Exam 1

ECE 559: MOS VLSI Design (Fall 2009) ECE Department, Purdue University

October 1, 2009
Name: SOLUTION

PUID: \qquad

Instructions: It is important that you clearly show your work and mark the final answer clearly, closed book, closed notes, no calculator.

Time: 1 hour 15 minutes

Scoring

Problem 1 (Total 30 points)
Part a) 15 points \qquad
Part b) 15 points \qquad
Problem 2 (Total 30 points)
Part a) 15 points
Part b) 15 points
Problem 3 (Total 40 points)
Part a) $\mathbf{3 0}$ points \qquad
Part b) 10 points
Total:
100 points
\qquad
\qquad

Problem 1: For the circuits and conditions given below, determine the energy dissipated. Clearly specify your assumptions, if any.
[30 points]

Part a) Inputs A and B are switching simultaneously from $V_{D D}$ to 0 followed by 0 to $V_{D D}$. Assume $\mathrm{V}_{\text {out }}=0$ initially.
[15 points]

When the inputs A and B simultaneously switch from $V_{D D}$ to 0 , the PMOS network gets $O N$ and current is drawn from supply that charges the output node capacitance C_{L} to $V_{D D}$. Energy drawn from supply

$$
E_{V_{D D}}=\int i(t) V_{D D} d t=\int_{0}^{V_{D D}} C_{L} V_{D D} d V_{\text {out }}=C_{L} V_{D D}^{2} .
$$

Energy stored in the capacitor C_{L},
$E_{\text {stored }, C_{L}}=\int i(t) V_{\text {out }} d t=\int_{0}^{V_{D D}} C_{L} V_{\text {out }} d V_{\text {out }}=\frac{1}{2} C_{L} V_{D D}^{2}$.

So,
$E_{\text {dissipated }, 0 \rightarrow 1}=E_{V_{D D}}-E_{\text {stored }, C_{L}}=\frac{1}{2} C_{L} V_{D D}^{2}$.

When the inputs A and B simultaneously switch from O to $V_{D D}$, the NMOS network gets $O N$ and the output node capacitance C_{L} gets discharged to 0 .

$$
E_{\text {dissipated }, 1 \rightarrow 0}=\int i(t) V_{\text {out }} d t=\int_{V_{D D}}^{0}-C_{L} V_{\text {out }} d V_{\text {out }}=\frac{1}{2} C_{L} V_{D D}^{2}
$$

So total energy dissipated

$$
E_{\text {total }}=E_{\text {dissipated }, \rightarrow 0}+E_{\text {dissipated }, 0 \rightarrow 1}=\frac{1}{2} C_{L} V_{D D}^{2}+\frac{1}{2} C_{L} V_{D D}^{2}=C_{L} V_{D D}^{2}
$$

Putting $C_{L}=20 \mathrm{fF}$ and $V_{D D}=1 \mathrm{~V}$,

$$
\mathrm{E}_{\text {dissipated, total }}=20 \mathrm{f} \text { Joule }
$$

Part b) The voltage at the supply terminal is switching from $\mathbf{0}$ to $\mathbf{V}_{\mathbf{D D}}$. Assume $\mathrm{A}=1 \mathrm{~V}$ and $\mathrm{B}=0$.

When the inputs $A=1 \mathrm{~V}$ and $\mathrm{B}=0$, the PMOS network gets ON and current is drawn from supply that charges the output node capacitance C_{L} to $V_{D D}$. Energy drawn from source

$$
E_{V_{D D}}=\int i(t) V_{D D} d t=\int_{0}^{V_{D D}} C_{L} V_{D D} d V_{\text {out }}=C_{L} V_{D D}^{2} .
$$

Energy stored in the capacitor C_{L},

$$
E_{\text {stored }, C_{L}}=\int i(t) V_{\text {out }} d t=\int_{0}^{V_{D D}} C_{L} V_{\text {out }} d V_{\text {out }}=\frac{1}{2} C_{L} V_{D D}^{2} .
$$

So,

$$
E_{\text {dissipated }, 0 \rightarrow 1}=E_{V_{D D}}-E_{\text {stored }, C_{L}}=\frac{1}{2} C_{L} V_{D D}^{2} .
$$

Putting $C_{L}=20 f \mathrm{~F}$ and $V_{D D}=1 \mathrm{~V}$,

$$
\mathrm{E}_{\text {dissipated }}=10 \mathrm{f} \text { Joule }
$$

Problem 2:

Part a) For the circuit shown below, find the minimum value of \mathbf{R} so that $\mathrm{V}_{\mathrm{OL}}=0.2 \mathrm{~V} . \mathrm{V}_{\mathrm{OL}}$ represents the output low voltage. Clearly state all of your assumptions.

What will be the V_{OH} ? V_{OH} represents the output high voltage. Explain your answer.

$$
K_{n}^{\prime}=\mu_{n} C_{o x}=40 \mathrm{e}-6 \mathrm{~A} / \mathrm{v}^{2}
$$

$$
V_{t n}=0.3 \mathrm{~V}
$$

Answer

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{n}}^{\prime}=\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=40 \mathrm{e}-6 \mathrm{~A} / \mathrm{V}^{2} \\
& \mathrm{~V}_{\mathrm{tn}}=0.3 \mathrm{~V}
\end{aligned}
$$

$I_{R}=\frac{V_{D D}-V_{O L}}{R}=\frac{1-0.2}{R}=\frac{0.8}{R}$.
I_{R} has to be equal to the current flowing through the NMOS network as they are serially connected, i.e.

$$
I_{R}=I_{N M O S}=I_{A B}+I_{C}
$$

To get the minimum value of \mathbf{R}, I_{R} has to be maximum, i.e., $I_{N M O S}$ has to be maximum. The output low voltage is achieved when $A=B=1$ or $C=1$ and of course when $A=B=C=1$. Accordingly, if all the NMOS transistors are $O N$, i.e., $A=B=C=1$ (as OFF current is assumed to be zero), the minimum value of R is achieved.

To calculate $I_{A B}$ we have to determine the voltage at the intermediate node, V_{x}. Both the NMOSs with inputs A and B will be apparently in linear region. This is because of the reason that there is only 0.2 V to be dropped across both the transistors and for both of them the linear region condition would be satisfied, i.e.,

$$
\mathrm{V}_{\mathrm{ds}, \mathrm{~A}}<\mathrm{V}_{\mathrm{GS}, \mathrm{~A}}-\mathrm{V}_{\mathrm{tn}} \text { and } \mathrm{V}_{\mathrm{ds}, \mathrm{~B}}<\mathrm{V}_{\mathrm{GS}, \mathrm{~B}}-\mathrm{V}_{\mathrm{tn}} .
$$

Anyway, we can double-check later on after finding the voltage V_{x}. Since the NMOSs with inputs A and B are serially connected

$$
\begin{aligned}
& I_{A B}=I_{A}=I_{B} \\
& \Rightarrow\left((1.0-0.3-v x) *(0.2-v x)-\frac{(0.2-v x)^{2}}{2}\right)=\left((1.0-0.3) * v x-\frac{v x^{2}}{2}\right) \\
& \Rightarrow\left((0.7-v x) *(0.2-v x)-\frac{(0.2-v x)^{2}}{2}\right)=\left(0.7 * v x-\frac{v x^{2}}{2}\right)
\end{aligned}
$$

Since, V_{X} has to be less than 0.2 V and the transistor with input A is ON , we can neglect V_{X} with respect to 0.7 V . Also, body effect is not considered here. Accordingly,

$$
\begin{aligned}
& \left(0.7 *(0.2-v x)-\frac{(0.2-v x)^{2}}{2}\right)=\left(0.7 * v x-\frac{v x^{2}}{2}\right) \\
& \Rightarrow 0.2-v x=v x \\
& \Rightarrow v x=0.1
\end{aligned}
$$

We can verify now that both of the NMOSs are indeed in linear region.

$$
\begin{aligned}
& I_{R}=I_{\text {NMOS }}=I_{A B}+I_{C}=I_{B}+I_{C} \\
& \Rightarrow \frac{0.8}{R}=40 * 10^{-6}\left(4 *\left(0.7 * 0.1-\frac{0.1^{2}}{2}\right)+1 *\left(0.7 * 0.2-\frac{0.2^{2}}{2}\right)\right) \\
& \Rightarrow \frac{0.8}{R}=40 * 10^{-6}(4 * 0.065+1 * 0.12) \\
& \Rightarrow \frac{0.8}{R}=40 * 10^{-6} * 0.38 \\
& \Rightarrow \frac{0.8}{R} \simeq 40 * 10^{-6} * 0.40 \\
& \Rightarrow R \simeq 5 * 10^{4} \Omega
\end{aligned}
$$

So,

$$
\mathrm{R}_{\text {minimum }}=50 \mathrm{~K} \Omega
$$

In the previous calculation we have assumed different V_{OL} for different input vector combinations and calculated the minimum R . If V_{OL} is assumed to be the output low voltage for all the possible input combinations, then we have to consider only the highest-resistance path from output to ground when the output is low because that will cause the highest V_{OL} at the output. We need choose the minimum R for which the highest $V_{O L}$ will occur because if R is more than a minimum value, V_{OL} will just go lower. Accordingly, we need to consider only I_{C} because that corresponds to the lowest ON current through the NMOS network when the NMOS network is ON and the output is low. So,

$$
\begin{aligned}
& \frac{0.8}{R}=40 * 10^{-6} * 1 *\left(0.7 * 0.2-\frac{0.2^{2}}{2}\right) \\
& \Rightarrow \frac{0.8}{R}=40 * 10^{-6} * 1 * 0.12 \\
& \Rightarrow R=16.7 * 10^{4} \Omega
\end{aligned}
$$

Accordingly,

$$
\mathrm{R}_{\text {minimum }}=167 \mathrm{~K} \Omega
$$

Note: Full credit will be given to any of the two approaches.

When NMOS network is off (for certain combinations of the inputs A, B, and C), the current flowing through the resistor R will eventually charge the output node capacitance. The charging time will vary depending on the value of R but eventually the output is going to charge up to $V_{\text {DD }}$. So,

$$
\mathrm{V}_{\mathrm{OH}}=1 \mathrm{~V}
$$

Part b) For the part a), explain qualitatively the result of body effect on V_{OL} and V_{OH}.

Result of body effect on V_{OL}

Since the substrate and source nodes for the NMOS with input A are not at the same potential, the NMOS will experience an increase in threshold voltage. So eventually the total current flowing through the NMOS network, $I_{\text {NMOS }}$ would decrease. But,

$$
I_{R}=I_{N M O S} .
$$

So

$$
V_{o u t}=V_{D D}-I_{R} R
$$

would increase. Hence, $V_{\mathbf{O L}}$ will increase.

Result of body effect on V_{OH}

Since during the determination of V_{OH} we consider the NMOS network to be off and we have only a resistor connecting V_{DD} to $\mathrm{V}_{\mathrm{Out}}$, body effect will not affect V_{OH}.

Problem 3:

Part a) For the NMOS shown above, derive an expression of electron current flowing from source (S) to Drain (D). μ_{1}, μ_{2} are electro-chemical potential energies at the source and drain terminals, respectively. The Fermi distribution function $f(E)$ specifies, under equilibrium conditions, the probability that an available state at an energy E will be occupied by an electron.

$$
f(E)=\frac{1}{1+e^{\frac{\left(E-E_{F}\right)}{K T}}}
$$

where E_{F} is the Fermi level. Clearly show your steps, specify your assumptions, and name the parameters you are using.
[30 points]

Answer

The electron current that is flowing from source to drain (I_{SD}) and drain to source (l_{DS}) can be written as

$$
\begin{aligned}
& I_{s d}=q A n_{+} v_{+} \\
& I_{d s}=q A n_{-} v_{-}
\end{aligned}
$$

where
$q=$ single electron charge (C),
A = cross-sectional area (cm^{2}) of source/drain,
$\mathrm{n}_{+}=$number of electrons $/ \mathrm{cm}^{3}$ traversing from source to drain,
$\mathrm{n}_{\mathrm{n}}=$ number of electrons $/ \mathrm{cm}^{3}$ traversing from drain to source,
$\mathrm{v}_{+}=$average velocity $(\mathrm{cm} / \mathrm{sec})$ of the electrons traversing from source to drain,
$v_{\text {- }}=$ average velocity ($\mathrm{cm} / \mathrm{sec}$) of the electrons traversing from drain to source.

Note that, the unit of $I_{s d}$ and $I_{d s}$ are in Ampere.

In general we can assume,

$$
\mathrm{v}_{+}=\mathrm{v}_{-}=\mathrm{v} .
$$

We know that the number of electrons,

$$
\mathrm{n}=\text { density of states*Fermi function. }
$$

Since, we have only one energy level, we will have density of states as 1. Accordingly,

$$
\begin{array}{ll}
n_{+}=f_{1}(\varepsilon)=\frac{1}{1+e^{\frac{\left(\varepsilon-\mu_{1}\right)}{K T}}} \simeq e^{-\frac{\left(\varepsilon-\mu_{1}\right)}{K T}} & \text { for }\left(\varepsilon-\mu_{1}\right) \gg K T \\
n_{-}=f_{2}(\varepsilon)=\frac{1}{1+e^{\frac{\left(\varepsilon-\mu_{2}\right)}{K T}}} \simeq e^{-\frac{\left(\varepsilon-\mu_{2}\right)}{K T}} & \text { for }\left(\varepsilon-\mu_{2}\right) \gg \mathrm{KT}
\end{array}
$$

Since, according to the figure provided, we have put some positive voltage at node D with respect to source node S,

$$
\begin{aligned}
& \mu_{1}>\mu_{2} \\
& \Rightarrow n_{+}>n_{-}
\end{aligned}
$$

Accordingly, there will be a net electron current flowing from source to drain, i.e.,

$$
\begin{aligned}
& I=I_{s d}-I_{d s}=q A v\left(n_{+}-n_{-}\right) \\
& \Rightarrow I=q A v\left(e^{-\frac{\left(\varepsilon-\mu_{1}\right)}{K T}}-e^{-\frac{\left(\varepsilon-\mu_{2}\right)}{K T}}\right) \\
& \Rightarrow I=q A v e^{-\frac{\left(\varepsilon-\mu_{1}\right)}{K T}}\left(1-e^{-\frac{\left(\mu_{1}-\mu_{2}\right)}{K T}}\right) \\
& \Rightarrow I=q A v e^{-\frac{\left(\varepsilon-\mu_{1}\right)}{K T}}\left(1-e^{-\frac{\left(\mu_{1}-\mu_{2}\right)}{K T}}\right) \\
& \Rightarrow I=q A v e^{-\frac{\left(\varepsilon_{0}-\mu_{1}\right)}{K T}} e^{\frac{\left(\varepsilon_{0}-\varepsilon\right)}{K T}}\left(1-e^{-\frac{\left(\mu_{1}-\mu_{2}\right)}{K T}}\right)
\end{aligned}
$$

Now, we can write

$$
\begin{aligned}
& \mu_{1}-\mu_{2}=q V_{D S} \\
& \varepsilon_{0}-\varepsilon=\frac{q V_{G S}}{m}
\end{aligned}
$$

where, m is the body-bias coefficient. It arises from the fact that when a voltage V_{GS} (gate-tosource voltage) is applied, there is some voltage drop that happens across the gate oxide as well. Thus only a part of the voltage applied is responsible to shifting the gate energy level downward. Thus, $m>1$ in general. So,

$$
\begin{aligned}
& I=q A v e^{-\frac{\left(\varepsilon_{0}-\mu_{1}\right)}{K T}} e^{\frac{V_{G S}}{m K T}}\left(1-e^{-\frac{q V_{D S}}{K T}}\right) \\
& \Rightarrow I=I_{0} e^{\frac{V_{G S}}{m K T}}\left(1-e^{-\frac{q V_{D S}}{K T}}\right)
\end{aligned}
$$

where,

$$
I_{0}=q A v e^{-\frac{\left(\varepsilon_{0}-\mu_{1}\right)}{K T}}
$$

Part b) Explain qualitatively the effect of Drain Induced Barrier Lowering (DIBL) on the current that you have derived in part a).
[10 points]

When a positive voltage at drain is applied (with respect to source), it lowers the effective barrier height as shown in the below figure. Ideally gate only should have control over determining the barrier height. But, drain gets also some control as it is electrostatically coupled to the gate.

So due to DIBL, the electrons going from source-to-drain and drain-to-source both are (exponentially) increased. But as the Fermi level at drain is at lower potential than that of the source, the increase in the number of electrons traversing from source-to-drain is more than that of for drain-to-source. Accordingly, the current that is calculated in part a) would get increased.

