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ABSTRACT 
In this paper we propose a design methodology for low-power, 
high-performance, process-variation tolerant architecture for 
arithmetic units. The novelty of our approach lies in the fact that 
possible delay failures due to process variations and/or voltage 
scaling are predicted in advance and addressed by employing an 
elastic clocking technique. The prediction mechanism exploits 
the dependence of delay of arithmetic units upon input data 
patterns and identifies specific inputs that activate the critical 
path. Under iso-yield conditions, the proposed design operates at 
a lower scaled down Vdd without any performance degradation, 
while it ensures a superlative yield under a design style 
employing nominal supply and transistor threshold voltage. 
Simulation results show power savings of upto 29%, energy per 
computation savings of upto 25.5% and yield enhancement of 
upto 11.1% compared to the conventional adders and multipliers 
implemented in the 70nm BPTM technology. We incorporated 
the proposed modules in the execution unit of a five stage DLX 
pipeline to measure performance using SPEC2000 benchmarks 
[9]. Maximum area and throughput penalty obtained were 10% 
and 3% respectively. 
 
Categories and Subject Descriptors  
B.7.1 [Integrated Circuits]: Types and Design Styles – 
VLSI (very large scale integration) 
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Design, Reliability 
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1. INTRODUCTION 
        As CMOS technology continues to scale aggressively into 
the sub-100nm regime, design in the presence of unreliable 
components has become exceedingly challenging. Due to 
increased levels of process variation in scaled technologies, 
delay failures are becoming increasingly frequent upon supply 
voltage scaling [1]. Combinational logic blocks which are 
designed to meet the target frequency of operation fail, because 
 

 
the critical path delay of the circuit exceeds the nominal delay 
target. Achieving lower power dissipation merely by Vdd 
scaling is no longer easy to achieve under severe parameter 
variations. Hence there is a growing need for designing not only 
low power but also robust, delay failure resilient logic units.  
       Though extensive research has been done in the domain of 
low power implementation of arithmetic units [2, 3], yet there is 
a growing need to address the issue of low power and process 
tolerant design jointly. Traditional approaches such as [4] 
suggest operation at a conservative target frequency or scaling 
up of Vdd in order to meet the target yield. The concept of using 
variable latency units to increase the average throughput of 
combinational logic blocks has been proposed in [5]. However, 
the primary application of [5] is an improvement in performance 
and it does not deal with low power and process tolerant design 
issues. Recent research such as [6] has focused on issues related 
to low power and process tolerance jointly, from a CAD 
perspective, by partitioning random logic. However to the best 
of our knowledge, no significant research has been conducted 
that concurrently targets these two issues for arithmetic units. 
        In this work, the novelty of our proposed architecture lies 
in the achievement of robustness in design, while operating in 
reduced energy per computation (EPC) mode. The central idea 
of the paper is that, under voltage scaling, depending upon input 
data patterns, we adaptively change the number of clock cycles 
required for computation. Hereafter, we call this feature of our 
design as elastic clocking. We have observed that a) certain 
input patterns take more time to be computed than others and b) 
typically the probability of occurrence of such patterns is rare. 
We take advantage of this fact by predicting in advance the 
input patterns that will activate the critical path as explained in 
later sections. By a novel architectural method explained in the 
next section we make the activation probability of long latency 
paths small. This enables us to operate at a fixed lower scaled 
down supply voltage resulting in EPC improvement at the same 
frequency of operation. The proposed technique has the 
following advantages: a) reduced energy per computation (by 
supply voltage scaling) under iso-yield conditions, while 
incurring negligible area overhead and throughput penalty, b) 
higher yield (due to the reclamation of chips which earlier failed 
to meet the target delay in the conventional case), and c) same 
frequency of operation (instead of operating at a lower 
frequency to attain a higher yield).  
 The rest of the paper is organized as follows. Section 2 
describes the generic architectural framework for the proposed 
design. Section 3 gives a detailed description of the 
implementation of our scheme considering different adders and 
multipliers. Simulation results are given in section 4 while 
section 5 concludes the paper. 
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2. PRELIMINARY ANALYSIS 
2.1 The Proposed Architectural Framework 
        Let us consider a combinational logic with n inputs X1, X2, 
X3 …Xn. We choose a function f which partitions the input set V 
into two subsets V1 and V2. The input set V is a collection of n 
dimension vectors, each of which is a collection of n possible 
inputs to the logic block. The subset V1 consists of input vectors 
that activate long latency paths, while those in V2 activate short 
latency paths. This separation of the set of input vectors V is 
based on the idea that delay of a combinational logic unit is 
dependent upon input patterns. Let us consider a simple example 
of addition of two n bit numbers to illustrate the concept 
mentioned above. Let A=0000……0001 and B=1111……1111, 
then the carry generated in the first bit position is propagated all 
the way to the final bit position. Thus, there is a set of inputs that 
activate the worst case delay of the adder block. Let us modify 
the inputs to A=1111....0….1111 and B=0000……0001, where 
the chain of 1’s in A is broken by insertion of a 0 in the (n/2)th 
bit position. For this case there is no carry propagation across 
the middle bit and the effective computation time is maximum 
of the two delays, one from the 0 to (n/2)th

 bit and the other from 
(n/2)th to n-1 bit. Let us define a partition function as f, which 
evaluates a value of 1 if the inputs give rise to a long latency 
operation and 0 otherwise. For short latency operation, the 
supply voltage can be low while for longer latency operation, 
clock can be stretched at the same lower supply voltage. 
However, one has to ensure that the probability of short latency 
operation is large so that the performance penalty is low.  Let: 
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If P(S) is the probability of activation of short latency and P(L) 
is the probability of activation of long latency paths, then we 
would like to minimize P(L) for increasing power savings with 
minimum performance penalty as explained later. This can be 
achieved by a judicious choice of the partitioning function f. 
However, we note that the complexity of f grows exponentially 
as the number of inputs increases. Thus, our objective is not 
only to choose a function f that minimizes P(L) but also 
minimizes complexity (for minimizing area and power 
overheads). To concurrently minimize complexity and P(L), we 
choose a partitioning function f’ of reduced complexity. The 
number of inputs to f’ is k where k§n. Let Z=f’ (X’) where X’ = 
(Xi’, Xi+1’, Xi+2’ ……. Xi+k-1’) is the vector of k inputs chosen 
out of n inputs. 
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The relationship between f’ (X’) and f(X) is that the event {f(X) 
= 1} implies {f’(X’) = 1} but the converse may not be true. 
Since f’ is expanded form of f, P(L) using f’ is smaller than the 
P(L) using f. However, we must ensure that P (L) using f’ is 
sufficiently close to 0 so that throughput penalty due to elastic 
clocking is not excessive. 
       There are two issues regarding the choice of a partitioning 
function: a) choice of f’ that is of very low-complexity while 
achieving P(L) sufficiently close to 0, and b) selection of k 
inputs from the set of n inputs to the logic block. Choice of a 
reasonable f’ is a non trivial task for complex circuits. However, 
for simple arithmetic units like adders and multipliers we choose 
f’ to be a function of the propagate signal of a full adder block. 
It is because the propagate signal determines if the input carry 

will be propagated from, (n/2)th bit to the nth bit or not. This 
fundamentally determines whether the blocks before and after 
the (n/2)th block can be computed in parallel. Returning to the 
other issue related to f’, the two criteria for selection of the k 
inputs are: 1) splitting of the critical path should result in two 
shorter paths which would enable us to take greater advantage of 
Vdd scaling (due to the large slack between the critical and 
maximum of the two shorter paths), and 2) P(L) should be 
sufficiently close to 0 so that the penalty due to elastic clocking 
is minimized. Once we have chosen f’ and X’, we can predict in 
advance the nature of latency. Upon detection of a long latency 
operation (which is the uncommon case due to proper choice of 
f’), the clock is stretched to allow two cycles for the operation to 
complete. During short latency operation we evaluate the 
computation in one cycle. In this manner, the design achieves 
robustness to failures due to process variations.  
2.2 Relative Comparison Using a Yield Model 
       In this work, we have modeled the process variation (L, Tox, 
W etc.), as a lumped variation in the threshold voltage. We 
define the delay target of a design to be 1.20T (say) where T is 
the nominal path delay (shown in figure 1). A conventional 
design will lead to failure of circuits which have path delay 
greater than 1.20 times the nominal path delay. Reclamation of 
chips that fall beyond the yield cutoff is possible in our design. 
This is because the critical path will be activated for certain 
input patterns which we predict in advance and evaluate in 2 
clock cycles to ensure no delay failures (i.e. have yield 
approximately equal to 100%). It should be noted that 
conventional techniques for achieving high yield such as scaling 
up of supply voltage or aggressive sizing up of transistors 
typically increase the power consumption. However, in our 
proposed approach, besides superior yield we gain improvement 
in EPC, while incurring a negligible degradation in performance. 
Let us define two terms Tshort and Tlong which are the short and 
long latency delays respectively. Since there is a slack between 
Tshort and Tclk, we scale down Vdd to attain energy per 
computation savings. However scaling of supply voltage should 
take care of two facts: a) short paths maintain a specified yield 
under one clock cycle operation (Tshort < Tclk),    and b) long 
paths maintain 100% yield operating in a two cycle mode (Tlong 
< 2Tclk). Assuming the probability of occurrence of long latency 
operations to be p, the scaled down supply voltage to be Vddlow 
and nominal supply voltage Vdd, equation 3 gives the EPC ratio 
of our proposed approach over conventional schemes. The factor 
of 2 in equation 3 is due to the fact that in our elastic clocking 
scheme we allow two clock cycles for a long latency operation. 
It shows that we can improve EPC only when p is close to 0. 
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   Figure 1. Critical path delay distribution under process variation 
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Table 1. Short Latency probability 

X’ {A[16:14] 
 B[16:14]} 

{A[17:14] 
  B[17:14]} 

{A[17:13] 
 B[17:13]} 

{A[18:13] 
 B[18:13]} 

P (L) 0.1250 0.0625 0.0312 0.0156 

3. DESIGN METHODOLOGY 
3.1 Analysis & Case Study 
       Dependency of subsequent stages upon previous stages is a 
major bottleneck in the performance of any system. While 
considering arithmetic units such as adders and multipliers this 
bottleneck manifests itself in the form of carry propagation. 
Subsequent stages have to wait for the correct carry, before they 
can generate a valid output. The universal technique employed 
for isolating any kind of dependency is via prediction. By 
predicting whether there will be carry propagation across blocks 
or not, the two paths can be computed in parallel. In order to 
illustrate our idea, we describe a 32 bit ripple carry adder 
(RCA). We choose a partitioning function f’ given by equation 
4, where ∆ denotes bitwise XOR operation and X’ given by the 
set {A15, B15}.  

                      f’(X’) = (A15∆B15)                                 (4) 
The choice of f’ and X’ is determined by the following two 
criteria: 1) f’ should be a function of low complexity logic that 
partitions the input set V into long and short latency sets V1 and 
V2 respectively. 2) X’ should be such that: a) splitting of the 
critical path should result in 2 shorter paths enabling us to take 
maximum advantage of Vdd scaling and b) P(L) should be 
sufficiently close to 0 so that the penalty due to elastic clocking 
is minimized. The probability of P(L) is the probability of the 
event {f’(X’) =1}. From equation 4 we get: 
                      P(L) = P ({f’ (X’) = 1}) = 2 (1-p’) p’          (5) 
The signal probability of input is denoted by p’. Assuming 
signal probability to be 0.5 we have P(L) = 0.5 which implies a 
50% probability of a long latency operation. It does not satisfy 
the second criteria which states that P(L) should be close to 0. 
We circumvent this problem by choosing the set X’ to include 
more inputs and modify the partitioning function f’. The new X’ 
is given by the set {A13, B13, A14, B14, A15, B15, A16, B16, A17, 
B17} and f’ given by equation 6 where ∏ denotes bitwise AND.    
f’(X’)=(A17∆B17)∏(A16∆B16)∏(A15∆B15)∏(A14∆B14)∏(A13∆B13)(6) 
With the modified f’ and X’, P(L) is now equivalent to the 
probability of carry propagation across the 17th bit of the adder 
as shown in figure 2. For this particular choice of f’ and X’, we 
define an add operation to be long latency type only when there 
is carry propagation across the 17th bit of the adder. In order to 
determine the latency type of the add operation, we consider five 
full adder blocks FA13 to FA17. If the output carry of FA17 
depends on the input carry of FA13 then we classify the 
operation as long latency type, with probability P(L). This is 
because the probability of carry propagation across one bit adder 
block is given by 2 (1-p’) p’ and from the independence 
assumption of inputs, carry propagation probability across five 
one bit adder blocks is given by [2 (1-p’) p’] 5. Hence P(L) for p’ 
 
 
 
 

equal to 0.5 is 0.0312. Since the value of P(L) is small 
(approximately 3%), the chosen f’ and X’ are acceptable. 
Greater is the number of inputs (k) to the function f’, smaller is 
the probability of long latency operation. Table 1 gives the 
probability of long latency operation as a function of number of 
inputs in set X’ used in the latency prediction process. The 
design tradeoff between the number of bits used as input in the 
latency prediction process and area and power overhead due f’ 
implementation is discussed in section 4.          
        In figure 2, we observe that the longest critical path is split 
into two short latency paths. Let us denote the delay of carry 
propagation path from FA0 to FA17 as SLP1 (short latency path 
1) and that of path from FA13 to FA31 as SLP2. The worst case 
carry propagation path is from FA0 to FA31 and is denoted by 
LLP (long latency path). We define the time taken for a short 
latency operation Tshort to be the maximum of the two delays 
SLP1 and SLP2. Under process variations, a conventional design 
may have LLP delay exceeding Tclk by Tdf which will lead to a 
delay failure. The relationship between SLP1, SLP2 and Tclk is 
given by equation 7. The timing diagram, assuming that Tshort is 
equal to SLP1 is given in figure 3. 
               Tshort = max (SLP1, SLP2) < Tlong < 2Tclk            (7) 
Due to the slack available between Tshort and Tclk (slack 1) as 
shown in figure 3, we can scale down Vdd to Vddlow such that 
Tshort increases by an amount TVddlow. This enables us to achieve 
lower power (reflected as lower EPC). Note that we allow 
timing slack to be present (slack 2, figure 3) between Tshort and 
Tclk to make sure that the short latency paths do not exceed the 
one cycle bound under variations. The LLP delay considering 
Vdd scaling is TPlong while Td is the increment in path delay due 
to process variations. The LLP delay shown in figure 3 under 
variations is within the two clock cycle bound given by equation 
7. The presence of timing slack in Tlong ensures that there is no 
delay failure under process variations. 
3.2 Adder Architecture 
       In this section we apply our design methodology to a 32 bit 
modified cascaded carry select adder (CCSA) besides the 32 bit 
RCA, mentioned in section 3.1. For any adder architecture we 
consider, our primary goal is to be able to split the critical path 
into shorter paths and then use the prediction mechanism on 
input data pattern to perform elastic clocking. We do not use the 
conventional square root adder because each subsequent stage 
has more number of bits than the previous stage, due to which 
the resulting short latency path upon splitting, would be 
comparable to the critical path delay. Hence, we use a cascaded 
form of carry select adder proposed in [2]. For example a 32 bit 
conventional square root adder implementation will have {2, 2, 
3, 3, 4, 5, 6, 7} bits in stage 1 to 8 respectively (each stage 
implemented as RCA). Even if we split the critical path based on 
carry propagation across the 4 bits in stage 5, the resulting short 
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Figure 2. Splitting of critical path using partitioning function 
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latency path may still be comparable to the critical path due to 
the presence of higher number of bits in the subsequent stages. 
The propagation of carry across the 5 bits in stage 6, followed 
by carry propagation through the multiplexers in stage 6 and 7 
upto the sum generation block, might be of the same delay as the 
critical path. Hence, we need to have a modified adder structure 
where the critical path after being partitioned gives rise to 
shorter paths. This is achieved by breaking the 32 bit adder into 
two 16 bit adders (shown in figure 4), each of which is 
implemented as a square root adder. The 32 bit CCSA 
implementation will have {2, 2, 3, 4, 5, 2, 2, 3, 4, 5} bits in stage 
1 through 10, respectively. By predicting, whether there is carry 
propagation across the adders in stages 6 and 7, we can split the 
carry propagation path from stage 1 to stage 10 into two short 
latency paths: one from stage 1 to stage 7 and the other from 
stage 6 to stage 10. Figure 5 shows the general architecture of an 
adder (with single critical path) in the purview of our elastic 
clocking scheme. The latency predictor block (LPB) is the 
hardware implementation of the partitioning function which 
predicts the activation of critical path. We choose certain input 
operand bits, given by X’, as inputs to the LPB which 
determines the nature of operational latency and accordingly 
generates an enable signal. An enable signal of value 1 implies a 
short latency operation, which allows the output to be written 
into the output register in the next clock cycle. Otherwise it 
implies a long latency operation which stretches the clock for an 
extra period. The result of addition is written into the output 
register after one clock cycle delay. 
        Figure 6 shows the implementation details of the LPB 
which implements the function f’(X’) given by equation 6. The 
D flip flop shown is necessary because the LPB needs to 
remember the nature of input latency in the previous clock cycle 
in order to generate the correct value of enable in the current 
cycle. One of the aspects of the LPB that needs special mention 
is the use of a negative D latch along with a positive edge 
triggered D flip flop. The circuit (shown in figure 6) allows 
computation of the enable signal before the next set of inputs 
arrive (at the next rising edge of the clock), an aspect which is 
extremely critical for the success of our design methodology. Its 
importance will be explained in greater detail in section 3.3. The 
value of enable latched in the negative clock cycle is used to 

determine whether the output register will be written at the next 
rising edge of the clock or be delayed by one clock cycle to 
implement elastic clocking. Disabling of the write operation to 
the input and output registers is achieved by clock gating as 
shown in figure 5. While considering the predictor block we 
make the important assumption that the latency detection 
circuitry is designed to be process tolerant by proper sizing of 
the transistors.  
3.3 Multiplier Architecture 
       We have also applied our technique to two classes of 
multipliers namely the carry save (CSM) and the Wallace tree 
multipliers (WTM). In figure 7, we show an N x N CSM and its 
critical paths. The methodology involved in splitting of the 
critical path in case of the multipliers is slightly different than 
that of adders. For the adders considered in section 3.2, the 
primary input bits in the set X’ were the inputs to the LPB. 
However, finding a low complexity f’ and set X’ (consisting of k 
out of n primary inputs), which can predict in advance the long 
or short latency operation of the multiplier, is extremely difficult 
due to the large overhead associated with hardware 
implementation of f’. Hence, we relax the constraint that X’ 
should be a set of k inputs chosen from the primary inputs vector 
set. Instead, we allow X’ to be the intermediate stage outputs of 
the multiplier. In the two types of multipliers that we considered, 
CSM and WTM, the final stage of multiplication consists of a 
vector merging adder (VMA). In both the multiplier 
architectures, we consider that the VMA is implemented as a 
CCSA. We split the critical path in the multiplier by using the 
internal bits, which are inputs to the VMA. The resulting short 
latency paths (SLP1, SLP2) are shown in figure 7.  
        Multipliers have many paths of similar delays and under 
variations any one of these paths may become critical. Hence we 
make an assumption that all potential critical paths in presence 
of variability have in common the carry propagation path of the 
VMA. The critical path delay is equal to the sum of path delays 
through the non-VMA part of the circuit and the delay through 
the VMA. Hence, by breaking the critical path in the adder 
stage, we take care of paths that have probability of becoming 
critical under variations. Since we use VMA inputs as our inputs  

INPUT REGISTER A INPUT REGISTER B

ADDER UNIT

OUTPUT REGISTER

LATENCY

PREDICTOR

BLOCK

CLK

ENABLE

Xin Yin

Result

INPUT REGISTER A INPUT REGISTER B

ADDER UNIT

OUTPUT REGISTER

LATENCY

PREDICTOR

BLOCK

CLK

ENABLE

Xin Yin

Result  
Figure 5. Generic adder architecture with elastic clocking 
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Figure 6. Latency predictor block implementation 
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Figure 9. Power consumption under ISO yield conditions for      
 (a) CSM and (b) WTM 
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Figure 10.  Power consumption under ISO Yield conditions 

 and area overhead for CSM 

to the LPB, there is a probability that sufficient time may not be 
available for the enable to be computed by the time the falling 
edge of the clock arrives. We circumvent this problem by using 
a negative D latch along with the positive edge triggered D flip 
flop (instead of a negative D flip-flop) as shown in figure 6.  
         Our technique is also applied to WTM, shown in figure 8, 
which consists of a tree part and a VMA part. The tree part 
consists of stages, each of which contributes an adder delay to 
the critical path.  The critical path delay is the sum of the 
number of stages in the tree and the delay through the VMA. For 
instance, in a 16x16 WTM (using 3:2 compressors), there are 6 
stages in the tree part and a 27 bit VMA. Hence, the critical path 
delay is the sum of 6 adder delay and the worst case carry 
propagation delay of VMA. We note that there is a great 
potential to be exploited in case of WTM because of the 
relatively large size of the VMA. This gives us greater scope for 
Vdd scaling, resulting in power savings. In figure 8, a 6 x 6 
WTM, showing the tree part and the VMA part is illustrated. In 
a manner similar to the splitting of critical paths in CSM, the 
critical path in WTM is cut into SLP1 and SLP2 as shown in 
figure 8. The slack between LLP and the maximum of SLP1 and 
SLP2 can be used for Vdd scaling as explained in section 3.1. 
  4. SIMULATION RESULTS 
       In this section we compare adders (12, 16, 32 bit RCA and 
CCSA) and multipliers (12, 16 bit CSM and 8, 12, 16 bit WTM) 
implemented in the conventional and our proposed design. All 
the arithmetic units mentioned above were implemented in 
70nm BPTM technology [7]. The metrics used for comparison 
were parametric yield improvement, power dissipation, EPC, 
area overhead and throughput penalty. We used VHDL to design 
the adders and multipliers. The VHDL code was synthesized 
using Synopsis Design Compiler [8]. In order to obtain the 
parametric yield in presence of process variations, we ran Monte 
Carlo simulations in Hspice, assuming a Gaussian Vth variation 
distribution of zero mean and standard deviation of 40 mV. The 
power dissipation results were obtained by simulating 10000 
random input vectors in NanoSim.   

        Assuming the critical path delay of a combinational logic 
block in the absence of process variations to be Tcrit, we 
designate a simulation run to be a failure if the critical path 
delay of the combinational unit exceeded 1.2Tcrit. With this 
criterion as the delay failure metric, the yield of different 
arithmetic units was calculated in table 2. In all the arithmetic 
units considered, the yield of our proposed design was found to 
be 100% under a nominal Vdd of 1V. This can be attributed to 
the fact that the short latency paths under variations do not 
exceed the one clock cycle bound and the long latency path, if 
activated, is evaluated by elastic clocking scheme. We can 
clearly observe that our proposed approach achieves varying 
degree of yield improvement (4.2% to 11.1%) for different 
arithmetic units compared to the conventional implementation.  
        In our simulations we consider two iso-yield conditions: 1) 
when the proposed design is operated at 1V and 2) when 
conventional design is operated at 1V. In order to have an iso-
yield of approximately 100%, when the proposed design is 
operating at 1V, the conventional design had to be operated at 
1.1V which gives 24% and 29% power savings for CSM and 
WTM, respectively as shown in figure 9a and 9b. However, for 
the conventional design operating at 1V, if a certain yield target 
is desired (CSM Yield=93%, WTM Yield=96%), then the 
proposed design can operate at a lower Vdd. Table 3 shows the 
percentage EPC savings obtained by using equation 3. Figures 
10 and 11 show the power dissipation under iso-yield conditions 
for the conventional design operating at 1V and the proposed 
architecture at a scaled down Vdd (to meet the same yield 
target). An interesting observation is that the percentage power 
savings increases with an increase in the number of bits in the 
adders and multipliers. This is due to the fact that, with an 
increase in the length of the critical path, there is more slack to 
be exploited, in terms of Vdd scaling, after splitting the critical 
path. For example, in figure 11c, to have iso-yield of 96%, the 
proposed 16 bit WTM can be operated at a scaled down Vdd of 
0.85V. The area overhead in the adders and multipliers 
decreases with an increase in the number of bits which is 
expected as the LPB circuitry remains unchanged (10 bits input 
to LPB) while the area of original circuit increase as the number 
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Figure 8. Critical path in a 6 x 6 Wallace tree multiplier 

Table 2. Yield % of different arithmetic units at nominal Vdd (1V) 
 

Arithmetic 
Units 

RCA 
(32bits) 

CCSA 
(32bits) 

WTM 
(16bits) 

CSM 
(16bits) 

Conventional 92 % 90 % 96 % 93 % 
Proposed 100 % 100 % 100 % 100 % 

% Improvement 8.7% 11.1% 4.2% 7.5% 
 

Table 3. %Yield and EPC savings under Vdd scaling (iso-yield cond.) 
 

Arithmetic Units (16bit) Vdd (V) %Yield %EPC savings 
Proposed CSM 0.9 93 16.5 
Proposed WTM 0.85 96 25.5 

78



0
2
4
6
8

10
12
14

6 bits 8 bits  10 bits 12 bits 20 bits

 %
 T

hr
ou

gh
pu

t p
en

al
ty

3.7

3.9

4.1

4.3

%
 A

re
a 

O
ve

rh
ea

d

% Throughput penalty
% Area Overhead

0
2
4
6
8

10
12
14

6 bits 8 bits  10 bits 12 bits 20 bits

 %
 T

hr
ou

gh
pu

t p
en

al
ty

3.7

3.9

4.1

4.3

%
 A

re
a 

O
ve

rh
ea

d

% Throughput penalty
% Area Overhead

 
 Figure 12. Performance versus area overhead with # of inputs to 

LPB (WTM 16 bits) 

 
of bits increases. An area overhead of approximately 5-10% is 
obtained in case of the arithmetic units. In figure 12, the tradeoff 
between throughput penalty and area overhead for a 16 bit 
WTM is shown. From the graph we observe that throughput 
penalty decreases with increase in number of input bits to the 
LPB. In order to determine the actual throughput penalty from a 
system level perspective, we incorporated the proposed 
arithmetic units in a five stage DLX pipeline. The throughput 
penalty was assessed by running SPEC2K [9] benchmarks in 
Simple Scalar [10] simulator. The results given in figure 13 
show on an average a 3.03% throughput penalty by using 10 bits 
as input to the LPB. 

5. CONCLUSION 
        In this paper we proposed a new design methodology for 
process variation tolerant, low power arithmetic units (adders 
and multipliers). The design technique improves the yield of 
arithmetic units by reclaiming chips which would otherwise fail 
due to Vdd-scaling and/or process variations. We use a novel 
elastic clocking scheme to work around possible failures. 
Simulation results show a significant improvement in the yield 
while achieving reasonable energy per computation savings. 
Compared to traditional techniques our methodology tackles two 
issues: higher yield in the face of process variations and lower 
power consumption by Vdd-scaling, in a unified manner. 
Another attractive feature of our design is the flexibility it 
offers. We can either choose to have yield as the primary design 
metric in which case we sacrifice little power saving under 
scaled Vdd or decide to have a certain yield and obtain 
additional advantage of reduced energy per operation. 
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Figure 11. Power consumption under ISO Yield conditions for  (a) ripple carry adder (RCA) , (b) cascaded carry select adder (CCSA) and 

(c) Wallace multiplier (WTM), % Power savings and area overhead under ISO Yield conditions for (d) RCA, (e) CCSA, (f) WTM   
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Figure 13. Throughput penalty Vs. Number of inputs to LPB
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Figure 13. Throughput penalty Vs. Number of inputs to LPB
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