Combinational Logic Gates in CMOS

References:

Adapted from: Digital Integrated Circuits: A Design
Perspective, J. Rabaey, Prentice Hall © UCB
Principles of CMOS VLSI Design: A Systems Perspective,
N. H. E. Weste, K. Eshraghian, Addison Wesley

Adapted from: EE216A Lecture Notes by Prof. K. Bult © UCLA

Combinational vs. Sequential Logic

Out $=f(\ln)$

$$
\text { Out }=f(\ln , \text { State })
$$

State is related to previous inputs Stored in registers, memory etc

Overview

- Static CMOS
- Complementary CMOS
- Ratioed Logic
- Pass Transistor/Transmission Gate Logic
- Dynamic CMOS Logic
- Domino
- np-CMOS

Static CMOS Circuit

- At every point in time (except during the switching transients) each gate output is connected to either $V_{D D}$ or $\mathrm{V}_{S S}$ via a low-resistive path
- The outputs of the gates assume at all times the value of the Boolean function, implemented by the circuit
- In contrast, a dynamic circuit relies on temporary storage of signal values on the capacitance of high impedance circuit nodes

Digital Gates
 Fundamental Parameters

- Area and Complexity
- Performance
- Power Consumption
- Robustness and Reliability

What Can Go Wrong in CMOS Logic?

- Incorrect or insufficient power supplies
- Power supply noise Complementary CMOS is pretty
- Noise on gate input safe against these
- Faulty connections between transistors
- Clock frequency too high or circuit too slow

How about Ratioed or Dynamic Logic?

- All the previous and
- Incorrect ratios in ratioed logic
- Charge sharing in dynamic logic
- Incorrect clocking in dynamic logic

Complementary CMOS

PUN and PDN are dual networks

NMOS Transistors in Series/Parallel Connection

- Transistors can be thought as a switch controlled by its gate signal
- NMOS switch closes when switch control input is high

- NMOS passes a strong 0 but a weak 1

NMOS Transistors in Series/Parallel Connection

- Connect Y to GND

$$
\begin{gathered}
X=0 \text { if } A=1 \text { and } B=1 \text {, i.e., } A \cdot B=1 \\
X=\overline{A \cdot B}
\end{gathered}
$$

$$
\begin{gathered}
X=0 \text { if } A=1 \text { or } B=1 \text {, i.e., } A+B=1 \\
X=\overline{A+B}
\end{gathered}
$$

- Implement the complement of PDN

PMOS Transistors in Series/Parallel Connection

- PMOS switch closes when switch control input is low

$$
\begin{gathered}
X=Y \text { if } A=0 \text { and } B=0 \\
\text { or } A+B=1 \\
\text { or } A \cdot B=1
\end{gathered}
$$

$$
\begin{gathered}
X=Y \text { if } A=0 \text { or } B=0 \\
\overline{A \cdot B}=1 \\
\bar{A}+\bar{B}=1
\end{gathered}
$$

- PMOS passes a strong 1 but a weak 0

PMOS Transistors in Series/Parallel Connection

- Connect Y to VDD

$$
\begin{aligned}
& X=1 \text { if } A=0 \text { and } B=0 \\
& X=\overline{A+B}=\bar{A} \cdot \bar{B}
\end{aligned}
$$

$$
\begin{aligned}
& X=1 \text { if } A=0 \text { or } B=0 \\
& X=\overline{A \cdot B}=\bar{A}+\bar{B}
\end{aligned}
$$

- Combine series PDN and parallel PUN or parallel PDN and series PUN to complete the logic design to output good 1 and 0

Complementary CMOS Logic Style Construction

- PUN is the DUAL of PDN (can be shown using DeMorgan's Theorems)

$$
\begin{gathered}
\overline{A+B}=\bar{A} \bar{B} \\
\overline{A B}=\bar{A}+\bar{B} \\
\overline{G\left(i n_{1}, i n_{2}, i n_{3}, \ldots\right)} \equiv F\left(\overline{\text { in }_{1}}, \overline{\text { in }_{2}}, \overline{\text { in }_{3}}, \ldots\right)
\end{gathered}
$$

- The complementary gate is inverting
- Implements NAND, NOR, ...
- Non-inverting boolean function needs an inverter

The NAND Circuit

PDN connected to GND : $\bar{G}=\overline{A \cdot B}$ PUNconnected to $V_{D D}: F=\bar{A}+\bar{B}=\overline{A B}$
$\overline{G\left(i n_{1}, i n_{2}, i n_{3}, \ldots\right)} \equiv F\left(\overline{i n_{1}}, \overline{i n_{2}}, \overline{i n_{3}}, \ldots\right)$

The NOR Circuit

Example Gate: COMPLEX CMOS GATE

$$
F=\overline{((A \cdot B)+C \cdot(A+B))}=\overline{\text { carry }}
$$

Symmetrical!

$F=\overline{(A B C+A \bar{B} \bar{C}+\bar{A} \bar{B} C+\bar{A} B \bar{C})}=\overline{\text { sum }}$

Full Adder Circuit

4-input NAND Gate

Standard Cell Layout Methodology

Two Versions of (a+b).c

(a) Input order $\{a c b\}$

(b) Input order $\{a b c\}$

Logic Graph

Consistent Euler Path

$\{\mathrm{abc}\}$

Example: $x=a b+c d$

(a) Logic graphs for $\overline{(a b+c d)}$

(b) Euler Paths $\{a b c d\}$

(c) stick diagram for ordering $\{a b c d\}$

Properties of Complementary CMOS Gates

- High noise margin
- V_{OH} and V_{OL} are at V_{DD} and G_{ND}, respectively
- No static power consumption
- In steady state, no direct path between V_{DD} and V_{SS}
- Comparable rise and fall times under appropriate scaling of PMOS and NMOS transistors

Transistor Sizing

- For symmetrical response (dc, ac)
- For performance
- Input dependent
- Focus on worst-case

Propagation Delay Analysis - The Switch Model

Analysis of Propagation Delay

(b) Two-input NAND

- Assume C_{L} dominates
- Assume $R_{n}=R_{p}=$ resistance of minimum sized NMOS inverter
- For $t_{\text {pLH }}$
- Worst case when only one PMOS pulls up the output node
$-t_{\text {pLH }} \propto R_{p} C_{L}$
- For $\mathrm{t}_{\mathrm{pHL}}$
- Worst case when two NMOS in series
$-t_{p H L} \propto 2 R_{n} C_{L}$

3-Input NAND Gate

3-Input NAND Gate

Take $\mathrm{W}_{\mathrm{n}}=(3 / 2) \mathrm{W}_{\mathrm{p}}$

Design for Worst Case

3-input NAND Gate with Parasitic Capacitors

Worst Case Approximation Using Lumped RC Model

(We ignore the constant term 0.69 or 1.22)

$$
\begin{aligned}
& t_{d f}=\sum R_{\text {pulldown }} \times \sum C_{\text {pulldown }} \\
& =\left(R_{N 1}+R_{N 2}+R_{N 3}\right) \times\left(C_{a}+C_{b}+\left(C_{c}+C_{p+\text { load }}\right)\right)
\end{aligned}
$$

Distributed RC Effects

Worst case under lumped model: $\mathrm{t}_{\mathrm{n}}=\mathrm{nR} . \mathrm{nC}$

Comparison

RP-Model

Macro Modeling

$$
\mathrm{t}_{\mathrm{d}}=\mathrm{T}_{\mathrm{d}, \text { internal }}+\lambda \times \mathrm{C}_{\mathrm{load}}
$$

Effect of Loading

Effect of Fan-In and Fan-Out on Delay

$$
t_{d}=a_{1} F I+a_{2} F I^{2}+a_{3} F O
$$

- Fan-out: number of gates connected
- 2 gate capacitance per fan-out
- Fan-in: number of inputs to a gate
- Quadratic effect due to increasing resistance and capacitance

t_{p} as a function of Fan-In

AVOID LARGE FAN-IN GATES! (Typically not more than FI <4)

Example 3-Input NAND gate with Parasitic Capacitors

Worst Case Approximation by Lumped Model

$$
\begin{aligned}
t_{d r} & =R_{p} \times\left(C_{c}+C_{p+l o a d}\right)=10000 \times 0.4 \times 10^{-12}=4.0 n s \\
t_{d f} & =\Sigma R_{\text {pulldown }} \times \Sigma C_{\text {pulldown }} \\
& =\left(R_{N 1}+R_{N 2}+R_{N 3}\right) \times\left(C_{a}+C_{b}+\left(C_{c}+C_{p+l o a d}\right)\right) \\
& =(3 \times 5000) \times(3 \times 0.05+0.15+0.20) \times 10^{-12} \\
& =7.5 n s
\end{aligned}
$$

Penfield-Rubenstein Model

$$
\begin{aligned}
t_{d r} & =R_{p} \times\left(C_{c}+C_{p+l o a d}\right)=10000 \times 0.4 \times 10^{-12}=4.0 n s \\
t_{d f} & =\left[R_{N 1} C_{a}\right]+\left[\left(R_{N 1}+R_{N 2}\right) C_{b}\right]+\left[\left(R_{N 1}+R_{N 2}+R_{N 3}\right)\left(C_{c}+C_{p+l o a d}\right)\right] \\
& =5000 \times 0.05 p F+10000 \times 0.05 p F+15000 \times 0.4 p F=6.75 n s
\end{aligned}
$$

Worst Case Approximation by Lumped Model

Make $\mathrm{W}_{\mathrm{n}}=2 \mathrm{~W}_{\mathrm{p}}$

$$
\begin{aligned}
\mathrm{t}_{\mathrm{dr}} & =\mathrm{R}_{\mathrm{p}} \times\left(\mathrm{C}_{\mathrm{c}}+\mathrm{C}_{\mathrm{p}+\text { load }}\right)=10000 \times 0.45 \times 10^{-12}=4.5 \mathrm{~ns} \\
\mathrm{t}_{\mathrm{df}} & =\Sigma \mathrm{R}_{\text {pulldown }} \times \Sigma \mathrm{C}_{\text {pulldown }} \\
& =\left(R_{\mathrm{N} 1}+R_{\mathrm{N} 2}+R_{\mathrm{N} 3}\right) \times\left(\mathrm{C}_{\mathrm{a}}+\mathrm{C}_{\mathrm{b}}+\left(\mathrm{C}_{\mathrm{c}}+\mathrm{C}_{\text {p+load }}\right)\right) \\
& =(3 \times 2500) \times(3 \times 0.10+0.15+0.20) \times 10^{-12} \\
& =4.875 \mathrm{~ns}
\end{aligned}
$$

Penfield-Rubenstein Model

Make $\mathrm{W}_{\mathrm{n}}=2 \mathrm{~W}_{\mathrm{p}}$

$$
t_{d r}=R_{p} \times\left(C_{c}+C_{p+l o a d}\right)=10000 \times 0.45 \times 10^{-12}=4.5 \mathrm{~ns}
$$

$$
t_{d f}=\left[R_{N 1} C_{a}\right]+\left[\left(R_{N 1}+R_{N 2}\right) C_{b}\right]+\left[\left(R_{N 1}+R_{N 2}+R_{N 3}\right)\left(C_{c}+C_{p+l o a d}\right)\right]
$$

$$
=2500 \times 0.10 \mathrm{pF}+5000 \times 0.10 \mathrm{pF}+7500 \times 0.45 \mathrm{pF}=4.125 \mathrm{~ns}
$$

Rewriting Penfield-Rubenstein Equation

$$
\begin{aligned}
& t_{d}= {\left[R_{N 1} C_{a}\right]+\left[\left(R_{N 1}+R_{N 2}\right) C_{b}\right]+} \\
& {\left[\left(R_{N 1}+R_{N 2}+R_{N 3}\right)\left(C_{c}+C_{p+\text { load }}\right)\right] } \\
& \Rightarrow t_{d}= {\left[R_{N 1}\left(C_{a}+C_{b}+C_{c}+C_{p+\text { load }}\right)\right]+} \\
& {\left[R_{N 2}\left(C_{b}+C_{c}+C_{p+\text { load }}\right)\right]+} \\
& {\left[R_{N 3}\left(C_{c}+C_{p+\text { load }}\right)\right] } \\
& t_{d}=\sum R_{i i} C_{\text {downstream-i }}
\end{aligned}
$$

with: $\mathrm{C}_{\text {downstream- }}=$ downstream capacitance at node i $\mathrm{R}_{\mathrm{ii}}=$ resistance at node i

Progressive Sizing

- When parasitic capacitance is significant (e.g., when fanin is large), needs to consider distributed RC effect
- Increasing the size of M1 has the largest impact in terms of delay reduction
- $M_{1}>M_{2}>M_{3}>\ldots>M_{N}$

Delay Optimization by Transistor Ordering

Critical signal next to supply

Critical signal next to output

