## Exam 3

# ECE 559: MOS VLSI Design (Fall 2009) ECE Department, Purdue University 

December 3, 2009
Name: $\qquad$
PUID: $\qquad$

Instructions: It is important that you clearly show your work and mark the final answer clearly, closed book, closed notes, no calculator.

Time: 1 hour 15 minutes

## Scoring

Problem 1 (Total 30 points)
Part a) $\mathbf{2 0}$ points
Part b) 10 points
Problem 2 (Total 30 points)
Part a) 15 points
Part b) 15 points
Problem 3 (Total 40 points)
Part a) 20 points
Part b) 20 points

Total:
100 points

Problem 1: Consider an inverter of minimum size (input capacitance of $C_{i}$ ) driving a load $C_{L}$, which is $x$ times large as $C_{i}\left(C_{L}=x . C_{i}\right)$. The width of the PMOS transistor is $a$ times larger than the NMOS transistor. You decide to introduce another inverter (transistor widths are $u$ times larger than the first for both PMOS and NMOS) between the minimum sized inverter and the load $C_{L}$.

Answer the following questions. Clearly state your assumptions, if any.
[30 points]
a) What should $u$ be to minimize the delay? Show your calculations.
[20 points]
b) If $x=5$, does it make sense to introduce the second inverter? Explain your answer. (Without explanation, you will not get any points.)
[10 points]

## Solution:

a) Let the propagation delay of a minimum sized inverter driving another minimum sized inverter is $t_{p o}$.

Then, the propagation delay of a minimum sized inverter driving a load $C_{L}$ (where, $C_{L}=x . C_{i}$ ),

$$
t_{p 1}=x . t_{p 0} .
$$

Note that the proportionality factor between the internal capacitance and the input capacitance has been assumed as 1 .

If the second inverter is added, the total propagation delay would be,

$$
t_{p 2}=u \cdot t_{p 0}+\left(x \cdot C_{i} / u \cdot C_{i}\right) \cdot t_{p 0}=(u+x / u) \cdot t_{p o} .
$$

To get the value of $u$ that minimizes the delay $t_{p 2}$, we need to differentiate $t_{p 2}$ with respect to $u$. Accordingly,

$$
\begin{array}{ll} 
& 1-x / u^{2}=0 \\
\text { i.e., } & u=v x .
\end{array}
$$

Accordingly,

$$
t_{p 2, o p t}=(\sqrt{ } x+x / \sqrt{ } x) \cdot t_{p 0}=2 \sqrt{ } x t_{p 0} .
$$

b) It makes sense to introduce an inverter when

$$
\begin{array}{ll} 
& t_{p 2, \text { opt }}<t_{p 1} \\
\text { i.e., } & 2 \sqrt{ } x<x \\
\text { i.e., } & x>4 .
\end{array}
$$

So, if $x=5$, it makes sense to introduce the second inverter as we will have lower propagation delay in that case.

Note: we are comparing two different configurations of two different areas. With the introduction of the second inverter, the overall area required for the second configuration is increased. We could have argued for an iso-area comparison.

Problem 2: Consider a standard 6-T SRAM cell as shown in the below diagram. Due to Random Dopant Fluctuation (RDF), transistors in a single cell may have different threshold voltages than that of what was designed for. Assume that the cell is designed for

$$
\mathrm{V}_{\mathrm{DD}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{tn}}=0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{tp}}=-0.3 \mathrm{~V} .
$$

Consider that due to $R D F$, a variation of $\pm \mathbf{3 0} \mathbf{~ m V}$ in threshold voltage can happen.
Clearly and concisely answer the following questions with explanation. Write your assumptions, if any.
[30 points]
a) Determine the threshold voltages of all the transistors for worst case read operation.
[15 points]
b) Determine the threshold voltages of all the transistors for worst case write operation.
[15 points]


Solution: There will be two ways of providing the answer; both will get full-credit.

## First Way:

a) Assume $Q=1(\bar{Q}=0)$ is stored in the cell. We know that for successful read operation, $M_{1}$ has to be strong enough compared to $M_{5}$ so that the voltage at the node $\overline{\mathrm{Q}}$ does not rise high enough to flip the bit in the SRAM cell.

Accordingly, for worst case read operation to happen, the threshold voltages of the MOSs $\mathrm{M}_{1}$ and $\mathrm{M}_{5}$ require to change in such a way that $\mathbf{M}_{\mathbf{1}}$ gets weaker and $\mathbf{M}_{\mathbf{5}}$ gets stronger.

Also, if $\mathbf{M}_{4}$ gets weaker and $\mathbf{M}_{\mathbf{3}}$ gets stronger, it will reduce the trip-point voltage of the $\mathbf{M}_{3^{-}}$ $\mathrm{M}_{4}$ inverter and hence will facilitate the worst case read operation to happen.

If $\mathbf{M}_{\mathbf{2}}$ gets stronger, it will try to pull-up the voltage at Q that will facilitate the worst case read operation.

Finally, if $\mathbf{M}_{\mathbf{6}}$ gets weaker, it will fight less to keep the voltage at node $Q$ to logic 1 which in turn will facilitate flipping of the bit in the cell.

Accordingly,

$$
\begin{aligned}
& \mathrm{VT}_{\mathrm{M} 1}=(300+30) \mathrm{mv}=330 \mathrm{mv}, \\
& \mathrm{VT} \mathrm{M}_{\mathrm{M} 2}=-(300-30) \mathrm{mv}=-270 \mathrm{mv}, \\
& \mathrm{VT} \mathrm{M}_{\mathrm{M}}=(300-30) \mathrm{mv}=270 \mathrm{mv}, \\
& V \mathrm{~T}_{\mathrm{M} 4}=-(300+30) \mathrm{mv}=-330 \mathrm{mv}, \\
& V \mathrm{~T}_{\mathrm{M} 5}=(300-30) \mathrm{mv}=270 \mathrm{mv}, \\
& V \mathrm{~T}_{\mathrm{M} 6}=(300+30) \mathrm{mv}=330 \mathrm{mv} .
\end{aligned}
$$

Similarly if we assume $Q=0(\bar{Q}=1)$ is stored in the cell, we can determine the threshold voltages of all the transistors for worst case read operation to happen.
b) Assume $\mathrm{Q}=1(\overline{\mathrm{Q}}=0)$ is stored in the cell. We know that for successful write operation $(\mathrm{Q}=$ 0 ), $M_{6}$ has to be strong enough compared to $M_{4}$ so that the voltage at the node $Q$ does fall low enough to facilitate the writing $Q=0$ in the SRAM cell.

Accordingly, for worst case write operation to happen, the threshold voltages of the MOSs $M_{4}$ and $M_{6}$ require to change in such a way that $\mathbf{M}_{4}$ gets stronger and $\mathbf{M}_{6}$ gets weaker.

Also, if $\mathbf{M}_{\mathbf{1}}$ gets stronger and $\mathbf{M}_{\mathbf{2}}$ gets weaker it will reduce the trip-point voltage of the $\mathbf{M}_{\mathbf{1}^{-}}$ $M_{2}$ inverter and hence will facilitate the worst case write operation to happen.

If $\mathbf{M}_{\mathbf{3}}$ gets weaker, it will fight less to bring down the voltage at node $Q$ that would facilitate the worst case write operation to happen.

Finally, if $\mathbf{M}_{\mathbf{5}}$ gets weaker, it will fight less to bring up the voltage at node $\overline{\mathbf{Q}}$ to logic 1 which in turn will facilitate the worst case write operation to happen.

Accordingly,

$$
\begin{aligned}
& \mathrm{VT}_{\mathrm{M} 1}=(300-30) \mathrm{mv}=270 \mathrm{mv}, \\
& \mathrm{VT}_{\mathrm{M} 2}=-(300+30) \mathrm{mv}=-330 \mathrm{mv}, \\
& \mathrm{VT} \mathrm{~T}_{\mathrm{M} 3}=(300+30) \mathrm{mv}=330 \mathrm{mv}, \\
& \mathrm{VT}_{\mathrm{M} 4}=-(300-30) \mathrm{mv}=-270 \mathrm{mv}, \\
& \mathrm{VT}_{\mathrm{M} 5}=(300+30) \mathrm{mv}=330 \mathrm{mv}, \\
& V \mathrm{~T}_{\mathrm{M} 6}=(300+30) \mathrm{mv}=330 \mathrm{mv} .
\end{aligned}
$$

Similarly if we assume $Q=0(\bar{Q}=1)$ is stored in the cell, we can determine the threshold voltages of all the transistors for worst case write operation to happen.

## Second Way:

Assumption: For both the cases we have assumed symmetric operation of SRAM cell considering the possibility of reading (or writing) 0 or 1 is same.
a) We know that for successful read operation, $M_{1}\left(M_{3}\right)$ has to be strong enough compared to $M_{5}\left(M_{6}\right)$ so that the voltage at the node $\bar{Q}(Q)$ does not rise high enough to flip the bit in the SRAM cell.

Accordingly, for worst case read operation to happen, the threshold voltages require to change in such a way that $\mathbf{M}_{\mathbf{1}}\left(\mathbf{M}_{\mathbf{3}}\right)$ gets weaker and $\left.\mathbf{M}_{\mathbf{5}} \mathbf{(} \mathbf{M}_{6}\right)$ gets stronger.

Also, if $\mathbf{M}_{4}\left(\mathbf{M}_{2}\right)$ gets weaker, it will reduce the trip-point voltage of the $M_{3}-M_{4}\left(M_{1}-M_{2}\right)$ inverter and hence will facilitate the worst case read operation to happen.

Accordingly,

$$
\begin{aligned}
& \mathrm{VT}_{\mathrm{M} 1}=\mathrm{VT}_{\mathrm{M} 3}=(300+30) \mathrm{mv}=330 \mathrm{mv}, \\
& \mathrm{VT}_{\mathrm{M} 2}=\mathrm{VT}_{\mathrm{M} 4}=-(300+30) \mathrm{mv}=-330 \mathrm{mv}, \\
& \mathrm{VT}_{\mathrm{M} 5}=\mathrm{VT}_{\mathrm{M} 6}=(300-30) \mathrm{mv}=270 \mathrm{mv} .
\end{aligned}
$$

b) We know that for successful write operation, $\mathrm{M}_{5}\left(\mathrm{M}_{6}\right)$ has to be strong enough compared to $M_{2}\left(M_{4}\right)$ so that the voltage at the node $\bar{Q}(Q)$ does fall sufficiently enough to facilitate the writing of the bit in the SRAM cell.

Accordingly, for worst case write operation to happen, the threshold voltages require to change in such a way that $\mathbf{M}_{\mathbf{2}}\left(\mathbf{M}_{4}\right)$ gets stronger and $\mathbf{M}_{5}\left(\mathbf{M}_{6}\right)$ gets weaker.

Also, if $\mathbf{M}_{\mathbf{3}}\left(\mathbf{M}_{\mathbf{1}}\right)$ gets stronger, it will reduce the trip-point voltage of the $\mathrm{M}_{3}-\mathrm{M}_{4}\left(\mathrm{M}_{1}-\mathrm{M}_{2}\right)$ inverter and hence will facilitate the worst case write operation to happen.

Accordingly,

$$
\begin{aligned}
& \mathrm{VT}_{\mathrm{M} 1}=\mathrm{VT}_{\mathrm{M} 3}=(300-30) \mathrm{mv}=270 \mathrm{mv}, \\
& \mathrm{VT}_{\mathrm{M} 2}=\mathrm{VT}_{\mathrm{M} 4}=-(300-30) \mathrm{mv}=-270 \mathrm{mv}, \\
& \mathrm{VT}_{\mathrm{M} 5}=\mathrm{VT}_{\mathrm{M} 6}=(300+30) \mathrm{mv}=330 \mathrm{mv} .
\end{aligned}
$$

Problem 3: Consider a 10-bit NAND row address decoder with 2-bit pre-decoder for a memory array. Answer the following questions. Write your assumptions, if any.
[40 points]
a) Design the decoder and draw the corresponding schematic diagram. (You don't need to draw the complete diagram, but draw enough so that it's clear.)
b) Using the Elmore delay model, determine the approximate delay improvement compared to the case when the pre-decoder is not used.

## Solution:

a) For the case of an 10-bit NAND row address decoder with 2-bit pre-decoder, the expression for $\mathrm{WL}_{0}$ can be grouped as

$$
\begin{aligned}
W L_{0} & =\overline{\overline{A_{0}} \overline{A_{1}} \overline{A_{2}} \overline{A_{3}} \overline{A_{4}} \overline{A_{5}} \overline{A_{6}} \overline{A_{7}} \overline{A_{8}} \overline{A_{9}}} \\
& =\overline{\overline{\left(A_{0}+A_{1}\right)} \overline{\left(A_{2}+A_{3}\right)} \overline{\left(A_{4}+A_{5}\right)} \overline{\left(A_{6}+A_{7}\right)} \overline{\left(A_{8}+A_{9}\right)}} .
\end{aligned}
$$

Other terms ( $\mathrm{WL}_{1}$ to $\mathrm{WL}_{1023}$ ) can be written similarly.

b) Without pre-decoder stage, there will be 10-input NAND gate for each word line. Using Elmore delay model (with NMOS resistance $R_{N}$ and capacitance $C$ ), the approximate maximum propagation delay (output falling delay for NAND gate) would be

$$
t_{10-\text { nand }}=R_{N} C+2 R_{N} C+\ldots+10 R_{N} C+\left(10 R_{N} / n\right) \cdot\left(10 C \cdot p+C_{L}\right)
$$

where, $n$ and $p$ are the sizing factor of the NMOS and PMOS transistors, respectively. The sizing factors we can assume as $n=10$ (since we have a 10 -input NAND gate) and $p=3$ (width of PMOS is set as three times as the width of the NMOS for an invererter). $C_{L}$ represents the load-capacitance at an word line or a buffer, if introduced.

$$
t_{10 \text {-nand }}=(10 * 11 / 2) \cdot R_{N} C+\left(10 R_{N} / 10\right) \cdot\left(10 C \cdot 3+C_{L}\right)=55 R_{N} C+30 R_{N} C+R_{N} C_{L}=85 R_{N} C+R_{N} C_{L} .
$$

Notice the effect of considering the capacitances due to PMOS transistors in the 10-input NAND gate.

With a 2-bit pre-decoder, using Elmore delay model, the approximate maximum propagation delay would be

$$
\begin{aligned}
t_{\text {pre-decoder }}= & t_{2 \text {-nor }}+t_{5 \text {-nand }} \\
& =\left[R_{P} C+2 R_{P} C+\left(2 R_{P} / 6\right) \cdot(2 C \cdot 1)\right]+\left[R_{N} C+2 R_{N} C+\ldots+5 R_{N} C+\left(5 R_{N} \cdot 5\right) \cdot\left(5 C \cdot 3+C_{L}\right)\right] \\
& =3 \cdot 66\left(3 \cdot R_{N}\right) C+\left(15 R_{N} C+15 R_{N} C\right)+R_{N} C_{L} \quad\left(R_{P} \approx 3 R_{N}\right) \\
& =41 R_{N} C+R_{N} C_{L} .
\end{aligned}
$$

Note that in the 2-input NOR gates we have assumed the sizing of the PMOS transistors as 6 times the sizing of the NMOS transistors to accord to the similar assumption made previously. Also notice that we have not quite considered the load capacitance at the output of the each NOR gate at the pre-decoder stage represented by the input capacitances of the connected transistors in the NAND gates at the final decoder stage.

So, the approximate delay improvement would be $\quad=\left(85 R_{N} C+R C_{L}\right)-\left(41 R_{N} C+R_{N} C_{L}\right)$

$$
=44 \mathrm{R}_{N} \mathrm{C} .
$$

Considering that the output of the NAND gates at the final decoder stage is buffered, we can ignore $\mathrm{C}_{\mathrm{L}}$. Hence, the approximate percentage delay improvement would be 44/85 = 51.76\%.

