Exam 3

ECE 559: MOS VLSI Design (Fall 2009) ECE Department, Purdue University

December 3, 2009

Name: \qquad

PUID:

\qquad

Instructions: It is important that you clearly show your work and mark the final answer clearly, closed book, closed notes, no calculator.

Time: 1 hour 15 minutes

Scoring

Problem 1 (Total 30 points)
Part a) $\mathbf{2 0}$ points
Part b) 10 points
Problem 2 (Total 30 points)
Part a) 15 points
Part b) 15 points
Problem 3 (Total 40 points)
Part a) 20 points
Part b) 20 points

Total:
100 points

Problem 1: Consider an inverter of minimum size (input capacitance of C_{i}) driving a load C_{L}, which is x times large as $C_{i}\left(C_{L}=x . C_{i}\right)$. The width of the PMOS transistor is a times larger than the NMOS transistor. You decide to introduce another inverter (transistor widths are u times larger than the first for both PMOS and NMOS) between the minimum sized inverter and the load C_{L}.

Answer the following questions. Clearly state your assumptions, if any.
a) What should u be to minimize the delay? Show your calculations.
[20 points]
b) If $x=5$, does it make sense to introduce the second inverter? Explain your answer. (Without explanation, you will not get any points.)
[10 points]

Problem 2: Consider a standard 6-T SRAM cell as shown in the below diagram. Due to Random Dopant Fluctuation (RDF), transistors in a single cell may have different threshold voltages than that of what was designed for. Assume that the cell is designed for

$$
\mathrm{V}_{\mathrm{DD}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{tn}}=0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{tp}}=-0.3 \mathrm{~V} .
$$

Consider that due to $R D F$, a variation of $\pm \mathbf{3 0} \mathbf{~ m V}$ in threshold voltage can happen.
Clearly and concisely answer the following questions with explanation. Write your assumptions, if any.
[30 points]
a) Determine the threshold voltages of all the transistors for worst case read operation.
[15 points]
b) Determine the threshold voltages of all the transistors for worst case write operation.
[15 points]

Problem 3: Consider a 10-bit NAND row address decoder with 2-bit pre-decoder for a memory array. Answer the following questions. Write your assumptions, if any.
[40 points]
a) Design the decoder and draw the corresponding schematic diagram. (You don't need to draw the complete diagram, but draw enough so that it's clear.)
[20 points]
b) Using the Elmore delay model, determine the approximate delay improvement compared to the case when the pre-decoder is not used.
[20 points]

Scratch Paper 1

Scratch Paper 2

