Exam 1

ECE 559: MOS VLSI Design (Fall 2009) ECE Department, Purdue University

October 1, 2009

Name: \qquad

PUID:

\qquad

Instructions: It is important that you clearly show your work and mark the final answer clearly, closed book, closed notes, no calculator.

Time: 1 hour 15 minutes

Scoring

Problem 1 (Total 30 points)
Part a) 15 points \qquad
Part b) 15 points \qquad
Problem 2 (Total 30 points)
Part a) 15 points
Part b) 15 points
Problem 3 (Total 40 points)
Part a) $\mathbf{3 0}$ points \qquad
Part b) 10 points
Total:
100 points \qquad

Problem 1: For the circuits and conditions given below, determine the energy dissipated. Clearly specify your assumptions, if any.
[30 points]

Part a) Inputs A and B are switching simultaneously from $V_{D D}$ to 0 followed by 0 to $V_{D D}$. Assume $\mathrm{V}_{\text {out }}=0$ initially.
[15 points]

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{p}}^{\prime}=\mu_{\mathrm{p}} C_{\mathrm{ox}}=30 \mathrm{e}-6 \mathrm{~A} / \mathrm{V}^{2} \\
& \mathrm{~K}_{\mathrm{n}}^{\prime}=\mu_{\mathrm{n}} C_{\mathrm{ox}}=60 \mathrm{e}-6 \mathrm{~A} / \mathrm{V}^{2} \\
& \mathrm{~V}_{\mathrm{tp}}=-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{tn}}=0.3 \mathrm{~V}
\end{aligned}
$$

Part b) The voltage at the supply terminal is switching from $\mathbf{0}$ to $\mathbf{V}_{\mathbf{D D}}$. Assume $\mathrm{A}=1 \mathrm{~V}$ and $\mathrm{B}=0$.
[15 points]

Problem 2:

Part a) For the circuit shown below, find the minimum value of \mathbf{R} so that $\mathrm{V}_{\mathrm{OL}}=0.2 \mathrm{~V} . \mathrm{V}_{\mathrm{OL}}$ represents the output low voltage. Clearly state all of your assumptions.

What will be the V_{OH} ? V_{OH} represents the output high voltage. Explain your answer.
[15 points]

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{n}}^{\prime}=\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=40 \mathrm{e}-6 \mathrm{~A} / \mathrm{V}^{2} \\
& \mathrm{~V}_{\mathrm{tn}}=0.3 \mathrm{~V}
\end{aligned}
$$

Part b) For the part a), explain qualitatively the result of body effect on V_{OL} and V_{OH}.

Problem 3:

Part a) For the NMOS shown above, derive an expression of electron current flowing from source (S) to Drain (D). μ_{1}, μ_{2} are electro-chemical potential energies at the source and drain terminals, respectively. The Fermi distribution function $f(E)$ specifies, under equilibrium conditions, the probability that an available state at an energy E will be occupied by an electron.

$$
f(E)=\frac{1}{1+e^{\frac{\left(E-E_{F}\right)}{K T}}}
$$

where E_{F} is the Fermi level. Clearly show your steps, specify your assumptions, and name the parameters you are using.
[30 points]

Part b) Explain qualitatively the effect of Drain Induced Barrier Lowering (DIBL) on the current that you have derived in part a).
[10 points]

Rough Sheet 1

Rough Sheet 2

