay of VMA. We note that there is a great
potential to be exploited in case of WTM because of the
relatively large size of the VMA. This gives us greater scope for
Vdd scaling, resulting in power savings. In figure 8, a 6 x 6
WTM, showing the tree part and the VMA part is illustrated. In
a manner similar to the splitting of critical paths in CSM, the
critical path in WTM is cut into SLP1 and SLP2 as shown in
figure 8. The slack between LLP and the maximum of SLP1 and
SLP2 can be used for Vdd scaling as explained in section 3.1.
 4. SIMULATION RESULTS
 In this section we compare adders (12, 16, 32 bit RCA and
CCSA) and multipliers (12, 16 bit CSM and 8, 12, 16 bit WTM)
implemented in the conventional and our proposed design. All
the arithmetic units mentioned above were implemented in
70nm BPTM technology [7]. The metrics used for comparison
were parametric yield improvement, power dissipation, EPC,
area overhead and throughput penalty. We used VHDL to design
the adders and multipliers. The VHDL code was synthesized
using Synopsis Design Compiler [8]. In order to obtain the
parametric yield in presence of process variations, we ran Monte
Carlo simulations in Hspice, assuming a Gaussian Vth variation
distribution of zero mean and standard deviation of 40 mV. The
power dissipation results were obtained by simulating 10000
random input vectors in NanoSim.

 Assuming the critical path delay of a combinational logic
block in the absence of process variations to be Tcrit, we
designate a simulation run to be a failure if the critical path
delay of the combinational unit exceeded 1.2Tcrit. With this
criterion as the delay failure metric, the yield of different
arithmetic units was calculated in table 2. In all the arithmetic
units considered, the yield of our proposed design was found to
be 100% under a nominal Vdd of 1V. This can be attributed to
the fact that the short latency paths under variations do not
exceed the one clock cycle bound and the long latency path, if
activated, is evaluated by elastic clocking scheme. We can
clearly observe that our proposed approach achieves varying
degree of yield improvement (4.2% to 11.1%) for different
arithmetic units compared to the conventional implementation.
 In our simulations we consider two iso-yield conditions: 1)
when the proposed design is operated at 1V and 2) when
conventional design is operated at 1V. In order to have an iso-
yield of approximately 100%, when the proposed design is
operating at 1V, the conventional design had to be operated at
1.1V which gives 24% and 29% power savings for CSM and
WTM, respectively as shown in figure 9a and 9b. However, for
the conventional design operating at 1V, if a certain yield target
is desired (CSM Yield=93%, WTM Yield=96%), then the
proposed design can operate at a lower Vdd. Table 3 shows the
percentage EPC savings obtained by using equation 3. Figures
10 and 11 show the power dissipation under iso-yield conditions
for the conventional design operating at 1V and the proposed
architecture at a scaled down Vdd (to meet the same yield
target). An interesting observation is that the percentage power
savings increases with an increase in the number of bits in the
adders and multipliers. This is due to the fact that, with an
increase in the length of the critical path, there is more slack to
be exploited, in terms of Vdd scaling, after splitting the critical
path. For example, in figure 11c, to have iso-yield of 96%, the
proposed 16 bit WTM can be operated at a scaled down Vdd of
0.85V. The area overhead in the adders and multipliers
decreases with an increase in the number of bits which is
expected as the LPB circuitry remains unchanged (10 bits input
to LPB) while the area of original circuit increase as the number

Tree part

VMA part

Stage 1

Stage 2

Stage 3

Final Product

[3:2] Compressor
Half Adder
(VMA)

Partial Product

Critical path (LLP)

Inputs to Latency
Predictor Block

SLP1
SLP2

Tree part

VMA part

Stage 1

Stage 2

Stage 3

Final Product

[3:2] Compressor [3:2] Compressor
Half AdderHalf Adder
(VMA)(VMA)

Partial Product Partial Product

Critical path (LLP)Critical path (LLP)

Inputs to Latency
Predictor Block
Inputs to Latency
Predictor Block

SLP1
SLP2

Figure 8. Critical path in a 6 x 6 Wallace tree multiplier

Table 2. Yield % of different arithmetic units at nominal Vdd (1V)

Arithmetic
Units

RCA
(32bits)

CCSA
(32bits)

WTM
(16bits)

CSM
(16bits)

Conventional 92 % 90 % 96 % 93 %
Proposed 100 % 100 % 100 % 100 %

% Improvement 8.7% 11.1% 4.2% 7.5%

Table 3. %Yield and EPC savings under Vdd scaling (iso-yield cond.)

Arithmetic Units (16bit) Vdd (V) %Yield %EPC savings
Proposed CSM 0.9 93 16.5
Proposed WTM 0.85 96 25.5

78

0
2
4
6
8

10
12
14

6 bits 8 bits 10 bits 12 bits 20 bits

 %
 T

hr
ou

gh
pu

t p
en

al
ty

3.7

3.9

4.1

4.3

%
 A

re
a

O
ve

rh
ea

d

% Throughput penalty
% Area Overhead

0
2
4
6
8

10
12
14

6 bits 8 bits 10 bits 12 bits 20 bits

 %
 T

hr
ou

gh
pu

t p
en

al
ty

3.7

3.9

4.1

4.3

%
 A

re
a

O
ve

rh
ea

d

% Throughput penalty
% Area Overhead

 Figure 12. Performance versus area overhead with # of inputs to

LPB (WTM 16 bits)

of bits increases. An area overhead of approximately 5-10% is
obtained in case of the arithmetic units. In figure 12, the tradeoff
between throughput penalty and area overhead for a 16 bit
WTM is shown. From the graph we observe that throughput
penalty decreases with increase in number of input bits to the
LPB. In order to determine the actual throughput penalty from a
system level perspective, we incorporated the proposed
arithmetic units in a five stage DLX pipeline. The throughput
penalty was assessed by running SPEC2K [9] benchmarks in
Simple Scalar [10] simulator. The results given in figure 13
show on an average a 3.03% throughput penalty by using 10 bits
as input to the LPB.

5. CONCLUSION
 In this paper we proposed a new design methodology for
process variation tolerant, low power arithmetic units (adders
and multipliers). The design technique improves the yield of
arithmetic units by reclaiming chips which would otherwise fail
due to Vdd-scaling and/or process variations. We use a novel
elastic clocking scheme to work around possible failures.
Simulation results show a significant improvement in the yield
while achieving reasonable energy per computation savings.
Compared to traditional techniques our methodology tackles two
issues: higher yield in the face of process variations and lower
power consumption by Vdd-scaling, in a unified manner.
Another attractive feature of our design is the flexibility it
offers. We can either choose to have yield as the primary design
metric in which case we sacrifice little power saving under
scaled Vdd or decide to have a certain yield and obtain
additional advantage of reduced energy per operation.
6. ACKNOWLEDGEMENTS
 The authors acknowledge the support of the Gigascale
Systems Research Focus Center, one of five research centers
funded under the Focus Center Research Program, a
Semiconductor Research Corporation program.
7. REFERENCES
 [1] S. Borkar et. al., “Design and reliability challenges in

nanometer technologies”, DAC, 2004.
 [2] Y. Chen, et. al, “Cascaded carry-select adder (CCSA): a new

structure for low-power CSA design”, ISLPED, 2005.
 [3] H. Suzuki, et. al, “Low Power Adder with. Adaptive Supply

Voltage”, ICCD, pp. 103-106, October 2003.
 [4] J. Rabaey, “Digital Integrated Circuits: A Design Perspective”,

Prentice Hill, Second Edition, 2003.
 [5] L. Benini, et. al, “Telescopic units: Increasing the average

throughput of pipelined designs by adaptive latency control”,
DAC, pp. 22-27, June 1997.

 [6] S. Ghosh, et. al, “A New Paradigm for Low-power, Variation-
Tolerant Circuit Synthesis Using Critical Path Isolation”,
ICCAD, 2006.

 [7] BPTM 70nm: Berkeley predictive technology model.
 [8] Synopsys Design Compiler, www.synopsys.com
 [9] SPEC 2000 Benchmarks, www.spec.org
[10] Simplescalar Tool Set, www.simplescalar.com

ISO Yield = 90%

300

400

500

600

12 bits 16 bits 32 bits

Po
w

er
 (u

W
)

Conventional Proposed

0.9V

0.92V
0.95V

(b)

(e)

ISO Yield = 90%

0

5

10

15

20

25

12 bits 16 bits 32 bits

%
 P

ow
er

 s
av

in
gs

6

7

8

9

10

%
A

re
a

ov
er

he
ad

% Power savings % Area overhead

30

130

230

330

12 bits 16 bits 32 bits

P
ow

er
 (u

W
)

0.75V

0.8V0.8V

(a)

(d)

ISO Yield = 92%

ISO Yield = 92%

20

25

30

35

40

45

12 bits 16 bits 32 bits

%
 P

ow
er

 s
av

in
gs

5
6
7
8
9
10
11

%
 A

re
a

ov
er

he
ad

1V 1V
ISO Yield = 90%

300

400

500

600

12 bits 16 bits 32 bits

P
ow

er
 (u

W
)

Conventional Proposed

0.9V

0.92V
0.95V

(b)

(e)

ISO Yield = 90%

0

5

10

15

20

25

12 bits 16 bits 32 bits

%
 P

ow
er

 s
av

in
gs

6

7

8

9

10

%
A

re
a

ov
er

he
ad

% Power savings % Area overhead

30

130

230

330

12 bits 16 bits 32 bits

P
ow

er
 (u

W
)

0.75V

0.8V0.8V

(a)

(d)

ISO Yield = 92%

ISO Yield = 92%

20

25

30

35

40

45

12 bits 16 bits 32 bits

%
 P

ow
er

 s
av

in
gs

5
6
7
8
9
10
11

%
 A

re
a

ov
er

he
ad

1V 1V

0.85V

0.9V

0.88V

(f)

(c)

ISO Yield = 96%

26

27

28

29

8 bits 12 bits 16 bits

%
P

ow
er

 s
av

in
gs

2.5

3.5

4.5

5.5

6.5

7.5

%
A

re
a

ov
er

he
ad

ISO Yield = 96%

1000

2000

3000

4000

8 bits 12 bits 16 bits

P
ow

er
 (u

W
) 1V

0.85V

0.9V

0.88V

(f)

(c)

ISO Yield = 96%

26

27

28

29

8 bits 12 bits 16 bits

%
P

ow
er

 s
av

in
gs

2.5

3.5

4.5

5.5

6.5

7.5

%
A

re
a

ov
er

he
ad

ISO Yield = 96%

1000

2000

3000

4000

8 bits 12 bits 16 bits

P
ow

er
 (u

W
)

0.85V

0.9V

0.88V

(f)

(c)

ISO Yield = 96%

26

27

28

29

8 bits 12 bits 16 bits

%
P

ow
er

 s
av

in
gs

2.5

3.5

4.5

5.5

6.5

7.5

%
A

re
a

ov
er

he
ad

ISO Yield = 96%

1000

2000

3000

4000

8 bits 12 bits 16 bits

P
ow

er
 (u

W
) 1V

Figure 11. Power consumption under ISO Yield conditions for (a) ripple carry adder (RCA) , (b) cascaded carry select adder (CCSA) and

(c) Wallace multiplier (WTM), % Power savings and area overhead under ISO Yield conditions for (d) RCA, (e) CCSA, (f) WTM

0

2

4

6

8

10

12

14

bzip2 gcc equake ammp
SPEC 2000 benchmarks

Th
ro

ug
hp

ut
 p

en
al

ty
(%

6 bits of input

8 bits of input

10 bits of input

Figure 13. Throughput penalty Vs. Number of inputs to LPB

0

2

4

6

8

10

12

14

bzip2 gcc equake ammp
SPEC 2000 benchmarks

Th
ro

ug
hp

ut
 p

en
al

ty
(%

6 bits of input

8 bits of input

10 bits of input

Figure 13. Throughput penalty Vs. Number of inputs to LPB

79

