
IMPLICITLY-MULTITHREADED PROCESSORS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Il Park

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2003



ii

ACKNOWLEDGMENTS

Vijay’s policy for a student to earn a Ph.D. is for the student to learn something that he

can use during his lifetime. I have learned from Vijay how to find, analyze, and solve prob-

lems. However, the best gift I got from Vijay is something I had lost for a long time since I

left my undergraduate school, which is “being confident.” I dare say I finally found some-

one I really respect from the bottom of my heart as an advisor and as a friend.

As I stand at a turning point, I want to thank my family for their unconditional support

through the whole process. My mother has been my best friend and my mental supporter.

My grandmother has been my biggest fan with endless love. Now, it is my turn to give my

family some response.

I also want to thank my whole architecture group at Purdue. Chong has been my clos-

est friend, and we went through happy and painful times together. Chen-Yong’s wide

knowledge always excites me. Mike’s deep knowledge about the circuit area has taught

me a lot along with his calmness. I also want to give Chad my special thanks for giving me

a hand with the writing process and providing lots of fun in our school lives. An-Chow

always has been a man to offer his kindness and deep knowledge with no hesitation. I also

express my appreciation to Jahangir, Zeshan, Ankit, Kailash, Jin-Yi, Ethan, and Yen for

their friendship and influence on me.

Finally, I would like to thank my friend Dong-Ki and his wife for their friendship. I

cannot imagine how my life looks like without him and her. When I suffered most, they

helped me most. I believe that when I am most happy, they will be too.



 iii

..... v

......vi

...vi

......1

......6

..8

10
.....11
...12
....12
....13
.....14
....15
....19
.....21
.....21
.....21

...22
....22
.....22
...26
....31
.....32
.....32
.....33
TABLE OF CONTENTS

Page

LIST OF TABLES ........................................................................................................

LIST OF FIGURES .....................................................................................................

ABSTRACT .................................................................................................................ii

1 INTRODUCTION .............................................................................................

2 BACKGROUND................................................................................................

3 COMPILER-SPECIFIED SPECULATIVE THREADING ..................................

4 IMPLICITLY-MULTITHREADED PROCESSORS.............................................
4.1 Thread Invocation .................................................................................

4.1.1 Instruction fetch policy ...............................................................
4.1.2 Mapping threads onto contexts ..................................................

4.2 Control Flow Speculation ......................................................................
4.2.1 Thread-level squash ..................................................................

4.3 Register Communication through Renaming.........................................
4.4 Memory Disambiguation through Load/Store Queue............................
4.5 Speculative status overflow...................................................................
4.6 Thread Completion ...............................................................................
4.7 Precise Interrupt ....................................................................................

5 OPTIMIZATIONS ..............................................................................................
5.1 Primary Optimizations...........................................................................

5.1.1 Resource- & dependence-based fetch policy............................
5.1.2 Multiplexing hardware contexts..................................................
5.1.3 Hiding thread start-up overhead.................................................

5.2 Secondary Optimization........................................................................
5.2.1 Speculative releasing.................................................................
5.2.2 Reducing physical register pressure..........................................



 iv

......35
......37
....39
...39
.....42
...44
....46
.....46
.....46
.....50
.....51
...51
...52
..54
....56

.....58

...60

.......62
Page

6 RESULTS.........................................................................................................
6.1 Base System Results ............................................................................
6.2 Primary Optimizations...........................................................................

6.2.1 Resource allocation & prediction................................................
6.2.2 Resource- & dependence-based fetch policy............................
6.2.3 Multiplexing hardware contexts..................................................
6.2.4 Hiding thread start-up overhead.................................................

6.3 Secondary Optimizations......................................................................
6.3.1 Speculative releasing.................................................................
6.3.2 Reducing register pressure........................................................

6.4 Miscellaneous Results...........................................................................
6.4.1 Issue queue & LSQ performance sensitivity...............................
6.4.2 Forgoing early-scheduling for load-dependent instructions .......

6.5 Comparison to TME & DMT ..................................................................
6.6 Comparison to single thread run on single SMT context ......................

7 CONCLUSIONS...............................................................................................

8 FUTURE DIRECTION ......................................................................................

REFERENCES ...........................................................................................................

VITA .................................................................................................................................65



 v

LIST OF TABLES

Table

Table 1 System configuration parameters...............................................................36

Table 2: Applications, and their branch misprediction rates and superscalar IPCs.36

Table 3 Accuracy of dynamic resource prediction and allocation..........................41

Table 4. Squashes due to speculative releasing. ......................................................50

Page



 vi

r, (c)
.....6

.......9

.....11

.....12

....16

.....17

......20

......23

......24

......25

..27

RP
..29

fect
...30

ine
.....37

...38
LIST OF FIGURES

Figure

Fig. 1. Utilizing issue bandwidth: (a) superscalar, (b) multithreaded processo
SMT........................................................................................................

Fig. 2. Compiler-specified speculative threads: an example. ...........................

Fig. 3. The IMT concept...................................................................................

Fig. 4. The anatomy of an IMT processor. .......................................................

Fig. 5. Issues of register renaming in out-of-order fetch machine. ...................

Fig. 6. Example of handling register rename map tables. ................................

Fig. 7. Example of honoring memory dependences via load/store queue.......

Fig. 8. Dependence-based fetch. .....................................................................

Fig. 9. Resource-based fetch: an example with registers. ...............................

Fig. 10. Combining Resource-based and dependence-based fetch mechanism

Fig. 11. Instruction overlap with context multiplexing. ........................................

Fig. 12. Normal (successful) case of using DRP for context multiplexing: (a) D
table. (b) Context multiplexing................................................................

Fig. 13. Example of exceptional (unsuccessful) case of DRP prediction and ef
on the context multiplexing.....................................................................

Fig. 14. Performance comparison of N-IMT and O-IMT normalized to the basel
superscalar.............................................................................................

Fig. 15. Breakdown of execution into instruction execution and pipeline stalls..

Page



 vii

....40

....43

...45

.....47

.....48

.....50

.....52

....53

ne
.....55

...56

.....57
Fig. 16. Dynamic vs. static partitioning of resources..........................................

Fig. 17. The impact of fetch policy. ....................................................................

Fig. 18. The impact of context multiplexing. .......................................................

Fig. 19. The impact of start-up delay. ................................................................

Fig. 20. The impact of thread-level squashing with speculative releasing.........

Fig. 21. The impact of two-phase commit. ........................................................

Fig. 22. Issue queue/LSQ sensitivity. .................................................................

Fig. 23. Impact of early-scheduling for load-dependent instructions .................

Fig. 24. Performance comparison of TME, DMT, and IMT normalized to baseli
superscalar.............................................................................................

Fig. 25. Performance comparison of TME, DMT, and IMT normalized to prior-
work’s superscalar [31]...........................................................................

Fig. 26. Performance comparison of O-IMT normalized to the superscalar with
hardware resources as a single SMT context........................................

PageFigure



viii

es-

t by

read

o a

r to

unica-

eads

MT)

bility,

poses

hree

h and

p as

early

ation

leas-

T’s

reeing

usly-

T)

er an

s, O-

lar and
ABSTRACT

Park, Il. Ph.D., Purdue University, August, 2003. Implicitly-Multithreaded Proc
sors. Major Professor: T. N. Vijaykumar.

Simultaneous Multithreading (SMT) is proposed to improve pipeline throughpu

overlapping execution of multiple threads. However, SMT cannot improve single-th

performance. To improve single-thread performance, I propose theImplicitly-Multi-

Threaded(IMT) architectureto execute compiler-specified speculative threads on t

modified SMT pipeline. IMT reduces hardware complexity by relying on the compile

select suitable thread spawning points and to orchestrate inter-thread register comm

tion. This study shows that a naive mapping of even optimized compiler-specified thr

onto SMT performs only comparably to an aggressive superscalar; a naive IMT (N-I

inefficiently shares SMT’s resources among threads irrespective of resource availa

thread resource usage, and inter-thread dependence. Optimized IMT (O-IMT) pro

key microarchitectural optimizations to alleviate these inefficiencies in N-IMT.

I propose three primary optimizations and two secondary optimizations. The t

primary optimizations are: (1) resource- and dependence-based fetch policy to fetc

execute suitable instructions, (2) context multiplexing to improve utilization and ma

many threads to a single context as allowed by availability of resources, and (3)

thread-invocation to hide thread start-up overhead by overlapping one thread’s invoc

with other threads’ execution. Two secondary optimizations are: (1) speculatively re

ing register values to avoid the implementation and performance issues of N-IM

thread-level squashing and (2) two-phase commit to reduce register pressure by f

some registers at instruction commit, before the thread commits.

Using SPEC2K benchmarks and execution-driven simulation, this study shows the

performance comparison among an aggressive superscalar, N-IMT, O-IMT, previo

proposed Threaded Multipath Execution (TME), and Dynamically MultiThreaded (DM

Processors. The results indicate that N-IMT outperforms DMT, but outperforms neith

aggressive superscalar nor TME. With three primary microarchitectural mechanism

IMT improves performance by considerable speed-up over an aggressive supersca



ix

d-up

rfor-
TME. Even though two secondary optimizations do not increase the O-IMT’s spee

significantly on average, they significantly improve some specific benchmarks’ pe

mance.



1

ore

trend

ely,

ork.

xploit

ssor

gh-

lta-

] is

ro-

osed

4 cur-

tures

nfor-

sin-

mory

grams.

read-

ce the

hese

ading

ingle

se of
1  INTRODUCTION

As CMOS technology continually improves, chips are able to hold more and m

transistors. However, wire delays have been failed to scale with transistors, and this

will continue into the future as long as we will use CMOS technology. Unfortunat

there are lots of programs that inherently do not have enoughinstruction-level parallelism

(ILP) to exploit the higher number of transistors and to hide wire delays with useful w

For instance, more than half of SPEC 2K benchmarks do not have enough ILP to e

all of the on-chip transistors available today.

Architects are now exploringthread-level parallelism(TLP) to exploit the continuing

improvements in CMOS technology to deliver higher performance. Chip MultiProce

(CMP) is proposed to mitigate wire delays within a chip and to improve overall throu

put by running multiple (either multiprogrammed or explicitly parallel) threads simu

neously on multiple cores in a chip [27,16]. Simultaneous multithreading (SMT) [29

proposed to improve pipeline throughput by overlapping multiple (either multip

grammed or explicitly parallel) threads on a single wide-issue superscalar. The prop

Alpha 21464, the recently-announced IBM Power5, and the hyperthreaded Pentium

rently in production [15] are examples of SMT processors. However, these architec

do not speed up a sequential program when the program is not explicitly threaded. U

tunately, it is not easy for a compiler to generate explicitly parallelized threads from a

gle sequential program. For instance, a compiler cannot easily handle indirect me

accesses and indirect calls, and most C programs have these problems.

Speculative threading has been a popular approach to speed up sequential pro

Previous proposals use software [12,23,19,13,24,25,8] or hardware [1,17] to peel off

potentially-dependent threads from a single sequential program. While speculative th

ing executes potentially-dependent threads speculatively, it uses hardware to enfor

sequential execution semantics later but before commit. However, the majority of t

proposals use CMP-based hardware platforms to support speculative thre

[12,23,19,13,24,25,8,17]. Unlike SMT, which is a centralized architecture that has a s

core on a chip, CMP is a distributed architecture with multiple cores on a chip. Becau



 2

quire

igua-

f such

ls into

ort to

aded

].

quen-

ntial

that

n be

calar

lution

MT

n to

con-

iates

and it

ultisca-

.

ice-

mpu-

the

vokes

ter uti-

cre-

ation

rom

tely

stom

ider

text
this architectural characteristic of CMP’s, the previous proposals that uses CMP re

special customized hardware to support register communication and memory disamb

tion across separate processing cores or pipelines. The difficult design requirement o

extra hardware greatly reduces the chance of realizing speculative threading proposa

commercial products.

Recently, researchers have also advocated using SMT’s multithreading supp

improve the execution time of a single sequential program. Examples include Thre

Multipath Execution (TME) [31] and Dynamically MultiThreaded (DMT) processors [1

I propose theImplicitly-MultiThreaded(IMT) processor to utilize SMT’s architec-

tural support for multithreading by executing speculative threads extracted from a se

tial program. IMT executes compiler-specified speculative threads from a seque

program on a wide-issue SMT pipeline. IMT is based on the fundamental observation

Multiscalar’s execution model — compiler-specified speculative threads [10,23] — ca

decoupled from the processor organization — distributed processing cores. Multis

employs sophisticated specialized hardware, the Register Ring [4] and Address Reso

Buffer [11], which are strongly coupled to the distributed organization. In contrast, I

proposes to map speculative threads onto generic SMT hardware.

IMT goes one step further by proposing a novel microarchitectural optimizatio

support multithreading even in one context at SMT. A context at SMT is defined as a

ceptual hardware bundle to which a single thread runs. This optimization greatly allev

the load imbalance, which is one of the biggest overhead of speculative threading,

also enables us to use even genuine superscalar to run speculative threads (i.e., M

lar’s compiler-generated speculative threads) with only minor hardware modification

IMT differs in many key respects from prior proposals, such as TME, DMT, and sl

based precomputation for speculative threading on SMT. TME and slice-based preco

tation do map their execution onto SMT, but they execute multiple threads in only

infrequent cases of branch mispredictions and cache misses. In contrast, IMT in

threads in even the common cases of correct branch predictions and cache hits, bet

lizing SMT resources. Rather than using compiler-specified threads as in IMT, DMT

ates threads in hardware during run-time. Because of the lack of compile-time inform

and flexibility, DMT’s threads frequently incur dependence stalls that prohibit them f

extracting thread-level parallelism effectively. In addition, DMT’s threads are inordina

long, requiring fast, frequent searches through thousands of instructions held in cu

trace buffers that are difficult to implement efficiently. None of these proposals cons

any optimization for alleviating the load imbalance in order to maximize the con



 3

ter

vokes

ear-

ds to

dent

ads’

struc-

mory

threads’

es.

MT

naive

r. N-

ons

inter-

(e.g.,

f spec-

zed

za-

ions

n-

and

97%)

ad/

ue to

or

earlier

tches

s of

ility
resource usage. Rather these proposals take contexts for granted.

IMT modestly modifies SMT to perform the traditional tasks of fetch, regis

rename, and memory dependence enforcement for speculative threads. IMT in

threads in program order but fetches instructions out of program order by interleaving

lier and later threads. Out-of-order fetch allows independent instructions in later threa

enter the pipeline early and overlap with the processing of earlier threads’ depen

instructions. By appropriately setting up the rename tables, IMT forces later thre

instructions, which are register dependent on earlier threads’ yet-to-be-fetched in

tions, to wait until the earlier instructions execute. Because IMT needs to enforce me

dependences across its threads, loads and stores from one thread search other

loads and stores in the load/store queue to enforce inter-thread memory dependenc

Unfortunately, a naive mapping of compiler-specified speculative threads onto S

performs poorly. Despite using an advanced compiler [30] to generate threads, a

IMT (N-IMT) implementation performs only comparably to an aggressive superscala

IMT’s key shortcoming is its indiscriminate approach to fetching/executing instructi

from threads without accounting for resource availability, thread resource usage, and

thread dependence information. The resulting poor utilization of pipeline resources

issue queue, load/store queues, and register file) in N-IMT negates the advantages o

ulative threading.

This dissertation identifies the key inefficiencies in N-IMT and proposes optimi

IMT (O-IMT), which has three primary and two secondary microarchitectural optimi

tions necessary to alleviate the inefficiencies of N-IMT. The three primary optimizat

are:

• Novel fetch policy: Because the choice of which thread to fetch from every cycle fu

damentally impacts performance, IMT carefully controls fetch via a resource-

dependence-based thread fetch policy. The policy employs a highly accurate (~

dynamic resource predictor (DRP)to gauge dynamic resource (physical registers, lo

store queue slots, and active list entries) availability to avoid thread squashes d

lack of resources midway through execution. The policy also employsinter-thread

dependence heuristic(ITDH) to avoid the delay of earlier threads’ instructions in fav

of fetching and front-end processing later threads that are data-dependent on

threads anyway. In contrast, Multiscalar statically partitions its resources and fe

from as many threads as the number of cores. TME, DMT, and N-IMT use variation

ICOUNT [28] or round-robin fetch policies that do not account for resource availab

and result in suboptimal performance.



 4

f an

hreads

h an

ute-

ency

the

any

s have

tion

bles at

reads

to

dence

ver-

pecu-

d-

d and

ws

until

uash-

auses

ue of

oids

lues.

r-

e. O-

its

read

ters at
• Multiplexing hardware contexts to bring more suitable instructions: As in TME

and DMT, N-IMT assigns a single thread to each SMT context [28] consisting o

active list and a load/store queue. Because many programs have short-running t

and SMT implementations are likely to have only a few (e.g., 2-8) contexts, suc

assignment severely limits the number of instructions in flight. Unfortunately, a br

force increase in thread size would result in an increase in misspeculation frequ

and in the number of instructions discarded per misspeculation [30]. To obviate

need for larger threads, O-IMT multiplexes the hardware contexts by mapping as m

contiguous threads onto a single context as allowed by the resources. While other

alluded to overlapping one thread’s wait-to-commit time with another’s execu

[24,8], multiplexing overlaps multiple threads bysimultaneouslyexecuting them.

• Hiding thread start-up delay to increase overlap among suitable instructions:

Speculatively-threaded processors incur the delay of setting up register rename ta

thread start-up to ensure proper register value communication between earlier th

and a newly-invoked thread. As in TME, N-IMT incurs extra start-up delay prior

thread invocation. Because the compiler-specified inter-thread register depen

information is available well before the thread starts, O-IMT hides the delay by o

lapping rename table set-up with previous thread execution. Other proposals for s

lative threading, including DMT and Multiscalar, do not address this issue.

The two secondary optimizations are:

• Speculative releasing:Upon a branch misprediction within a thread, IMT does threa

level squashing, which squashes all subsequent instructions only within the threa

not later threads, saving later instructions. Much like Multiscalar, N-IMT disallo

communication of speculative register values across threads, delaying values

intra-thread speculation is resolved [3]. While this strategy enables thread-level sq

ing by guaranteeing that an intra-thread squash does not affect later threads, it c

considerable performance loss by delaying values and an implementation iss

releasing values from instructions that are not in the pipeline anymore. O-IMT av

the performance loss and implementation issue by speculatively communicating va

• Reducing Register pressure: Out-of-order fetch, employed by IMT and others, ove

laps instructions farther than in-order fetch, increasing physical register pressur

IMT employs a two-phase commit strategy in which an instruction commits within

thread freeing instruction resources, and threads commit in global order freeing th

resources. Two-phase commit alleviates register pressure by freeing some regis



 5

ss

stom

mory

y. In

rolls

large

erfor-

ligibly

para-

29% in

ts also

able

orm

h as

ound

cribes

iza-

and

rch.
instruction commit,beforethe thread commits. Multiscalar and TME do not addre

this issue. DMT reduces resource pressure by employing prohibitively large cu

instruction trace buffers (holding thousands of instructions and all register and me

data for them) and retiring instructions from the pipeline and active list speculativel

the case of any misspeculation, DMT searches the trace buffer and selectively

back all relevant data. Unfortunately, frequent associative searches through such

buffers are slow and impractical.

Using the SPEC2000 benchmarks, results show that N-IMT actually degrades p

mance in integer benchmarks by 3% on average, and it improves performance neg

in floating-point benchmarks relative to a comparable baseline superscalar with com

ble hardware resources. In contrast, O-IMT achieves average speedups of 20% and

the integer and floating-point benchmarks, respectively, over superscalar. The resul

indicate that TME and DMT are on average not competitive relative to a compar

superscalar.

While the techniques I propose in this dissertation are essential for IMT to perf

well, they can also help improve performance in distributed microarchitectures suc

[23]. However, I focus on SMT platform in this study.

The rest of this dissertation is organized as follows. Chapter 2 shows the backgr

of this research. Chapter 3 briefly explains compiler-specified threads. Chapter 4 des

implementing N-IMT on SMT and Chapter 5 proposes key microarchitecture optim

tions to alleviate the inefficiency of N-IMT. Chapter 6 presents experimental results

Chapter 7 derives conclusions. Chapter 8 discusses the future direction of the resea



 6

line

itly

ersca-

tiple

struc-

tes for

],

ding

on

lem-

there

redict

name

o copy

e slice

MT
2  BACKGROUND

Simultaneous Multithreading (SMT) [29] has been proposed to improve pipe

throughput by overlapping execution of multiple (either multiprogrammed or explic

parallel) threads on a single wide-issue processor. Figure 1 compares SMT with sup

lar and Multithreaded processors [2]. SMT can issue multiple instructions from mul

threads each cycle, which is different from Multithreaded processors that execute in

tions from one thread on a given cycle even though processors have hardware sta

multiple threads at the same time.

Threaded Multiple Path Execution (TME) [31], Dynamic Multithreading (DMT) [1

slice-based recomputation [32,22], and Simultaneous Subordinate Microthrea

(SSMT) [6] are earlier proposals to improve the performance of single application

SMT hardware. These machines utilize SMT’s multithreaded hardware only for prob

atic but infrequent cases of branch mispredictions and/or cache misses, only when

are spare contexts to use. TME fetches instructions from both paths of hard-to-p

branches. When TME spawns a new thread, it incurs extra cycles to set up the re

tables, and employs an extra dedicated bus for a bus-based write-through scheme t

rename maps. Slice-based recomputation and SSMT use helper threads (speculativ

Fig. 1. Utilizing issue bandwidth: (a) superscalar, (b) multithreaded processor, (c) S

Time

(a) (b) (c)

Thread 1
Thread 2
Thread 3
Thread 4
Unused issue slot



 7

and

before

t of

ing

n by

name

is-

ctures

tive

loy

tures

dware

fetch

nits

ption

Cycle

ver the
or micro instructions) designed for problem instructions, which are in the critical path

cause delay due to cache misses or branch mispredictions. Executing helper threads

executing those problem instructions from the main threads will bring the effec

prefetching and give more information for branch predictions in the main threads.

Another proposal, Dynamic Multithreading (DMT) also uses SMT as the underly

architecture [1]. To handle inter-thread dependences, DMT resorts to value predictio

using substantially more hardware for an aggressive copying mechanism to set up re

tables magically within a cycle, an entire extra pipeline for selective recovery from m

speculations, and a large trace buffer to hold thousands of instructions in flight.

There are other proposals to execute speculative threads on distributed archite

such as Multiscalar [12,23], Multiplex [19], Hydra [13], Stampede [24,25], Specula

NUMA [8], SUN Microsystems MAJC [27], and others [17,16]. These proposals emp

Chip MultiProcessor (CMP) as the underlying architecture. As a result, these architec

have multiple processor cores in a single chip, and each core has dedicated har

resources including the pipeline.

While CMP statically partitions and allocates all hardware resources, such as

unit (including fetch bandwidth and caches) and execution unit (including functional u

and physical registers), SMT shares them for all threads in flight. So, under the assum

of the same number of transistors used, SMT may have higher Instructions Per

(IPC) than SMP does, a distributed architecture SMP has a clock-speed advantage o

centralized architecture SMT.



 8

ul-

sev-

ized

extent

into

paths

hreads

oint

urces

intro-

flow

et

st

c-

r. An

flow

ith

nd B5.

mask

ever

e the

with

cient.

but
3  COMPILER-SPECIFIED SPECULATIVE THREADING

Speculatively threaded architectures may use the hardware [1,17] or compiler

[23,13,25] to partition a sequential program into multiple implicit threads. IMT uses M

tiscalar’s compiler-specified speculative threads. The Multiscalar compiler employs

eral heuristics to optimize thread selection [30]. The compiler forms reasonably-s

threads without exceeding the number of targets emanating from a thread. To the

possible, the compiler exploits loop parallelism by capturing entire loop bodies

threads, avoids inter-thread control-flow mispredictions by enclosing both if and else

of a branch within a thread, and reduces inter-thread register dependences. Typical t

contain 10-20 instructions in integer programs, and 30-100 instructions in floating-p

programs. These instruction counts give an idea of the order of magnitude of reso

needed and overheads incurred per thread, and help understand the optimizations

duced in this dissertation.

The compiler provides summary information of a thread’s register and control-

dependences in thethread descriptor. In the descriptor, the compiler identifies: (1) The s

of registers live into the thread via theuse mask, and the set of registers written in at lea

one of the control-flow paths through the thread via thecreate mask. (2) The possible con-

trol-flow exits out of the thread via thetargets. The compiler also annotates the instru

tions to specify each instance of the dependence summarized in the descripto

instruction that is the last write to an architectural register in all the possible control

paths is annotated withforward bits. Instructions that lead to a target are annotated w

stop bits.

Figure 2 shows an example thread. The thread shown here has two targets: B1 a

The branch at the bottom of B4 is annotated with stop bits (shown by S). The create

contains r1, r2, and r3. r2 is read before written in B3. r4, r5, and r6 are read and n

written. Hence r2, r4, r5, and r6 are in the use mask. In B2 and B3, the writes to r3 ar

last write in the both path B1B2B4 and B1B3B4, and these instructions are annotated

forward bits (shown by F). However, there are cases where forward bits are not suffi

For instance, in the figure, the write to r1 in B1 is not the last write in the path B1B2B4



 9

ns to

truc-

mag-

nd the

[1]

unit

is the

irst,

gest

eads

stom

iden-

vel

table
it is in the path B1B3B4. To handle this case, the compiler inserts areleaseinstruction in

B3. In Section 4.3, I explain how the hardware uses forward and release instructio

implement inter-thread register communication.

Typical threads in integer programs contain 10-20 instructions, and 30-100 ins

tions in floating point programs. These instruction counts give an idea of the order of

nitude of resources needed and overhead incurred per thread, and help understa

following sections.

In contrast to IMT, the prior proposals for speculative threading on SMT, DMT

and TME [31] create threads in hardware. DMT spawns a new thread when the fetch

reaches a function call or a backward branch. The start address of the new thread

addressafter the call or backward branch. DMT’s threading has two weaknesses: F

DMT cannot exploit any parallelism across inner loop iterations, although the lar

opportunity for exploiting parallelism resides in inner loop iterations. Second, the thr

are inordinately long, of the order of thousands of instructions, and require large cu

trace buffers to hold their speculative state. In TME, threads are simply created upon

tifying an unpredictable branch. However, TME’s opportunity for extracting thread-le

parallelism is severely limited due to targeting the uncommon cases of unpredic

branches.

Fig. 2. Compiler-specified speculative threads: an example.

r1 := r5

r1 := r6
r3 := r3 := r2 + r4

release r1F

F

r2 :=F

B1

B2
B3

B4

F

beq r1, 0 B1

B5

Targets: B1, B5
Create: r1, r2, r3
Use: r2, r4, r5, r6

S

true false



 10

ure 3

piler

and

d it

-

pen-

inter-

gram

struc-

con-

ue and

re

emory

IMT

duling,

ction

ers,

varia-

ipe-

and
4  IMPLICITLY-MULTITHREADED PROCESSORS

This study proposes theImplicitly-MultiThreaded(IMT) architecture to utilize SMT’s

support for multithreading by executing compiler-specified speculative threads. Fig

illustrates how a single application can be partitioned into speculative threads by com

and how those threads can be mapped into SMT’s shared pipeline. IMT exploitsimplicit

parallelism, as opposed to programmer-specified,explicitparallelism exploited by conven-

tional SMT and multiprocessors. Like the Multiscalar architecture, IMT predicts

spawns the threads in program order with the help of compile time information, an

maps the threads to execution resources with the earliest thread as thenon-speculative

(head) thread, followed by subsequentspeculativethreads [23]. IMT leverages the con

ventional register renaming to honor the inter-thread control-flow and register de

dences specified by the compiler. IMT uses the load/store queue (LSQ) to enforce

thread memory dependences. Upon completion, IMT commits the threads in pro

order.

SMT places instructions from all threads in a singleissue queuein which instructions

wait until source operands become available enabling out-of-order issue. As each in

tion issues out of the issue queue, it stays in its thread’s privateactive listand commits

from the active list in the thread’s program order, enabling precise interrupts. SMT

ceptually bundles all the per-thread resources such as the active list, load/store que

register renaming logic into ahardware context, and allows as many threads as there a

contexts. SMT shares the functional units, physical registers, issue queue, and m

hierarchy among all the contexts.

Figure 4 depicts the anatomy of an IMT processor based on an SMT pipeline.

uses the rename tables for register renaming, the issue queue for out-of-order sche

per-context load/store queue for memory dependences, and the active list for instru

reordering prior to commit. As in SMT, IMT shares the functional units, physical regist

issue queue, and memory hierarchy among all contexts. This research presents two

tions of IMT processors, mapping compiler-optimized threads [30] onto the SMT p

line: (1) a naive IMT (N-IMT) that performs comparably to an aggressive superscalar,



 11

ifi-

n in

ua-

the

pre-

ad’s

che.

out

rom

on-
(2) an optimized IMT (O-IMT) that uses novel microarchitectural techniques to sign

cantly improve performance.

The rest of this chapter is organized as follows. I first explain the thread invocatio

N-IMT. Then I show how N-IMT does register communication and memory disambig

tion. Finally, I explain the thread execution and thread completion in N-IMT.

4.1  Thread Invocation

IMT invokes threads in program order by predicting the next thread from among

targets of the previous thread, using a thread predictor like Multiscalar. Using the

dicted target number, IMT obtains the next thread’s start PC from the previous thre

descriptor. Like Multiscalar, IMT caches thread descriptors in a descriptor ca

Although IMT invokes threads in program order, it fetches later threads’ instructions

of order before fetching all of earlier threads’ instructions, interleaving instructions f

multiple threads. To decide which thread to fetch instructions from every cycle, IMT c

sults the fetch policy.

Fig. 3. The IMT concept.

Thread1

Thread2

Thread3

Thread4

Fetch

Thread1 Thread2
Thread3 Thread4

SMT
Pipeline

Decode

Rename

Issue

Execute

Mem

WB



 12

ich

eue is

s the

h the

the

mined

en-

NT

ulti-

ously

ch as

t, and
4.1.1  Instruction fetch policy

The base IMT processor, N-IMT, uses an unmodified ICOUNT policy [28], in wh

the thread with the least number of instructions in decode, rename, and the issue qu

chosen to fetch instructions from every cycle. The rationale is that the thread that ha

fewest instructions is the one whose instructions are flowing through the pipeline wit

fewest stalls. By choosing the “best” thread each cycle, the fetch policy can minimize

issue queue clog and maximize the overall system throughput. Previous study exa

diverse fetch policies and concluded that ICOUNT was the best among them [28].

However, unlike SMT’s independent threads, IMT’s threads are potentially dep

dent. This difference has a big implication to fetch policy, and it is expected that ICOU

may not be the best fetch policy for IMT-like machines.

4.1.2  Mapping threads onto contexts

Multiscalar targets Chip MultiProcessor (CMP) as a base hardware platform. M

scalar assigns one thread to each core in a chip. Therefore, Multiscalar simultane

executes as many threads as the number of cores in a chip.

As mentioned before, SMT conceptually bundles all the per-thread resources su

the active list, load/store queue and register renaming logic into a hardware contex

Program
Ordering

Fig. 4. The anatomy of an IMT processor.

Resource
Allocation

Is
su

e 
Q

ue
ue

I-
C

ac
he

Decode

F
un

ci
on

al
 U

ni
ts

DRP

Fetch Unit
with ITDH

Added/modified for IMT
Controlled by DRP

Register
File

Active list

LSQ

Rename

Free

Program
Ordering

D
es

cr
ip

to
r

C
ac

he



 13

imilar

pro-

over-

xts in

may

such

nef-

tion-

en or

ic-

T’s

level

on,

re-

ol

g the

(> 2)

r this

ch pre-

built

ared

one

-order

s are

fore,

ional

story

obal
allows as many threads as there are contexts. Therefore, the context of SMT has s

meaning as the core of CMP. N-IMT assigns one thread to a context, much like prior

posals including Multiscalar.

Previous study shows that the load imbalance is one of the biggest inefficiency (

head) of speculative threading machines [19]. Because N-IMT maps threads to conte

the same way Multiscalar maps threads to cores, it is possible to expect that N-IMT

suffer from the similar inefficiency. Section 5.1.2 will discuss the cause and effect of

inefficiency in detail and propose the microarchitectural optimization to alleviate the i

ficiency.

4.2  Control Flow Speculation

In a conventional superscalar or SMT, the control flow is predicted at the instruc

level by a branch predictor that chooses one of two possible outcomes, namely tak

not-taken. Unlike SMT/superscalar, N-IMT has two different types of control flow pred

tions, which are instruction-level speculation and thread-level speculation. While IM

instruction-level speculation is the same as SMT’s control flow speculation, thread-

speculation is different from SMT’s control speculation. Like Multiscalar implementati

N-IMT employs two different types of branch predictors [3]. A conventional branch p

dictor, calledintra-branch predictor,is used for speculating the instruction-level contr

flow. A modified branch predictor, calledinter-branch predictor,is used only for speculat-

ing the thread-level control flow.

In the inter-branch predictor, the next thread has to be predicted before reachin

end of the current thread. The thread generated by the Multiscalar compiler has N

possible control flow edges and therefore N successors. (The binaries I used fo

research have four possible successors for each thread.) Therefore, the inter-bran

dictor chooses from among multiple control flow targets, and the hardware has to be

to keep N targets for each control flow point. The inter-branch prediction table is sh

across threads, and the predictor generates one outcome per cycle.

The intra-branch predictor is the same as the conventional branch predictor with

exception. Even though threads are invoked in-order and instructions are fetched in

within a thread, threads are executed out of program order. As a result, instruction

fetched out of program order with respect to instructions from other threads. There

IMT’s global branch history cannot be managed in the same way as the convent

superscalar’s. When a thread is activated (not invoked) for fetching, the branch hi

register from the inter-branch predictor is copied to the intra-branch predictor’s gl



 14

ying

non-

table

ely per

d to

ed in

read

ead

n an

ead,

m a

r can

ging

pler

re like

val-

n later

avoid

cross

ulti-

n intra-

gives

ruc-

n of

rent

the

.6 dis-
branch history register if the intra-branch predictor uses a global predictor. This cop

warms up the global prediction within a thread and alleviates the disadvantage of a

contiguous branch history due to out-of-order fetching. The intra-branch prediction

is shared across threads, and its branch history registers are maintained separat

thread. To utilize the fetching bandwidth fully, the intra-branch predictor is designe

make as many predictions as the number of ports in the L1 instruction cache.

4.2.1  Thread-level squash

As thread execution proceeds, the front-end predicts branches, as mention

Section 4.1. In N-IMT’s threads, a branch could transfer control-flow to another th

(inter-thread control flow), or a non-sequential instruction within the thread (intra-thr

control flow). Mispredictions of the two cases are not handled in the same manner. O

intra-thread branch misprediction, N-IMT selectively squashes only within the thr

keeping later threads in the pipeline. Using SMT’s ability to squash instructions fro

specific thread, N-IMT squashes only the thread’s later instructions. Superscala

achieve a similar effect by selectively squashing only incorrect instructions. By levera

thread-level granularity, however, N-IMT’s thread-level squashing is significantly sim

than superscalar’s selective squashing [21] and does not require substantial hardwa

other machines [1].

The main problem with internal squashing is that if incorrect register or memory

ues from an incorrect branch path would have been consumed by later threads, the

threads would have to be squashed even if they had been correctly predicted. To

such squashes, N-IMT disallows communication of speculative register values a

threads, delaying values until intra-thread speculation is resolved, in the same way M

scalar does [3]. This strategy enables thread-level squashing by guaranteeing that a

thread squash does not affect later threads. This thread-level squashing mechanism

the advantage to N-IMT over superscalar by allowing N-IMT to avoid squashing inst

tions from later threads in flight in the event of intra-branch misprediction.

The inter-branch prediction is resolved when executing the last dynamic instructio

each thread. Upon resolving the last dynamic instruction’s control flow in the cur

thread, N-IMT verifies the inter-thread prediction for the next thread and either allows

next thread to commit or squashes later threads on a thread misprediction. Section 4

cusses inter-thread branch mispredictions with other related activities.



 15

g the

two

-IMT

bbered

ctions

ducer

. In

-

er

ted

pter 3),

aid in

name

table

pies

e mask

begin-

table.

local

corre-

thread

urrent

P110,
4.3  Register Communication through Renaming

SMT’s register rename table links register value producers to consumers usin

fact that SMT fetches instructions in program order. N-IMT’s out-of-order fetch raises

issues in linking producers in earlier threads to consumers in later threads. First, N

has to ensure that the rename maps for earlier threads’ source registers are not clo

by later threads. Second, N-IMT has to ensure that later threads’ consumer instru

obtain the correct rename maps and wait for the yet-to-be fetched earlier threads’ pro

instructions.

Figure 5 illustrates examples of these two issues for N-IMT’s out-of-order fetch

Figure 5 (a), the consumerR2 in thread A+1should get the value from the producerR2 in

thread A. Because N-IMT fetches and renames the producerR2 in thread A+2before it

fetches and renames the consumerR2 in thread A+1, the conventional renaming incor

rectly links the consumerR2 in threadA+1 with the producerR2 in thread A+2, not with

the correct producerR2 in thread A. In Figure 5 (b), the consumerR7 in thread A+2

should get the latest value from the producerR7 in thread A+1. Because N-IMT fetches

and renames the consumerR7 in thread A+2before it fetches and renames the produc

R7 in thread A+1, the conventional renaming incorrectly links the consumerR7 in thread

A+2 with the producerR7 in thread A, not with the correct producerR7 in thread A+1.

While others [1,17] employ hardware-intensive value prediction or complica

recovery to address these issues, N-IMT uses the create mask and use mask (Cha

and existing rename tables. Although Multiscalar proposed the use of create mask to

inter-thread register communication, Multiscalar does not leverage conventional re

tables for this purpose. Figure 6 shows an example of how IMT handles rename map

when a thread is invoked.

For the first issue, before fetching any instruction from the next thread, N-IMT co

the rename maps, corresponding to the current (most recent) thread’s use and creat

registers, from themaster rename tableto the current thread’slocal rename table. At this

point, the master table reflects the program’s register state up to the current thread

ning. The next thread modifies the master table, but not the current thread’s local

Later, when the current thread’s instructions are fetched, they use the maps in the

table. In addition to use-mask registers’ maps, the local table also copies the maps

sponding to create-mask registers from master rename table before the current

updates the master rename table with any new mapping. Figure 6 shows that the c

thread A copies maps not only for use-mask registers (R10:P102, R11:105, R12:



 16

s.

cer.
Fig. 5. Issues of register renaming in out-of-order fetch machine.

R2 = R2 + 100

Thread A+1 Thread A+2Thread A

Exec.
Time

R3 = R2 + 4

R2 = R3 + 50

Correct data flow

Incorrect data flow

(a) Earlier threads’ source register map should not be clobbered by later thread

R7 = R2 + 100

Thread A+1 Thread A+2Thread A

Exec.
Time

R7 = R2 + 4

R2 = R7 + 50

(b) Later thread’s consumer should wait for yet-to-be fetched earlier thread’s produ



 17
Fig. 6. Example of handling register rename map tables.

Local

Master Rename Table

R10 P102
R11 P105
R12 P110

R18 P96

R12 = R12 + R18;
R3  = R12 + 4;
if (R12 < 0x5000)
    R3 = 0;
else
   R18 = R11+ 100(R10);

Thread A
<< Use Mask Registers >>

 R10, R11, R12, R18

<< Create Mask Registers >>
 R3, R12, R18

R10 P102
R11 P105
R12 P110

R18 P96

R3 P151

Copied

Preassign

Master Rename Table

R10 P102
R11 P105
R12 P104

R18 P140

R3 P103

Updated

R12 P104

R18 P140

R3 P103

Free Register Pool

P103, P104, P140,
P200, P201, ...

R3 P151
R10 P102
R11 P105
R12 P110

R18 P96

R3 P151

rename table rename table
Local Preassign
rename table rename table



 18

name

ction

ason

f the

l cre-

d reg-

ents

order,

later

thread

ns use

esti-

e pro-

arlier-

y (or

SMT.

reas-

ister

e pre-

es live

preas-

by the

ow all

from

e cre-

-mask

name
R18:P96), but also for create mask registers (R3:P151) from master table to local re

table. Conventional pipelines also perform such copying, on an instruction-by-instru

basis, to checkpoint rename maps for branch misprediction recovery. I explain the re

for copying the create-mask registers’ maps at the end of this subsection.

For the second issue, a thread’s create mask gives N-IMT a prior knowledge o

thread’s yet-to-be fetched instructions. Upon invoking a thread, N-IMTpreallocatesand

preassignsphysical registers for all the create mask registers (e.g., map architectura

ate mask register R3 to preallocated physical register P103, register R12 to P104, an

ister R18 to P140 in Figure 6). N-IMT modifies the master table with the preassignm

and marks the physical registers busy. Because N-IMT invokes threads in program

the master table is updated in program order and provides the correct maps for

threads. Additionally, N-IMT allocates anotherpreassign rename tableand updates the

table with the create mask’s preassigned maps for later use. In Figure 6, the current

A has new maps for create mask registers in the preassign rename table. Instructio

the local (andnotmaster) table both to get their source rename maps and to put their d

nation rename maps. If an instruction’s source is a use mask register, the local tabl

vides the rename map for the register. An instruction that is data dependent on an e

thread instruction waits until the corresponding preassigned physical register is read

bypassed). Data-independent instructions proceed without waiting, much as in

When the earlier-thread’s forward or release eventually completes execution, its p

signed register gets the value, allowing all waiting instructions to proceed.

If an instruction is neither a forward nor release (Chapter 3), it doesnotuse the preas-

signed physical register for its destination; instead, it newly allocates a physical reg

for the destination. A forward or release uses the preassigned physical register in th

assign table as its destination. Thereby, forwards and releases correctly bind the valu

at the thread end to the preassigned registers. Forwards write their results in the

signed physical registers. Releases copy values from the physical registers given

local table to the preassigned physical registers. Thus, forwards and releases all

waiting instructions to proceed. By copying the create mask maps at thread start-up

the master table to the local table, the local table holds the latest rename map for th

ate-mask registers irrespective of whether the thread actually writes to the create

registers or not. Therefore, releases copy the correct values by referring the local re

table when the thread actually does not write to the create-mask registers.



 19

den-

oad/

load/

n-specu-

xts to

ntexts

loads.

shed

rrow

ol-

Q

the

ared

ts and

gap

will

g the

any.

nges.

s that

cause

rfor-

he load

such

arly-

s the

search

cy for

earch

atency
4.4  Memory Disambiguation through Load/Store Queue

N-IMT imposes program order in the load/store queues to enforce memory depen

cieswithin andacrossthreads. Memory accesses from a thread search its context’s l

store queue (LSQ) to honor memory dependencies. If there is no match in the local

store queue, accesses proceed to search other context’s load/store queues. The no

lative thread’s loads do not search other contexts, but its stores search later conte

identify and squash premature loads. Speculative threads’ loads search in earlier co

for previous matching stores, and stores search in later contexts for later premature

Thus, N-IMT uses the LSQ to achieve the same functionality as ARB’s [11].

Figure 7 illustrates how to honor memory dependences through the LSQ. Da

arrows are the N-IMT’s extra search to other threads’ LSQs. In this example, red a

finds the premature loadload B2 in thread 2, and N-IMT squashes thread 2 and any f

lowing threads. Meanwhile,load A1from thread 1 needs to search previous threads’ LS

(thread 0 in this example) to find the latest store to the same addressA1.

Unlike a load which is serviced out of program order, a store should be sent to

memory in program order when the store commits. The store queue entry will be cle

when the store commits. However, there is a gap between the time the store commi

the time it finishes updating the memory when the store is a cache miss in L1. This

can vary with a range of a few cycles to hundreds of cycles. The store information

reside in the MSHRs (Miss Status Holding Registers) until the store finishes updatin

memory. Therefore, all loads will get the latest store value from the MSHRs if there is

Multiple searches through LSQs from different contexts cause two design challe

First, searching multiple LSQs to find the most recent store value requires extra cycle

impact load hit latency. Second, this searching also makes the hit latency variable be

of the uncertainty of the latest store’s existence and the port contention. For high pe

mance, superscalar processors speculatively schedule instructions dependent on t

with the assumption that the load is a cache hit. Variable hit latencies may complicate

a scheduling mechanism. To avoid complicating the scheduler, N-IMT foregoes e

scheduling for the instructions that are dependent on the load.

However, there is one important exception to this rule. The most critical access i

load from the non-speculative thread (the head thread). This load does not need to

any previous segment because no previous segment exists. Therefore, the hit laten

this load is constant. Although the load from the non-speculative thread still has to s

the MSHRs, this search also exists in the base case and it does not make the hit l



 20

dent

T’s

ative

LSQ

ever,

riority

bove,

can

iques
variable. Therefore, N-IMT keeps performing early-scheduling for the load-depen

instructions if the load is from the non-speculative thread.

Search latency incurred by speculative threads’ loads is hidden under N-IM

instruction-level and thread-level parallelism. To avoid being jeopardized by specul

threads’ too many searches, N-IMT gives less-speculative threads higher priority of

port access. In the example of Figure 7, it is possible thatload A1from thread 1 never be

able to finish searching due to port contention while thread 1 is speculative. How

when thread 1 finally becomes a non-speculative thread, thread 1 has the highest p

for accessing LSQ ports and so it is guaranteed to finish searching. As mentioned a

on a memory dependence violation, N-IMT squashes the offending threads. N-IMT

avoid such squashes via well-known memory dependence synchronization techn

[18].

Fig. 7. Example of honoring memory dependences via load/store queue

store A1

load A2

load B1

store B2

Thead 0’s LSQ

store A0
load C1

load A1

Thead 1’s LSQ

load B2
store C2

load B1

Thead 2’s LSQ

load A1

load Z

Thead 3’s LSQ

T
im

e 
to

 e
xe

cu
te

Instruction “store B2” needs to search:

2. thread 1’s and thread 2’s LSQ (N-IMT specific)
1. thread 0’s LSQ (common in superscalar)

More speculation

Instruction “load B1” needs to search:

2. thread 0’s LSQ (N-IMT specific)
1. thread 1’s LSQ (common in superscalar)



 21

load/

the

/store

pecu-

tched

e and

lica-

the

ction

ion’s

d to

reads’

nstruc-

ruc-

after

active

ysical

ctive

quent

ither

h the

After

ates

hile
4.5  Speculative status overflow

Even though some physical registers can be freed when instructions commit, the

store queue cannot be freed at instruction commit if the memory instruction is not from

head thread (i.e., non-speculative thread). So, due to this limitation of reusing load

queue slots, it is possible that no slot in the load/store queue will be available for a s

lative thread at some point. If this situation happens, no more instruction can be fe

from the thread until the thread finally becomes the head thread so that it can fre

reuse the load/store queue slots. This is more likely to happen with floating-point app

tion’s larger threads, rather than with integer application’s smaller threads.

4.6  Thread Completion

When a thread completes, N-IMT verifies the next-thread prediction, and frees

thread’s processor resources. N-IMT flags thread completion on executing an instru

annotated with stop bits (mentioned in Chapter 3). Upon resolving the stop instruct

control flow, N-IMT verifies the next-thread prediction and either allows the next threa

commit or squashes later threads on thread misprediction. If squashed, the later th

instructions free their physical registers and load/store queue slots, as squashed i

tions do in SMT. If allowed to commit, a thread continues execution until the stop inst

tion performs instruction commit, and then the thread commits in program order

previous threads commit.

Thread commits free the processor resources occupied by the threads. Freeing

list slots and load/store queue slots is straightforward. Thread commit frees the ph

registers not freed by instruction commits and removes the instructions left in the a

list.

4.7  Precise Interrupt

When a thread has an interrupt or exception, it immediately squashes subse

instructions within the thread and also squashes all following threads. N-IMT ne

fetches instructions from the thread nor activates any thread until the instruction wit

interrupt or exception becomes the oldest non-speculative instruction in the pipeline.

servicing the interrupt, N-IMT fetches instructions from the thread again and also activ

new threads for fetching. By using this approach, N-IMT supports precise interrupts w

still supporting speculative execution.



 22

&D-

head.

specu-

]. I

hich

in pro-

ult in

tion in

use by

ource

trol-

cuting

r-pro-

d fetch

later

ntil the

pen-

dent

ds are

nde-

dent,

epen-
5  OPTIMIZATIONS

Section 5.1 proposes and discusses three primary optimizations, which are R

based fetch policy, multiplexing hardware contexts, and hiding thread start-up over

Then, Section 5.2 proposes and discusses two secondary optimizations, which are

lative releasing and reducing register pressure.

5.1  Primary Optimizations

5.1.1  Resource- & dependence-based fetch policy

As mentioned in Section 4.1.1, N-IMT, uses an unmodified ICOUNT policy [28

make the observation that the ICOUNT policy may be suboptimal for a processor in w

threads exhibit control-flow and data dependence, and resources are relinquished

gram (and not thread) order. For instance, later (program-order) threads may res

resource (e.g., physical registers, issue queue and load/store queue entries) starva

earlier threads, forcing the later threads to squash and relinquish the resources for

earlier threads. Unfortunately, frequent thread squashing due to indiscriminate res

allocation without regards to demand incurs high overhead. Moreover, treating (con

and data-) dependent and independent threads alike is suboptimal. Fetching and exe

instructions from later threads that are dependent on earlier threads may be counte

ductive because it increases inter-thread dependence delays by taking away front-en

and processing bandwidth from earlier threads. Finally, dependent instructions from

threads exacerbate issue queue contention because they remain in the queue u

dependences are resolved.

To mitigate the above shortcomings, O-IMT employs a novel Resource- and De

dence-based fetch policy (R&D-based fetch policy) that is bimodal. In the “depen

mode”, the policy biases fetch towards the non-speculative thread when the threa

likely to be dependent, fetching sequentially to the highest extent possible. In the “i

pendent mode”, the policy uses ICOUNT when the threads are potentially indepen

enhancing overlap among multiple threads. Because loop iterations are typically ind

dent, the policy employs anInter-Thread Dependence Heuristic(ITDH) to identify loop



 23

ITDH

s are

om-

ence.

depen-

ven

il

en

s that

ads

ral-
iterations for the independent mode, otherwise considering threads to be dependent.

predicts that subsequent threads are loop iterations if the next two threads’ start PC

the same as the non-speculative (head) thread’s start PC.

Figure 8 illustrates the effect of using the dependence-based fetch for O-IMT, c

pared to N-IMT that always uses ICOUNT fetch regardless of inter-thread depend

The figure uses an example code that has non-loop dependent threads and loop in

dent threads together. N-IMT uses ICOUNT fetch policy to fetch instructions equally e

from dependent threads. N-IMT has lots of stalls in executing instructions fromthread 3

becausethread 3is dependent onthread 1andthread 2, and it cannot make progress unt

thread 1 andthread 2 are done.

In contrast to N-IMT, O-IMT sequentially fetches instructions from threads wh

ITDH considers the threads to be dependent. Therefore, O-IMT does not have stall

happen in N-IMT due to the fact that N-IMT blindly fetches from dependent thre

equally. When ITDH considers threads (i.e.,thread 4, thread 5,and thread 6) to be loop

iterations, O-IMT uses ICOUNT to fetch from threads to maximize the thread-level pa

: Loop independent threads

Fig. 8. Dependence-based fetch.

thread 2

thread 3

thread 5

thread 4

thread 6

thread 1

thread 2

thread 3

thread 5

thread 4

thread 6

thread 1

N-IMT O-IMT

ICOUNT fetches
dependent threads

equally
=> Stall

ICOUNT

Sequentially fetch
Dependenceresolved

before fetch
=> No Stall

ICOUNT only here

: Non-loop dependent threads



 24

s of

queue

reads

rces

d in

tail.

reg-

ads as

sters to

s 15

avoid

head
lelism across loop iterations. As a result, N-IMT does not distinguish dependencie

threads for fetching, but O-IMT does.

To reduce resource contention among threads, the policy employs aDynamic

Resource Predictor (DRP)to initiate fetch from an invoked threadonly if the available

hardware resources such as physical registers, active list entries, and load/store

entries exceed the predicted demand by the thread. DRP dynamically monitors the th

activity and allows fetch to be initiated from newly invoked threads when resou

become available (either by thread commit or by instruction commit, as explaine

Section 4.6). Section 5.1.2 will describe the implementation and issues of DRP in de

Figure 9 illustrates the performance impact of the resource-based fetch by using

isters as an example. Physical registers are shared and occupied by different thre

soon as instructions are fetched and renamed. The figure assumes 60 physical regi

begin with. N-IMT fetches equally from different threads. Later, each thread occupie

registers and so N-IMT runs out of registers. However,thread 1, which is the head thread

(the non-speculative thread), needs 20 more registers. To make overall progress or to

deadlock, N-IMT has to squash younger threads to take resources back for the

thread. In the figure, N-IMT has to squashthread 3and thread 4. While thread 3and

Free Registers to begin
: 60

Fig. 9. Resource-based fetch: an example with registers.

Thread 1

N-IMT O-IMT

Thread 2

Thread 3

Thread 4

Thread 1

Thread 2

Thread 3

Thread 4

Occupied
Registers

Occupied
Registers

5 + 10 + 20

5 + 10

5 + 10

5 + 10

: Thread squash due to lack of resources

5 + 10 + 20

5 + 10

5 + 5

Preallocated
Registers

35

15

10



 25

ting

t the

T, O-

f-

er

-based

e for

ed

of the

ldest

.

thread 4 have been competing for fetch and processing bandwidth withthread 1 and

thread 2 and slow down the execution ofthread 1 and thread 2, they are eventually

squashed anyway.

O-IMT avoids such inefficiency by predicting resource demand and prealloca

resources for each thread before fetching. In the figure, O-IMT uses DRP to predic

demand for physical registers and preallocates registers for each thread. Unlike N-IM

IMT does not fetch any instructions fromthread 4because it knows that there are not su

ficient registers forthread 4. As a result, O-IMT does not delay the execution of old

threads (i.e.,thread 1andthread 2) for useless execution ofthread 4, and it avoids thread

squashes.

Figure 10 illustrates how the resource-based fetch mechanism and dependence

fetch mechanism work together. Among invoked threads, namely fromthread 1(the oldest

thread) tothread N(the youngest thread), DRP chooses the group of threads to activat

fetching only fromthread1to thread M, which are the biggest group of threads compos

of under the assumptions as follows: (1) the group of activated threads is the subset

group of invoked threads, (2) the group of activated threads should include the o

Fig. 10. Combining Resource-based and dependence-based fetch mechanism

thread 1, thread 2, ..., thread N-1, thread N

thread 1, thread 2, ..., thread M

<< Invoked threads >>

<< Activated threads for fetch >>

DRP (resource available ?)

ITDH (loop?)

Dependent Mode Independent Mode

Sequential Fetch ICOUNT Fetch



 26

of the

d the

ated

fetch

uit-

llevi-

r and

n.

ME

NT, a

avail-

ith-

ions

other

DMT

low-

s so

the

ent

prac-

pro-

a few

rger

mis-

cause

the

-

rces in

text
thread, (3) the activated threads in the group should be contiguous, and (4) the size

group of activated threads should be limited by the resource demand of threads an

resource availability in the pipeline. Then ITDH decides how to fetch among the activ

threads (i.e.,thread 1, thread2,... thread M). If the threads are loop iterations, ITDH

chooses ICOUNT to fetch from among the threads. Otherwise, the policy biases

towards the non-speculative thread to fetch from.

O-IMT’s R&D-based fetch policy increases instruction throughput by choosing s

able instructions, thus making room for earlier threads when necessary. The policy a

ates inter-thread data dependence by processing producer instructions earlie

decreasing instruction execution stalls, thereby reducing pipeline resource contentio

In contrast to O-IMT, prior proposals for speculative threading using SMT (e.g., T

and DMT) do not address these issues in their fetch policies. TME uses biased-ICOU

variant of SMT’s ICOUNT which, as discussed above, does not consider resource

ability and loop-level independence. DMT uses a variant of round-robin fetch policy w

out accounting for resource availability or independence. The policy statically partit

DMT’s two fetch ports, and allocates one port for the non-speculative thread and the

for speculative threads in a round-robin manner. To alleviate resource pressure,

employs prohibitively large custom trace buffers to hold thousands of instructions, al

ing DMT to retire instructions speculatively from the active list and to free resource

that DMT can make forward progress. However, DMT requires searching through

buffers upon committing and misspeculation recovery. Unfortunately, allowing frequ

(associative) searches through large custom trace buffers is prohibitively slow and im

tical.

5.1.2  Multiplexing hardware contexts

Much like prior proposals, N-IMT assigns one thread to a context. Because many

grams have short threads [30] and real SMT implementations are bound to have only

(e.g., 2-8) contexts, this approach often leads to insufficient instruction overlap. La

threads, however, increase both the probability of control-flow or data dependence

speculation [30] and the number of instructions discarded per misspeculation, and

speculative buffer overflow [13]. Instead, to increase instruction overlap without

unwanted side-effects of large threads, O-IMTmultiplexesthe hardware contexts by map

ping as many threads as allowed (on average 3-6 threads for SPEC2K) by the resou

one context.

Figure 11 shows how O-IMT maps multiple threads to a context. Without con



 27
context 1

Fig. 11. Instruction overlap with context multiplexing.

thread 1

thread 2

thread 3

:17 inst

:5 inst

:25 inst

thread 4

thread 5

:40 inst

:6 inst

thread 6

thread 7

thread 8

:10 inst

:2 inst

:22 inst

17+5+25
= 47 inst

40+6
= 46 inst

10+2+22
= 34 inst

Total = 126 inst

thread 1
:17 inst

thread 2
:5 inst

context 3

thread 3
:20 inst

Total = 47 inst

(a) IMT without context multiplexing

(b) IMT with context multiplexing

context 2

context 1 context 3context 2



 28

rall

more

s

text.

ctions

tive list

epen-

exing

uire

to be

ould

Q for

tually)

orking

addi-

to the

arch is

d

to dif-

search

 LSQ.

am-

MT

mbers

read’s

read’s

g the

imum

nce’s

four

ources.
multiplexing, there are only 47 in-flight instructions in the pipeline. Even though ove

pipeline resources are available, IMT runs out of the context and so cannot bring

instructions into the pipeline. As opposed, IMT with context multiplexing can mapthread

1, thread 2, andthread 3to context 1together. As a result, context multiplexing enable

IMT to keep 126 in-flight instructions in the pipeline.

Two design complexity issues arise when mapping multiple threads to one con

First, conventional active list and load/store queue (LSQ) designs assume that instru

enter these queues in (the predicted) program order. This assumption enables the ac

to be a non-searchable (potentially large) structure, and allows honoring memory d

dences via an ordered (associative) search in the LSQ. If care is not taken, multipl

would invalidate this assumption if multiple threads were to place instructionsout of pro-

gram orderin the shared active list and LSQ. Such out-of-order placement would req

an associative search on the active list to determine the correct instruction(s)

removed upon commit or misspeculation. In the case of the LSQ, the requirements w

be even more complicated: A memory access would have to search through the LS

an address match among the entries from the access’s thread, and then (concep

repeat the search among entries from the thread preceding the access’s thread, w

towards older threads. Unfortunately, the active list and LSQ cannot afford these

tional complications because the conventional active list is made large precisely due

fact that the list does not have to be searched and the LSQ’s ordered, associative se

already complex and time-critical.

Second, if one context has multiplenon-contiguousthreads, managing inter-threa

dependence would become complicated. Two contiguous threads would be mapped

ferent contexts. To honor memory dependences, memory accesses would have to

other contexts holding earlier or later threads. Such searches complicate the critical

O-IMT uses DRP to avoid the first issue. As mentioned in Section 5.1.1, DRP dyn

ically monitors the threads activity. Figure 12 (a) depicts an example of DRP. O-I

indexes into the DRP table using the start PC of each thread. Each entry holds the nu

of physical registers, active list entries, and load/store queue entries used by the th

last four execution instances. As the thread executes, the pipeline monitors a th

resource needs. Upon thread commit, O-IMT updates the thread’s DRP entry replacin

oldest instance’s statistics with those of the current instance. DRP supplies the max

among the four instances for each resource as the prediction for the next insta

resource requirement. It may seem that tracking the maximum among the last

instances of a thread may overestimate the thread’s resource needs, and waste res



 29

ng the

tion

er.

list

xt. O-

sing

) cre-

con-

ble that

ply

shows

ext’s

ads

the
Section 6.2.1 shows the results indicating that overestimating resource usage usi

maximum value among the last four instances works well in practice due to low varia

in resource needs across nearby instances of a thread.

Using DRP, O-IMT avoids the first issue by placing instructions in program ord

Within one context, O-IMT uses DRP’s information to keep instructions in the active

in program order, despite out-of-order fetch among the threads assigned to a conte

IMT creates a gap in the active list for the thread’s yet-to-be-fetched instructions u

resource prediction’s gap length estimate. The next thread (invoked in program order

ates its gap after the previous thread’s gaps, maintaining program order among the

text’s threads.

Because the gap lengths are estimates based on previous instances, it is possi

the gaps fill up before all the thread’s instructions are fetched. In that case, O-IMT sim

squashes later threads in the context to make room for the earlier thread. Figure 13

an example for that case. In such a way, DRP helps dynamically partition a cont

active list so that instructions from one thread do not interfere with any other thre

within the context. LSQ is handled similarly. To support multiplexing, O-IMT uses

Fig. 12. Normal (successful) case of using DRP for context multiplexing:
(a) DRP table. (b) Context multiplexing.

2021 20 19

10  9 10 10

Inst A1
Inst A2

Inst B1
Inst B2

Thread X Thread X+1

(a) DRP table

Inst A20
Inst A21

LSQRegisters Instructions

Active list N
Inst A1
Inst A2

Active list N Active list N+1

21

(b)

Inst A21

Inst B1
Inst B210

Inst A1
Inst A2

21

Inst A21
Inst B1
Inst B210



 30

list.

LSQ.

skip

Inter-

thread

how

rder

lves

ith

of the

ctions

ions

le

n the
DRP to create appropriately-sized gaps in the context’s LSQ, similar to the active

Thus, memory accesses from threads in a context are kept in program order in the

This approach is similar to that proposed in [7], which creates a gap in the LSQ to

around a problematic branch.

O-IMT avoids the second issue by mapping contiguous threads to one context.

thread dependences across threads within a context are treated similar to intra-

dependence in the context, without involving other contexts. Figure 12 (b) shows

contiguous threads X and X+1 are mapped to a context. In addition to program o

within contexts, O-IMT tracks the global program order among the contexts themse

for precise interrupts.

Context multiplexing further exploits the benefit of thread-level squashing. IMT w

multiple threads in a context does not need to squash all subsequent instructions

mispredicted branch within the context, but it needs to squash subsequent instru

only within the current thread of the mispredicted branch and keeps in-flight instruct

from other threads in the same current context.

O-IMT’ context multiplexing differs from previous proposals [24, 8] to map multip

Fig. 13. Example of exceptional (unsuccessful) case of DRP prediction and effect o
context multiplexing.

2021 20 19

10  9 10 10

Inst A1
Inst A2

Inst B1
Inst B2

Thread X Thread X+1

DRP table

Inst A1
Inst A2

Inst B1
Inst B2

21

10

Inst A22
Inst A23

Active list N

Inst A1
Inst A2

Inst A22
Inst A23

10

Active list N

Inst B1
Inst B2

Active list N+1

Squash later threads

LSQRegisters Instructions



 31

read

ruti-

cussed

next

er and

d

idth.

t for

burst

a few

start.

tains

s well

table

. For

band-

bles.

iding

. In

ad can

oes

loys an

DMT

rt of a

sumes
threads onto a core and alleviate load imbalance. The schemes do not proposesimulta-

neouslyexecuting multiple threads in a context, but advocate executing the next th

only aftersuspending [24] or finishing [8] the previous thread. Such serialization unde

lizes resources. Moreover, these proposals do not mention the complexity issues dis

above.

5.1.3  Hiding thread start-up overhead

Even though the next thread’s start PC is known, fetching instructions from the

thread has to wait until the rename tables are set up. The updating of local, and mast

preassign tables must completebefore the thread’s instructions can be rename

(Section 4.3). The rate of rename table updating is limited by the rename table bandw

In conventional pipelines, this bandwidth matches the pipeline width and is sufficien

the peak demand. In contrast, N-IMT’s requirement of updating the tables creates a

demand that may exceed the bandwidth. Therefore, updating the tables may take

(e.g., 2-4) cycles to finish.

O-IMT prevents the bandwidth constraint from imposing an overhead on thread

While the current thread’s instructions are fetched, O-IMT invokes the next thread, ob

the next thread’s descriptor from the descriptor cache, and sets up the rename table

before needing to fetch the next thread’s instructions. O-IMT utilizes the rename

bandwidth unused by the current thread’s instructions to update the three tables

instance if in a cycle only 6 instructions are renamed but the rename tables have the

width to rename 8 instructions, O-IMT uses the unused bandwidth to modify the ta

Thus, O-IMT overlaps starting up a thread with the execution of previous threads, h

thread start-up overheads.

Thread start-up overhead exists for Multiscalar, TME, and machines like DMT

Multiscalar, the next thread needs to set up its rename tables so that the next thre

appropriately wait for register values from previous threads. However, Multiscalar d

not address this issue. TME incurs extra cycles to set up the rename tables, and emp

extra dedicated bus for a bus-based write-through scheme to copy rename maps.

copies not only register values but also the entire return address stack at the sta

thread. DMT does not concretely address the delay of the copying, and instead as

the delay away using extra wires to do the copying.



 32

gis-

How-

ance

e an

n is

tions

mmit

rsca-

ed to

tion is

hich

non-

e from

ecute

ignifi-

that

ved by

spec-

d uses

clearly

since

the

about

r val-

imizes

that

of val-

em-
5.2  Secondary Optimization

5.2.1  Speculative releasing

As mentioned in Section 4.2.1, N-IMT disallows communication of speculative re

ter values across threads, delaying values until intra-thread speculation is resolved.

ever, this approach has issues of not only implementation difficulty but also perform

loss.

Holding the speculative value until the speculation is resolved does not caus

implementation difficulty. The problem is to release the value when the speculatio

resolved. When intra-thread speculation is resolved, it is possible that the instruc

holding destination register values are already gone from the pipeline (but do not co

yet). These instructions are sitting in the active list, which is the reorder buffer in supe

lar. The possible implementation is to search the active list to find instructions that ne

release the destination values to later threads whenever any intra-thread specula

resolved. However, the conventional active list is the non-searchable structure, w

facilitates high clock speeds and avoids the wiring complexity. To make the active list

searchable structure, conventional SMT (or superscalar) separates the issue queu

the active list (or reorder buffer) and searches only the issue queue to find ready-to-ex

instructions. Searching the active list whenever intra-speculation is resolved adds s

cant complication to the conventional SMT pipeline.

From the performance point of view, the rational of holding speculative values is

the chance of squashing later threads from intra-thread misspeculation can be remo

delaying propagation of speculative register values to later threads until intra-thread

ulation is resolved. However, superscalar does not have such delaying overhead an

the produced values as soon as the values become ready. Such delaying overhead

introduces the inefficiency to speculative execution.

Fortunately, there have been lots of proposals to improve branch predictions

Multiscalar was proposed [3], including hybrid predictor [5]. The improvement of

branch prediction gives us chance to release speculative values with less worry

incorrect intra-thread speculation. Therefore, N-IMT releases the speculative registe

ues to later threads as soon as the values are ready just like superscalar, and it min

the waiting time of dependent instructions from later threads. Section 6.3.1 shows

some benchmarks loose considerable amount of performance due to the delaying

ues, and releasing speculative values alleviates the performance loss.

The problem with releasing speculative values to later threads is that register or m



 33

, and

incor-

n val-

lly

e later

sumed

le at

s and

isters

a

sumed

, later

ue. In

being

tive

ated

med by

oose

ch.

ms

ister

tions

ions

free

read

, then

in-

ame

, the
ory values from incorrect intra-thread execution can be consumed by later threads

later threads must be squashed even if they have been correctly predicted when the

rect intra-thread speculation is resolved.

O-IMT annotates the rename tables and load/store queue entries to identify whe

ues are consumed bysomelater thread. If the thread producing the values interna

squashes the values and there is an indication that the values were consumed by som

thread, then all later threads are squashed. To track whether a register value is con

by a later thread, O-IMT tags the rename maps, which are copied into the local tab

thread start-up, to identify the register values that are produced by previous thread

that may be consumed by the current thread. Maps added to the local table for reg

produced by the current thread arenot tagged so. If an instruction sources a value via

tagged map, then the physical register corresponding to the map is marked as con

by a later thread. To track whether a memory value is consumed by a later thread

threads tag the earlier thread’s load/store queue entry upon obtaining the entry’s val

the process of internal squashing, if a physical register or load/store queue entry

rolled back is marked as consumed by a later thread, O-IMT squashesall later threads.

IMT could keep track of which threads actually consumed the incorrect specula

values and minimize the penalty of misspeculation by squashing only contamin

threads, instead of squashing all subsequent threads whenever the value was consu

any later thread. However, to minimize the hardware complexity, O-IMT does not ch

this implementation option at this research.

5.2.2  Reducing physical register pressure

N-IMT’s out-of-order fetch overlaps farther instructions than SMT’s in-order fet

As a result, more instructions are in flight in N-IMT than SMT, especially for progra

with long threads (e.g., floating-point codes). To alleviate the resulting physical reg

pressure, O-IMT employs a two-phase instruction and thread commit strategy. Instruc

commit in program order within the thread, but out of order compared to the instruct

in preceding threads; threads commit in global program order. Instruction commits

some physical registers out of program order, well before the thread commits. Th

commits free the rest of the physical registers later. If there are pending exceptions

instruction commit within the thread is frozen till all previous threads commit, mainta

ing precise interrupts.

Conventional pipelines free the physical register previously mapped to the s

architectural register as the committing instruction’s destination. Along the same lines



 34

struc-

ously

es its

ead,

, then

real-

of the

regis-

ame

with

not

ecause

the

xter-

viola-

These

to roll-

ulti-

chitec-

essure
create mask specifies the collective architectural destination registers of a thread. In

tion commits and thread commits free only the set of physical registers that are previ

mapped to the thread’s create-mask registers. Within this set, instruction commit fre

destination’s previous physical register only if the register was allocated within the thr

and not some earlier thread. If the previous register was allocated by an earlier thread

three implications follow: (1) The previous register visible to later threads must be a p

located register in the earlier thread. (2) There is no guarantee that all use (i.e., read)

previous register value in the earlier thread is complete. (3) Thread commit frees the

ter later. To identify registers allocated within the thread, O-IMT annotates the ren

map (in the local table) for all non-preallocated registers, so that a later instruction

the same destination can free the register when the later instruction commits.

Freeing physical registers at instruction commit, even if previous threads may

have committed, does not cause loss of correctness due to two reasons: One, b

instruction commit is in program order within the thread, there are no rollbacks of

committed instruction due to internal branch mispredictions. Two, rollbacks due to e

nal misspeculations (thread mispredictions and inter-thread memory dependence

tions) restart from the beginning of the thread and recompute the freed registers.

two reasons guarantee that the freed physical registers need not be resurrected due

backs.

Because most of the previous speculative architectures [23,13,25] do not map m

ple threads to one core, they may not experience register pressure. As such, the ar

tures do not address this issue. However, for programs with long threads, register pr

is an issue even for these architectures.



 35

uilt

e spec-

is

ents

ude

eline

eline

oit the

s per

a 4-

rva-

tation

high-

uper-

struc-

iction

sed for

ator

ns

base

head

d O-

bottle-

ture

e and
6  RESULTS

A execution-driven simulator of an out-of-order SMT pipeline with extensions is b

to evaluate a base superscalar processor (using a single SMT context), and the thre

ulatively-threaded processors, IMT, DMT, and TME. The Multiscalar compiler [30]

used to generate optimized MIPS binaries. The superscalar, TME, and DMT experim

use the plain MIPS binaries (without Multiscalar annotations). The IMT binaries incl

Multiscalar’s thread specifications and register communication instructions

Table 1 depicts the system configuration parameters for this study. The base pip

assumes an eight-wide issue out-of-order SMT with eight hardware contexts. The pip

assumes two i-cache ports for all machines including the base superscalar. To expl

extra i-cache port for superscalar, the branch predictor allows up to two prediction

cycle. In addition to the base pipeline, O-IMT also uses a 64-entry DRP table and

entry ITDH table to optimize fetch. To gauge speculative threading’s potential conse

tively, IMT’s performance is compared against an aggressive superscalar implemen

that assumes the same resources available within the SMT pipeline including the

bandwidth of branch prediction and fetch, and the large register file. The aggressive s

scalar also assumes a large active list of 1024 entries, because active lists are FIFO

tures and are inherently scalable.

Table 2 shows the SPEC2K applications used in this study, and the branch pred

accuracy and superscalar IPC achieved per application. The reference input set is u

all of the benchmarks. To allow for practical simulation turnaround times, the simul

skips the first 3 billion instructions before simulating a total of 500 million instructio

(plus overhead instructions, in IMT’s case). Total number of cycles is used as the

metric to compare performance. In the case of IMT, the cycle counts include the over

instructions.

The rest of the results are organized as follows. The performance of N-IMT an

IMT are compared to the aggressive superscalar, and I break down the performance

necks O-IMT optimizes. Then results on the effectiveness of O-IMT’s microarchitec

optimizations are presented. Then I present O-IMT’s ability to increase issue queu



 36

s.
Table 1.  System configuration parameters.

Processing Units System

Issue width
Issue queue

8

64entries

DRP table 64 entries
(3 x 356bytes)

Number of
contexts

8 ITDH 4 program counters

Branch unit

Mis Penalty

hybrid GAg & Pag
4Kentires each,

1K-entry 4-way BTB
7cycles

L1 cache
2-port i-cache
&
4-port d-cache

64K 2-way,
pipelined 2-cycle hit,

32-byte block

Functional
units

8 integer,
8pipelined

floating-point

L2 cache 2M 8-way,
pipelined 10-cycle hit,

64-byte block

Register file 356 INT/ 356 FP Memory 80 cycles

Per Context

Active list
LSQ

128 entries

32 entries,
2 ports

Squash buffer
Thread
desc. cache

64 entries

16K 2-way,
2-cycle hit

Table 2.  Applications, and their branch misprediction rates and superscalar IPC

INT
Bench.

Branch
misp. (%)

IPC FP Bench.
Branch
misp. (%)

IPC

bzip 5.5 1.6 ammp 1.1 1.1
gap 2.8 3.0 applu 0.1 2.4
gcc 4.7 1.8 art 0.6 0.4
gzip 6.2 1.7 equake 0.5 1.0
mcf 7.6 0.3 mesa 2.0 2.6
parser 3.3 1.2 mgrid 0.8 2.3
perl 5.3 1.7 sixtrack 1.9 2.4
twolf 10.9 1.2 swim 0.1 0.9
vortex 0.6 1.9 wupwise 0.2 2.4
vpr 6.8 1.1



 37

elism.

ec-

e on

ized

erior

marks

, while

rfor-

s that

ing,

65%

spec-

r), N-

the

cross

etch

dence
load/store queue efficiency as compared to superscalar using thread-level parall

Finally, I compare and contrast O-IMT with TME and DMT, two prior proposals for sp

ulative threading using SMT hardware.

6.1  Base System Results

Figure 14 motivates the need for optimizing the speculative threading performanc

SMT hardware. The figure presents execution times under N-IMT and O-IMT normal

to the base superscalar. The figure indicates that N-IMT’s performance is actually inf

to superscalar for integer benchmarks. N-IMT reduces performance in integer bench

by as much as 24% and by on average of 3% as compared to superscalar. Moreover

the results for floating-point benchmarks vary, on average N-IMT only improves pe

mance slightly over superscalar for these benchmarks. The figure also indicate

microarchitectural optimizations substantially benefit compiler-specified thread

enabling O-IMT to improve performance over superscalar by as much as 69% and

and by on average of 20% and 29% for integer and floating-point benchmarks re

tively.

Figure 15 compares the key sources of execution overhead in superscalar (left ba

IMT (middle bar) and O-IMT (right bar). From top to bottom, the breakdown shows

overhead of squashing instructions due to branch misprediction (both within and a

threads) and resource pressure (in N-IMT and O-IMT), underutilized instruction f

bandwidth, memory waiting stalls (due to data cache misses), register data depen

stalls, and runtime instruction overhead for IMT machines.

Fig. 14. Performance comparison of N-IMT and O-IMT normalized to the baseline
superscalar.

S
pe

ed
up

0%

-20%

20%

60%

N-IMT O-IMT

40%

80%

ap
plum
cf

pa
rs

er

vp
r

pe
rl

vo
rte

x

eq
ua

ke
m

es
a

m
gr

id
six

tra
ck

wup
wisegc

c

bz
ip

gz
ip

Fp 
Avg

.

sw
im

In
t. 

Avg
.

ga
p

tw
olf

am
m

p

ar
t



 38

cula-

xtract

(from

ulative

ilable

scalar.

para-

ng is

e as

ads

table

as

rom the

ng
Not surprisingly, the dominant execution time component in superscalar that spe

tive threading improves is the register data dependence stalls. The IMT machines e

parallelism across threads and increase the likelihood inserting suitable instructions

across the threads) into the pipeline, thereby reducing data dependence stalls. Spec

threading also helps overlap latency among cache misses in benchmarks with ava

memory parallelism across threads, reducing memory stalls as compared to super

These benchmarks most notably includeperl, applu, mgrid, andswim. Finally, the cycles

spent executing instructions (denoted by “useful run”) across the machines are com

ble, indicating that the instruction execution overhead of compiler-specified threadi

negligible.

There are a number of benchmarks in which N-IMT actually reduces performanc

compared to superscalar. Ingap, vpr, ammp, andmesa, N-IMT simply fetches instructions

indiscriminately without regards to resource availability and from the wrong thre

(using round-robin) resulting in high misspeculation/squash frequency. Inmcf, vpr, and

art, N-IMT increases the data dependence or memory stalls by bringing unsui

instructions into the pipeline. Inmcf N-IMT increases the L1 data-cache miss ratio

compared to superscalar because later threads’ cache accesses conflict with those f

non-speculative thread. Inart, N-IMT increases the L1 data-cache miss ratio by delayi

Fig. 15. Breakdown of execution into instruction execution and pipeline stalls.

Data Dependence

Squash

Wait for Memory
Underutilized Fetch

Useful run

N: N-IMT

O: O-IMT

S N O

ap
plum

cf
pa

rs
er

vp
r

pe
rl

vo
rte

x

eq
ua

ke
m

es
a

m
gr

id

six
tra

ck

wup
wisegc

c
bz

ip gz
ip

sw
im

ga
p

tw
olf

am
m

p
ar

t

1.0

0.0

0.4

0.8

0.6

0.2

1.2

F
ra

ct
io

n 
of

 E
xe

cu
tio

n 
T

im
e

no
rm

al
iz

ed
 to

 s
up

er
sc

al
ar

S: Superscalar



 39

tilized

ed to

xing

ctions.

tion

lihood

ined

d to

ntribu-

n, I

ich

results

RP’s

nder

SQ)

also

regis-

e fig-

ntries

ciative

sep-

xing

eads

er of

ited
the issue of data cache misses from the non-speculative thread. Finally, inbzip N-IMT

incurs a high thread start-up delay and increases the fraction of stalls due underu

fetch.

The graphs also indicate that O-IMT substantially reduces the stalls as compar

N-IMT. O-IMT’s resource- and dependence-based fetch policy and context multiple

reduce data dependence and memory stalls by fetching and executing suitable instru

Accurate resource allocation and prediction minimizes the likelihood of misspecula

and reduces squash stalls. Finally, hiding the thread start-up delay reduces the like

of underutilized fetch cycles by increasing the overlap among instructions. The comb

effect of these optimizations results in superior performance in O-IMT as compare

superscalar and N-IMT. Section 6.2 presents detail analysis on these techniques’ co

tions to O-IMT’s performance.

6.2  Primary Optimizations

In this section, I present the result of resource allocation and prediction. The

present the results of O-IMT’s R&D-based fetch policy and context multiplexing, wh

use the proposed resource allocation and prediction techniques. Then, I present the

of the optimization of hiding the thread start-up delay.

6.2.1  Resource allocation & prediction

Figure 16 illustrate the need for dynamic resource allocation, and the impact of D

accurate prediction on performance in O-IMT. Figure 16 (a) compares performance u

dynamic partitioning using DRP against static partitioning for the load/store queue (L

entries, and Figure 16 (b) does for the register file. In the register file case, the figure

plots demand-based allocation of entries by threads, allowing for threads to allocate

ters upon demand without partitioning or reservation. Meanwhile, in the LSQ case, th

ure does not plot demand-based allocation of entries. The reason is that the LSQ e

cannot be simply shared by multiple threads because the LSQ supports the asso

searches to honor the memory dependence (Section 5.1.2).

The graphs plot average performance (for integer and floating-point benchmarks

arately) as a fraction of that in a system with unlimited resources. Context multiple

allows more threads per context, thereby requiring a different (optimal) number of thr

depending on the availability of resources. These graphs plot the optimal numb

threads (denoted by the letter T) for every design point on the x-axis.

Figure 16 (a) indicates that DRP successfully eliminates all stalls related to a lim



 40
Fig. 16. Dynamic vs. static partitioning of resources.

8 16 32 64

Static integer

DRP integer

Static fp

DRP fp

F
ra

ct
io

n 
of

 O
-I

M
T

 P
er

fo
rm

an
ce

w
ith

 U
nl

im
ite

d 
R

es
ou

rc
es

8T

16T

16T
24T

1.0

0.0

0.4

0.8

0.6

0.2

LSQ entries per context

128 256 356 512 768 1024

Static integer

DRP integer

Static fp

DRP fp

Demand integer
Demand fp

F
ra

ct
io

n 
of

 O
-I

M
T

 p
er

fo
rm

an
ce

w
ith

 u
nl

im
ite

d 
re

gi
st

er
s

8T

14T

16T
20T

24T 26T
1.0

0.0

0.4

0.8

0.6

0.2

Total number of entries in physical register file

(a) Impact on the load/store queue

(b) Impact on the physical register file



 41

ntext.

ve the

SQ

s as

ench-

ntext.

DRP

ers in

for

for-

over

with

lloca-

par-

DRP.

egis-

n fre-

se in

egis-

var-

rn and

ating

g the

hreads

e frac-
number of LSQ entries in integer benchmarks with as few as 16 LSQ entries per co

In contrast, a static partitioning scheme requires as many as 64 LSQ entries to achie

same results. Similarly, in floating-point benchmarks, DRP can eliminate virtually all L

stalls with 32 entries per context, whereas static partitioning would require two time

many entries per context. Moreover, static partitioning can have a severe impact on b

mark performance, reducing performance on average by 40% given 16 entries per co

Figure 16 (b) indicates that the results for allocating registers are more dramatic.

allocation of registers can achieve the best performance with four times fewer regist

integer and floating-point benchmarks. Moreover, static partitioning of registers

smaller register file sizes (>256) virtually brings execution to a halt and limits per

mance. Demand-based allocation of registers substantially improves performance

static partitioning, allowing threads to share a large pool of registers effectively even

as few as 128 registers per integer and floating-point register files. Demand-based a

tion, however, only reaches within 10% of DRP-based allocation and, much like static

titioning, requires four times as many registers to bridge the performance gap with

Demand-based allocation’s performance improves gradually beyond 256 registers. R

ter demand varies drastically across threads resulting in a slow drop in misspeculatio

quency, and consequently gradual improvement in performance, with an increa

register file size.

Table 3 presents statistics on the accuracy of DRP for the dynamic allocation of r

ters, active list and LSQ entries. Unfortunately, demand for resources actually slightly

ies even across dynamic instances of the same (static) thread. The predictors lea

predict the worst-case demand on a per-thread basis, thereby opting for over-estim

the demand in the common case. Alternatively, predictors that would target predictin

exact demand for resources may frequently under-estimate, thereby causing later t

to squash and release resources for earlier threads (Section 5.1). The table depicts th

Table 3.  Accuracy of dynamic resource prediction and allocation.

Benchmarks
LSQ Registers Active List

acc(%) avg.
used

avg.
over

acc(%) avg.
used

avg.
over

acc(%) avg.
used

avg.
over

integer 99.2 7.4 0.8 97.5 15.9 3.0 98.9 17.0 2.1

floating-point 99.6 19.7 1.8 98.4 29.8 2.9 99.7 43.9 1.8



 42

. The

ces of

y, the

that

nly

the

ces

ld let

rward

in

age or

ing to

riority

tly

left

NT,

mance

and

e

.

e per-

ate to

shows

ng

mong

arks

wn

hat in

hort-

on-
tion of the time and the amount by which DRP on average over-estimates demand

results indicate that predicting based on the demand for the last four executed instan

a thread leads to high accuracy for (over-)estimating the resources. More importantl

average number by which the predictors over-estimate is relatively low, indicating

there is little opportunity lost due to over-estimation.

6.2.2  Resource- & dependence-based fetch policy

O-IMT’s fetch policy gives the priority to the non-speculative (head) thread and o

fetches from other threads when: (1) ITDH indicates the likelihood of parallelism and

availability of suitable instructions, and (2) DRP indicates the availability of resour

based on the predicted demand. In contrast, a round-robin policy (used in DMT) wou

later dependent threads hog the resources while earlier threads attempt to make fo

progress, potentially reducing performance. Similarly, an ICOUNT policy [9] (used

SMT) that favors a thread with the fastest issue rate without regards to resource us

dependence may indiscriminately allocate resources to speculative threads, lead

resource bottlenecks. Finally, a constant bias in the non-speculative thread’s fetch p

in a biased-ICOUNT policy [31] (used in TME) may improve performance only sligh

when resource usage and dependence across threads drastically vary.

Figure 17 shows O-IMT’s performance under four different fetch policies. From

to right, the figure plots three priority-based fetch policies, ICOUNT, biased-ICOU

and resource- and dependence-based fetch policy. The graphs plot the perfor

improvement of those fetch policies over round-robin fetch policy for all benchmarks

the average of integer and floating-point programs separately.

Among integer benchmarks,gap shows the most benefit from employing th

resource- and dependence-based fetch policy for O-IMT, andmcfshows the least benefit

The figure indicates that indeed in integer benchmarks, ICOUNT reduces the averag

formance over round-robin, because it allows speculative threads issuing at a high r

inadvertently fetch, allocate resources, and subsequently squash. The figure also

that without an efficient fetch policy, all the optimizations that O-IMT employs to bri

more instructions (from speculative threads) to the pipeline or to increase overlap a

fetched instructions can actually hurt the performance. As a result, some benchm

includingbzip and gapperforms even worse than N-IMT (This comparison is not sho

here, but it can be seen by comparing the performance degradation in this figure to t

Figure 14), which uses ICOUNT as a fetch policy. Biased-ICOUNT addresses this s

coming in ICOUNT by biasing the priority towards the non-speculative thread by a c



 43
Fig. 17. The impact of fetch policy.

0%

-30%

30%

60%

P
er

fo
rm

an
ce

 R
el

at
iv

e 
to

 O
-I

M
T

w
ith

 R
ou

nd
-R

ob
in

 F
et

ch
 P

ol
ic

y
ICOUNT R&D-based policyBiased-ICOUNT

mcf
parser

vpr
perl

vorte
xgcc

bzip gzipgap
twolf

(a) Integer benchmarks
INT Avg.

0%

-30%

30%

60%

P
er

fo
rm

an
ce

 R
el

at
iv

e 
to

 O
-I

M
T

w
ith

 R
ou

nd
-R

ob
in

 F
et

ch
 P

ol
ic

y

applu
equake

mesa
mgrid

wupwise
Fp Avg.

swim
ammp

art

(b) Floating-point benchmarks



 44

and

in by

(2) the

arks

ng-

nce

te of

UNT

proves

ost

ple

rna-

lica-

t of

r-

aver-

-IMT

rfor-

nce

or-

from

g the

int

ntexts.

ns on

ly one

of
stant value, and improving performance over round-robin. O-IMT’s resource-

dependence-based fetch policy significantly improves performance over round-rob

preventing later threads from fetching unless: (1) there are resources available, and

threads are loop iterations and likely to be independent.

Among floating-point benchmarks,applu shows the most benefit from all priority-

based fetch policy compared to round-robin. As a result, the floating-point benchm

actually slightly benefit from ICOUNT and biased-ICOUNT on average. The floati

point applications exhibit a high fraction of thread-level parallelism and independe

across threads. As in SMT, ICOUNT allows for the threads making the fastest ra

progress to proceed, improving performance over a round-robin policy. Biased-ICO

reduces the likelihood of misspeculation due to resource pressure, and as such im

performance over ICOUNT. O-IMT’s fetch policy performs best by allowing the m

suitable instructions to flow through the pipeline.

6.2.3  Multiplexing hardware contexts

Multiplexing offers two key advantages for applications with short threads. Multi

threads per context help increase the number of suitable in-flight instructions. Alte

tively, multiplexing makes unused contexts available to threads across multiple app

tions in a multiprogrammed (SMT) environment. Figure 18 illustrates the impac

multiplexing on O-IMT’s performance. The Y axis shows the fraction of O-IMT perfo

mance with different number of contexts. The X axis shows the benchmarks and the

age of the integer and the floating--point programs separately. The base case is the O

performance with unlimited resources including contexts. The left bar shows the pe

mance of O-IMT without context multiplexing, and the right bar shows the performa

of O-IMT with context multiplexing. To accurately gauge the overall impact on perf

mance with an increase in available resources, the register file size are varied linearly

132 to 356 (adding 32 registers to the base case with every context) when varyin

number of contexts from one to eight.

The figure indicates that without multiplexing, neither integer nor floating-po

benchmarks can reach best achievable performance even with eight hardware co

Moreover, performance substantially degrades (to as low as 35% in integer applicatio

average) when reducing the number of contexts. Without multiplexing,perl shows the

worst performance as low as 20% of the unlimited resources case, when there is on

context. Meanwhile, with multiplexing,perl achieves the performance as high as 69%

the unlimited resources case.



 45
Fig. 18. The impact of context multiplexing.

1 context
2 contexts
4 contexts
8 contexts

A:
B: with multiplexing

1.0

0.0

0.4

0.8

0.6

0.2

F
ra

ct
io

n 
of

 O
-I

M
T

 P
er

fo
rm

an
ce

w
ith

 U
nl

im
ite

d 
R

es
ou

rc
es

A B

(a) Integer benchmarks

(b) Floating-point benchmarks

without multiplexing

mcf
parser

vpr
perl

vorte
xgcc

bzip gzipgap
twolf

INT Avg.

1.0

0.0

0.4

0.8

0.6

0.2

F
ra

ct
io

n 
of

 O
-I

M
T

 P
er

fo
rm

an
ce

w
ith

 U
nl

im
ite

d 
R

es
ou

rc
es

A B
applu

equake
mesa

mgrid

wupwise
Fp Avg.

swim

ammp art



 46

text

with

um 4

at-

nch-

even

ce.

four-

an O-

nor-

art-up

teger

ults

ough

exe-

tize a

lay. In

ieves

ecu-

t for

rrent

olate

until

tation

e two
Multiplexing’s performance impact is larger with fewer contexts because con

resources are used more efficiently. Multiplexing best benefits integer benchmarks

short-running threads allowing for two contexts (e.g., as in a HyperThreaded Penti

[15]) to outperform eight contexts without multiplexing. Multiplexing also benefits flo

ing-point benchmarks, reducing the required number of contexts. Floating-point be

marks’ performance, however, scale well with an increase in the number of contexts

without multiplexing due to these benchmarks’ long-running threads.

6.2.4  Hiding thread start-up overhead

Figure 19 illustrates the impact of thread start-up delay on O-IMT’s performan

From left to right, the bars represent the performance of four-cycle start-up delay,

cycle start-up delay, and O-IMT’s overlap to hide the start-up delay. The base case is

IMT with no start-up delay. The graphs plot the performance of three different cases

malized to the performance of the base case. The figure indicates that a higher st

delay of four cycles on average can reduce performance by 10% on average in in

benchmarks.perl is the one which suffers most from the thread start-up delay. The res

show that in integer benchmarks with multiple-cycle start-up delay, there are en

slacks in the SMT’s shared pipeline. Consequently, hiding the slacks by overlapping

cutions of multiple threads improves the performance.

Because of their long-running threads, the floating-point benchmarks can amor

higher start-up delay, and as such show less performance sensitivity to start-up de

contrast, O-IMT’s mechanism for overlapping thread start-up on average almost ach

ideal performance (incurring no start-up delay).

6.3  Secondary Optimizations

In this section, I will discuss the results of the secondary optimizations such as sp

lative releasing and reducing register pressure by two-phase commit.

6.3.1  Speculative releasing

One of the benefits of IMT is its ability to do thread-level squashing. It means tha

an intra-thread branch misprediction, IMT squashes instructions only from the cu

thread of the mispredicted branch, while it keeps later thread instructions intact. To is

the intra-thread misprediction, N-IMT does not release register values to later threads

all previous internal branches are resolved. However, this approach has an implemen

issue and performance issue, as mentioned in Section 6.3.1. O-IMT solves thes

issues by speculatively releasing register values to later threads.



 47
Fig. 19. The impact of start-up delay.

2-cycle delay4-cycle delay Overlap
F

ra
ct

io
n 

of
 O

-I
M

T
 P

er
fo

rm
an

ce
w

ith
 Z

er
o 

S
ta

rt
-u

p 
O

ve
rh

ea
d

0.6

0.5

0.7

0.8

0.9

1.0

(a) Integer benchmarks

mcf
parser

vpr
perl

vorte
xgcc

bzip gzipgap
twolf

INT Avg.

F
ra

ct
io

n 
of

 O
-I

M
T

 P
er

fo
rm

an
ce

w
ith

 Z
er

o 
S

ta
rt

-u
p 

O
ve

rh
ea

d

0.6

0.5

0.7

0.8

0.9

1.0

applu
equake

mesa
mgrid

wupwise
Fp Avg.

swim
ammp

art

(b) Floating-point benchmarks



 48
Fig. 20. The impact of thread-level squashing with speculative releasing.

P
er

fo
rm

an
ce

 R
el

at
iv

e 
to

1.0

0.7

1.3

1.6

O
-I

M
T

 w
ith

ou
t t

hr
ea

d-
le

ve
l s

qu
as

hi
ng

(a) Integer benchmarks

mcf
parser

vpr
perl

vorte
xgcc

bzip gzipgap
twolf

INT Avg.

P
er

fo
rm

an
ce

 R
el

at
iv

e 
to

O
-I

M
T

 w
ith

ou
t t

hr
ea

d-
le

ve
l s

qu
as

hi
ng

With speculative releasing, but no tracking

Without speculative releasing

With speculative releasing and tracking

applu
equake

mesa
mgrid

wupwise
Fp Avg.

swim
ammp

art

(b) Floating-point benchmarks

sixtra
ck

1.0

0.7

1.3

1.6



 49

nce

t use

ht, the

sing,

d (3)

d bar

The

hich

dicted

ction

nch-

olding

ds on

imize

n O-

dic-

level

ranch

rfor-

sed

g. The

urred

r of

ashes

aver-

uming

ben-

ates

ds 2%

se.

lative

o not

show
Figure 20 illustrates the impact of thread-level squashing on O-IMT’s performa

with and without speculative releasing. The base case is an O-IMT that does no

thread-level squashing but speculatively releases the register values. From left to rig

bars represent (1) a O-IMT with thread-level squashing but without speculative relea

(2) a O-IMT with thread-level squashing and speculative releasing but no tracking, an

a O-IMT with thread-level squashing, speculative releasing, and tracking. The secon

represents the performance of the optimization used for O-IMT in this dissertation.

third bar is the performance of the aggressive implementation of the optimization, w

keeps tracking the threads that actually use the speculative values from the mispre

control path and so tries to minimize the squash penalty of internal branch mispredi

while releasing values speculatively (Section 5.2.1).

The figure shows the performance improvement in integer and floating-point be

marks when using thread-level squashing. The figure also compares the impact of h

on to speculative register values — to remove the chance of squashing later threa

internal branch mispredictions — and releasing speculative register values — to min

the waiting time of dependent instruction from later threads.

The figure indicates that thread-level squashing has a considerable impact o

IMT’s performance in integer applications due to the higher internal branch mispre

tions, improving performance by 11% on average. In integer applications, thread-

squashing saves 20 instructions among 43 instructions in flight on average per b

misprediction. Moreover, releasing speculative register values further improves pe

mance by additional 7%, indicating the low likelihood of speculative register values u

by later threads with branch mispredictions occur in earlier threads.

Table 4 shows the statistics for the extra squashes due to speculative releasin

second and fifth column show the number of intra-thread branch mispredictions occ

while executing 500 million instructions. The third and sixth columns show the numbe

squashes occurred due to speculative releasing without tracking and ratio of the squ

over the intra-thread branch mispredictions. The statistics show that only 14% (on

age) of internal branch mispredictions cause squashing later threads due to cons

incorrect register values speculatively. While thread-level squashing does not greatly

efit floating-point applications due to extremely low internal branch misprediction r

(only 2% of performance improvement over the base case), speculative releasing ad

of performance improvement, resulting 4% of performance improvement over the ba

As mentioned in Section 5.2.1, tracking the threads that actually use the specu

value from the mispredicted control path may complicate the pipeline design, and I d

consider it as a design option in this dissertation. Moreover, the results in this figure

that the performance improvement from tracking over non-tracking is trivial.



 50

nd

it on

mmit

ce

h an
6.3.2  Reducing register pressure

O-IMT allows later threads to commit their instructions out of program order a

release physical registers. Figure 21 illustrates the impact of IMT’s two-phase comm

relieving register pressure. The figure compares the performance of regular co

against two-phase commit in O-IMT. To show O-IMT’s potential for performan

improvement using two-phase commit, the numbers are normalized to an O-IMT wit

Table 4.  Squashes due to speculative releasing.

INT
Bench.

# Internal
branchmisp.

# Squash due
to spec.
releasing (%)

FP
Bench.

# Internal
branch misp.

# Squash due
to spec.
releasing (%)

bzip 4841k 1083k (22%)ammp 1987807 17009 (9%)
gap 1540k 176k (11%)applu 24204 5 (0%)
gcc 3591k 448k (13%)art 803434 185887 (23%)
gzip 5202k 510k (10%)equake 896002 3 (0%)
mcf 11858k 1293k (11%)mesa 1563164 59187 (4%)
parser 4279k 1084k (25%)mgrid 842 2 (0%)
perl 361k 1k (0%) sixtrack 241131 1327 (1%)
twolf 8775k 489k (6%)swim 24609 0 (0%)
vortex 1070k 100k (9%)wupwise 403406 64479 (16%)
vpr 3648k 2571k (71%)

Fig. 21. The impact of two-phase commit.

F
ra

ct
io

n 
of

 P
er

fo
rm

an
ce

 w
ith

U
nl

im
ite

d 
R

eg
is

te
rs

1.0

0.0

0.5

Two-phase commit fp
Two-phase commit integer

Regular commit fp
Regular commit integer

128 256 356 512 768 1024

Number of physical registers



 51

ited

eyond

imilar

r com-

e are

sue

for-

avoid

e key

e the

cross

nd O-

The

-IMT

e issue

uce

64/

ueue

r by

aches

y in

and

rom

the

lica-

tly
unlimited number of registers. The results indicate that two-phase commit has lim

advantage over regular commit in integer benchmarks and does not benefit them b

356 registers due to lack of register pressure. Floating-point benchmarks show s

results. With 356 registers, two-phase commit reduces register pressure over regula

mit improving performance by 8% on average with maximum of 20% ingap, mgrid,

su2cor, andtomcatv. Two-phase commit’s advantage eventually disappears when ther

enough registers to satisfy the demand for registers by threads.

6.4  Miscellaneous Results

This section first discusses the performance implication of O-IMT from the is

queue’s and LSQ’s point of view. Then it discusses the performance loss when O-IMT

goes early-scheduling for the instructions that are dependent on loads, in order to

increasing the complexity of the scheduler design.

6.4.1  Issue queue & LSQ performance sensitivity

In SMT/superscalar pipelines, the issue queue and LSQ(s) sizes are often th

impediments to performance scalability [20]. Thread-level speculation helps increas

effectiveness of these queues of a given size by allowing suitable instructions from a

the threads to enter the queues. Figure 22 illustrates improvements in superscalar a

IMT performance with increasing number of entries in the issue queue and LSQ.

graphs indicate that as compared to a superscalar with a 32/16 entry queue pair, O

can achieve the same performance with half as many queue entries. Because th

queue and LSQ are often on the pipeline’s critical path, O-IMT can actually help red

the critical path and increases clock speed by requiring smaller queues.

The graphs also indicate that for integer applications, performance levels off with

32 entry queue pairs, with up to 50% performance improvement over a 16/8 entry q

pair. O-IMT maintains a 25% additional improvement in performance over superscala

extracting thread-level parallelism. Moreover, superscalar’s performance never re

that of O-IMT’s even with 256/128 entry queues. High branch misprediction frequenc

integer applications ultimately limits performance even with a larger issue queue

LSQ. In O-IMT, a mispredicted branch within a thread only squashes instructions f

that thread, thereby allowing suitable instructions from future threads to remain in

pipeline while a branch from an earlier thread mispredicts.

In contrast, superscalar’s performance continues to scale for floating-point app

tions with higher levels of ILP, up to the 256/128 entry queues. O-IMT significan



 52

e at the

MT’s

es to

ing

ency

ntion.

ctions

laten-

, IMT

xcep-

ext do

ies are

r the

essive

ft bar
enhances queue efficiency over superscalar and achieves superscalar’s performanc

256/128 design point with less than a quarter of the queue entries. Moreover, O-I

performance levels off at the 64/32 design point, obviating the need for large queu

extract the available parallelism.

6.4.2  Forgoing early-scheduling for load-dependent instructions

As mentioned in Section 4.4, IMT does memory disambiguation by search

through LSQs from different contexts. Such multiple searches make the L1 hit lat

variable because of the uncertainty of the latest store’s existence and the port conte

Meanwhile, high performance superscalar processors speculatively schedule instru

dependent on the load with the assumption that the load is a cache hit. Variable hit

cies complicate such a scheduling mechanism. To avoid complicating the scheduler

foregoes early-scheduling for the instructions that are dependent on the load. The e

tional case is for loads that are from the head context. The loads from the head cont

not search any earlier context because there is no earlier context, and so their latenc

not variable.

Figure 23 shows the performance loss when O-IMT forgoes early-scheduling fo

instructions that are dependent on the load. The base case is an O-IMT with the aggr

scheduler that can do early-scheduling even with variable hit latency of loads. The le

Fig. 22. Issue queue/LSQ sensitivity.

O-IMT fp
O-IMT int

Superscalar fp
Superscalar int

Issue queue/LSQ size

16/8 32/16 64/32 128/64 256/128

150%

0%

50%

P
er

fo
rm

an
ce

 n
or

m
al

iz
ed

 to
 s

up
er

sc
al

ar
w

ith
 1

6-
en

tr
y/

8-
en

tr
y 

is
su

e 
qu

eu
e/

lL
S

Q

200%

100%



 53

that

r than

that

omes

ance

on

as 9%

ling

-IMT

-IMT

con-

ds that

edul-

most

.

m so

act to

xt
shows the performance of an O-IMT that forgoes early-scheduling for all instructions

are dependent on any load. Therefore, the scheduler of this bar will be even simple

that of conventional superscalar. The right bar shows the performance of the O-IMT

does early-scheduling for the instructions dependent on the load only if the load c

from the head context. Otherwise, the O-IMT forgoes early-scheduling. The perform

of these two mechanisms is normalized to that of the base case in the figure.

The figure shows that no-early-scheduling degrades O-IMT’s performance by 5%

average, as much as 10% for integer benchmarks and by 3% on average, as much

for floating-point benchmarks. However, O-IMT does not need to forgo early-schedu

for the instructions dependent on the load that is from the head context. When O

takes this fact into the consideration, it reduces the performance loss only to 2%. O

does context multiplexing. Therefore, the head context will accommodates multiple

tiguous threads including the head thread (the non-speculative thread), and the loa

are from the head context cover the majority of important loads. As a result, early-sch

ing only for the instructions dependent on the load from the head context alleviates

of performance degradation due to inefficient scheduling compared to the base case

Floating-point benchmarks show different results.Swimshows the most interesting

results. Unlike integer benchmarks, floating-point benchmarks have lots of parallelis

that the efficient scheduling is less required. Early-scheduling also has negative imp

Fig. 23. Impact of early-scheduling for load-dependent instructions

F
ra

ct
io

n 
of

 O
-I

M
T

 P
er

fo
rm

an
ce

Early-scheduling for load-dependent instructions only from the head conte
No-early-scheduling for all load-dependent instructions

0.7

0.6

0.8

1.0

0.9

0.5

ap
pl

u

m
cf

pa
rs

er

vp
r

pe
rl

vo
rte

x

eq
ua

ke
m

es
a

m
gr

id
six

tra
ck

wup
wisegc

c

bz
ip

gz
ip

Fp
 A

vg
.

sw
im

In
t. 

Avg
.

ga
p

tw
ol

f

am
m

p

ar
t

w
ith

 e
ar

ly
-s

ch
ed

ul
in

g
fo

r 
lo

ad
-d

ep
en

de
nt

 in
st

ru
ct

io
ns



 54

nd it

n turns

-

text

arks

uling

e the

t will

od-

ser-

pping

(for a

h) for

es a

ecula-

TME

reads

st O-

the

arily

ictable

ting

npre-

entify

awn

from

ould

ver,

e

over
the performance. Early-scheduling assumes that all loads are going to be L1 hit, a

flushes out and reissues all instructions subsequent to a load when the assumptio

out to be wrong and the load is L1 miss. As a result,swimshows a little performance ben

efit by completely forgoing early-scheduling. As shown in Section 6.2.3, O-IMT’s con

multiplexing in floating-point benchmarks is less effective than in integer benchm

because of bigger thread size. Therefore, in floating-point benchmarks, early-sched

only for the instructions dependent on the load from the head context does not improv

performance of completely foregoing early-scheduling because the head contex

accommodate only a few threads.

6.5  Comparison to TME & DMT

In this section, O-IMT’s performance is compared against TME and DMT. The m

els used in this comparison for TME and DMT are quite aggressive allowing for a con

vative comparison against these machines. I assume no contention for TME’s ma

synchronization bus [31]. I also assume a 256-entry custom trace buffer per context

total of 2048 entries) with zero-cycle access penalty and selective recovery (squas

DMT. As proposed, TME fetches from two ports using biased-ICOUNT, and DMT us

dedicated i-cache port for the non-speculative thread and a shared i-cache port for sp

tive threads. I also assume an improvement over the proposed machines by allowing

and DMT to take advantage of both i-cache ports when there are no speculative th

running. I compare these improved models against the original proposals.

Figure 24 compares speedups of the optimized TME and DMT machines, again

IMT normalized to the baseline superscalar. Unlike O-IMT, TME and DMT reduce

average performance with respect to a comparable superscalar. TME [31] prim

exploits thread-level parallelism across unpredictable branches. Because unpred

branches are not common, TME’s opportunity for improving performance by exploi

parallelism across multiple paths is limited. TME’s eagerness to invoke threads on u

dictable branches also relies on the extent to which a confidence predictor can id

unpredictable branches. A confidence predictor with low accuracy would often sp

threads on both paths, often taking away fetch bandwidth and processing bandwidth

the correct (and potentially predictable) path. An accurate confidence predictor w

result in a TME machine that performs close to, or improves performance slightly o

the baseline superscalar machine.Vpr and mesaare benchmark examples in which th

confidence predictor predicts accurately, allowing TME to improve performance

superscalar.



 55

ers

ches a

after

igh

s are

ation

ional

of pro-

order

ts in

gister

s.

MT

ommits

rks

uper-

ctu-
DMT’s poor performance is due to the following reasons. First, DMT often suff

from poor thread selection because it spawns a new thread when the fetch unit rea

function call or a backward branch, and selects the new thread to include instructions

the call or backward branch. Therefore, DMT precludes exploiting the potentially h

degree of parallelism that exists across inner loop iterations. Moreover, DMT’s thread

typically inordinately long, increasing the probability of data dependence misspecul

despite using “dataflow” dependence prediction. Second, DMT achieves low condit

branch and return address prediction accuracies because DMT spawns threads out

gram order while global branch history and return address stack require in-program-

information to result in high prediction accuracy. The results indicate that DMT resul

lower branch and return address prediction accuracies whether the branch history re

and return address stack contents are cleared or copied upon spawning new thread

Due to the low accuracy of DMT’s branch and data-dependence prediction, D

fetches, executes, and subsequently squashes twice as many instructions as it c

(i.e., DMT’s commit rate is one third of its fetch/execute rate). With the exception ofmcf,

twolf, vpr,andequake, in which branch prediction accuracies remain high, all benchma

exhibit significantly lower branch prediction accuracy as compared to our baseline s

scalar, resulting in a lower average performance than superscalar.

Figure 25 corroborates the results that the optimized models for TME and DMT a

Fig. 24. Performance comparison of TME, DMT, and IMT normalized to baseline
superscalar.

S
pe

ed
up

DMT O-IMTTME

0% -1%

0%0% 0%

0%

-20%

20%

60%

40%

80%

-40%

ap
pl

u

m
cf

pa
rs

er

vp
r

pe
rl

vo
rte

x

eq
ua

ke
m

es
a

m
gr

id
six

tra
ck

wup
wisegc

c

bz
ip

gz
ip

Fp 
Avg

.

sw
im

In
t. 

Avg
.

ga
p

tw
ol

f

am
m

p

ar
t



 56

edups

em

t and a

s the

ports

rom

ut fails

roves

eads

nce

ase-

to a

-IMT

I used

as only

e bar

gram

ution

s

ally improve performance over the original proposals. The figure compares the spe

from the original proposals for TME and DMT against the optimized proposals for th

normalized to a less aggressive superscalar processor with a single i-cache fetch por

single branch prediction per cycle used in the prior studies [31,1]. The figure also plot

speedups for the baseline superscalar assumed in this dissertation with two i-cache

and two branch predictions per cycle. Not surprisingly, TME substantially benefits f

the second i-cache port in the common case when there are no speculative threads b

to improve performance over the baseline superscalar. DMT’s performance also imp

slightly due to a better utilization of the second i-cache port when the speculative thr

do not actively fetch. However, DMT’s poor threading severely limits the performa

improvement, resulting inferior performance compared to TME or the aggressive (B

line) superscalar.

6.6  Comparison to single thread run on single SMT context

This section shows how much performance gain IMT can actually get compared

genuine SMT when there is enough contexts available on a SMT. Figure 26 shows O

performance compared to a base case, which is different from the base case that

through the Result chapter. The base case used in this figure is a superscalar that h

hardware resources as much as a single SMT context.

Perl achieves the biggest performance improvement with 199% speed-up and th

goes beyond the range of Y axis. This figure shows that IMT improves the single pro

performance by an average of 50% for Integer benchmarks over genuine SMT exec

Fig. 25. Performance comparison of TME, DMT, and IMT normalized to prior-work’
superscalar [31].

S
pe

ed
up

DMT-orig.

TME-orig.
TME

DMT
Baseline

0%

20%

60%

80%

40%

Superscalar

integer floating-point



 57

less

p over

T.
when the number of contexts is not a limitation. Floating-points benchmarks achieve

impressive speed-up than Integers, but they still achieve an average of 32% speed-u

SMT. This result shows that the programs with characteristics ofgap, perl, twolf, vortex,

mgrid, andswim can greatly benefit from IMT architectures compared to genuine SM

Fig. 26. Performance comparison of O-IMT normalized to the superscalar with
hardware resources as a single SMT context.

S
pe

ed
up

20%

0%

40%

80%

60%

100%

ap
plum
cf

pa
rs

er

vp
r

pe
rl

vo
rte

x

eq
ua

ke
m

es
a

m
gr

id
six

tra
ck

wup
wisegc

c

bz
ip

gz
ip

Fp 
Avg

.

sw
im

In
t. 

Avg
.

ga
p

tw
olf

am
m

p

ar
t

199%



 58

s data-

ulti-

ute

tation

SMT

IMT)

MT’s

es, and

ource

ms

in an

vel

every

the

hitec-

r value

ally

hitec-

ndary

d the

) O-

ers at

come

fer-

and

pec-
7  CONCLUSIONS

SMT has emerged as a promising architecture to share a wide-issue processor’

path across multiple program executions. This dissertation proposed the Implicitly-M

Threaded (IMT) processor to utilize SMT’s support for multithreading to exec

compiler-specified speculative threads from a single sequential program. The disser

presented a case arguing that a naive mapping of even highly-optimized threads onto

performs only comparably to an aggressive superscalar. I proposed a naive IMT (N-

that incurs high thread execution overhead because it indiscriminately divides S

shared pipeline resources (e.g., as fetch bandwidth, issue queue, load/store queu

physical registers) across threads without regard to resource availability, thread res

usage, or inter-thread dependence.

I also proposed an optimized IMT (O-IMT) that employs three primary mechanis

and two secondary optimizations to improve speculative thread execution efficiency

SMT pipeline. The three primary optimizations are as follows: (1) O-IMT employs a no

resource- and dependence-based fetch policy to decide from which thread to fetch

cycle. (2) O-IMT multiplexes contexts by mapping as many threads as allowed by

hardware resources, increasing instruction overlap. (3) Speculatively-threaded arc

tures incur rename table set-up overhead at thread start-up to ensure proper registe

communication between earlier threads and the newly invoked thread. O-IMT virtu

eliminates the rename table set-up overhead incurred in speculatively-threaded arc

tures by overlapping the start-up delay with previous threads’ execution. The seco

optimizations are as follows: (1) O-IMT speculatively releases register values to avoi

implementation and performance issues of N-IMT’s thread-level squashing, and (2

IMT employs two-phase commit to reduce register pressure by freeing some regist

instruction commit, before the thread commits. As SMT and speculative threading be

prevalent, O-IMT’s optimizations will be necessary to achieve high performance.

Using results from execution-driven simulation and SPEC2K benchmarks with re

ence input sets, I showed that O-IMT improves performance by an average of 20%

29% with a maximum of 69% and 65% for integer and floating-point benchmarks, res



 59

against

sed

mpa-

not

t the

uld

ns for

ue

ly

mpor-

P will

sump-

wer

est

iplex-

ext

lex-

ated.

iden-

easing

e in

nly

up

ased

ource

ze the

rea-

parate
tively, over an aggressive superscalar. I also presented performance comparisons

two prior proposals, TME and DMT, which execute speculative threading on SMT-ba

architectures. I showed that O-IMT outperforms a comparable TME by 26% and a co

rable DMT by 38%.

In the future, the circuit technology will continue to scale the transistor size but

the wire delay. This trend means that there will be billions of transistors in a chip, bu

wire delay will severely limit the design options for utilizing transistors. The CMP co

be an answer for that situation. However, one open question is what the design optio

each core within a CMP will be. Will it be an SMT? Or will it be a regular wide-iss

superscalar? How can IMT be applied to those design options?

If each core will be an SMT, all of IMT’s architectural optimizations will be direct

applicable to the future designs as long as single-program performance remains an i

tant issue. Even though there is no reason not to believe that each core within a CM

be an SMT, let us assume that each core will be a regular superscalar. Under that as

tion, before I can decide whether IMT will be effectively applicable there, I have to ans

the following question. Can I apply context multiplexing to CMP? One of the bigg

overheads of CMP-based speculative threading is the load imbalance. Context mult

ing will effectively remove this overhead with no doubt. However, unlike on SMT, cont

multiplexing on a CMP will complicate the cache design. Even without context multip

ing, the cache design for CMP-based speculative threading is already too complic

Context multiplexing on a CMP requires that each cache block should keep a thread

tifier as a tag. It means not only increasing storage overhead in caches but also incr

the number of tag comparisons for cache accesses due to identifying thread ID.

If context multiplexing will be taken as a design point to reduce the load imbalanc

spite of those issues, all IMT techniques will be effective for future designs. If not, o

some of IMT’s optimizations will be applicable, but others will not. Hiding thread start-

delay and speculative releasing will still benefit future designs. However, the R&D-b

fetch policy will not benefit the CMP with superscalar cores, because there is no res

sharing across threads and so there is no need to steer the fetching unit to prioriti

best instructions to bring ahead. The two-phase commit will not benefit for the same

son, because reducing register pressure will not affect other threads’ running in se

cores.



 60

effi-

cen-

with

uted

s the

be

ulti-

cula-

hout

fac-

ctures

ution

ort-

eline

ll rele-

essor

ine.

ider

ne is

dis-

nce.

eline

ance

ulti-

ding

ing
8  FUTURE DIRECTION

This dissertation proposed key microarchitectural optimizations to remove the in

ciencies of speculative threading on Simultaneous Multithreading (SMT), which is a

tralized architecture. It will be interesting to see how these optimizations react

different architectures such as the Chip MultiProcessor (CMP), which is a distrib

architecture. Multiscalar was the first proposal for speculative threading, and it use

CMP as a hardware platform. Although I expect that O-IMT’s optimizations will still

effective on CMP-based speculative machines, including the previously-proposed M

scalar, different optimizations may be found to be more effective on CMP-based spe

tive machines. The comparison of the previously proposed Multiscalar with and wit

optimizations against O-IMT will be also interesting to see. However, the wire delay

tor should be considered carefully for such a comparison because these two archite

use different hardware platforms and have different implications on wire delay.

Recently, there have been commercial products that support only in-order exec

but with multithreading, such as Intel Itanium [14] and Sun Niagara [26]. By not supp

ing out-of-order execution, these architectures have the advantage of simplifying pip

components such as the issue queue. With faster CPU clocks and wider pipelines, a

vant microarchitectural components should scale accordingly. Otherwise, the proc

performance will show little improvement despite the faster clock and wider pipel

Unfortunately, such scaling becomes extremely difficult with the faster clock and w

pipeline. Therefore, the advantage of reducing the design complexity of the pipeli

appealing.

However, when supporting in-order execution only, these architectures have the

advantage of losing instruction-level parallelism (ILP) and consequently performa

These in-order-execution cores maintain the performance by increasing the pip

throughput through thread-level parallelism (TLP). Meanwhile, single-thread perform

suffers significantly, reducing the attractiveness of the in-order execution with m

threading. The performance of speculative threading when applied to the multithrea

in-order execution cores with and without O-IMT’s optimizations will be an interest



 61

lti-

order

by

tiple

for-

isser-

n even
topic. The O-IMT’s optimizations could improve single-thread performance in mu

threading in-order cores enough to overcome the performance deficit due to the in-

execution.

O-IMT’s context multiplexing enables superscalar to run speculative threading

dynamically allocating the active list entries and load/store queue entries for mul

threads. In this dissertation, I showed that O-IMT’s context multiplexing improves per

mance even when only one context is available. The optimizations proposed in this d

tation can be changed or extended to accommodate speculative-threading executio

on conventional superscalar pipelines.



 62

.

ith.

eport
Feb.

e in
i-

ha-

inate
m-

n-
i-

ecu-
-

Si-

ing
m

of
REFERENCES

[1] H. Akkary and M. A. Driscoll. A dynamic multithreading processor. InProceedings
of the 31st International Symposium on Microarchitecture, pages 226–236, Dec
1998.

[2] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, and B. Sm
The tera computer system. InIn International Conference on Supercomputing, pages
1–6, June 1990.

[3] S. E. Breach. Design and evaluation of a multiscalar processor. Technical R
1393, Computer Sciences Department, University of Wisconsin–Madison,
1999.

[4] S. E. Breach, T. N. Vijaykuamar, and G. S. Sohi. The anatomy of the register fil
a multiscalar processor. InProceedings of the 27th International Symposium on M
croarchitecture, pages 181–190, Nov. 1994.

[5] P.-Y. Chang, E. Hao, T.-Y. Yeh, , and Y. Patt. Branch classification: A new mec
nism for improving branch predictor performance. InProceedings of the 27th Inter-
national Symposium on Microarchitecture, pages 22–31, Nov. 1994.

[6] R. Chappell, J. Stark, S. Kim, S. Reinhardt, and Y. Patt. Simultaneous subord
microthreading (ssmt). InProceedings of the 26th International Symposium on Co
puter Architecture, pages 186–195, Oct. 1999.

[7] C.-Y. Cher and T. N. Vijaykumar. Skipper: A microarchitecture for exploiting co
trol-flow independence. InProceedings of the 34th International Symposium on M
croarchitecture, pages 4–15, Dec. 2001.

[8] M. Cintra, J. F. MartÌnez, and J. Torrellas. Architectural support for scalable sp
lative parallelization in shared-memory systems. InProceedings of the 27th Interna
tional Symposium on Computer Architecture, pages 13–24, June 2000.

[9] S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, R. L. Stamm, and D. M. Tullsen.
multaneous multithreading: A platform for next-generation processors.IEEE Micro,
17(5):12–19, Sept. 1997.

[10] M. Franklin and G. S. Sohi. The expandable split window paradigm for exploit
fine-grain parallelism. InProceedings of the 19th Annual International Symposiu
on Computer Architecture, pages 58–67, May 1992.

[11] M. Franklin and G. S. Sohi. ARB: A hardware mechnism for dynamic reordering



 63

che.

ul-
ral

ce

ulti-
re

tion
l

l-
ul-

on

pro-
tec-

in su-
r-
memory references.IEEE Transactions on Computers, 45(5):552–571, May 1996.

[12] S. Gopal, T. Vijaykumar, J. E. Smith, and G. S. Sohi. Speculative versioning ca
In 4th Annual Symposium on High Performance Computer Architecture, pages 195–
205, Feb. 1998.

[13] L. Hammond, M. Willey, and K. Olukotun. Data speculation support for a chip m
tiprocessor. InProceedings of the Eighth International Conference on Architectu
Support for Programming Languages and Operating Systems, pages 58–69, Oct.
1998.

[14] Intel Corporation.Intel Itanium Processor: Hardware Developer’s Manual, Aug.
2001.

[15] Intel Corporation.Intel Pentium 4 and Intel Xeon Processr Optimization: Referen
Manual, Oct. 2002.

[16] J. Kahle. A dual-cpu processor chip. InIn Microprocessor Forum, Oct. 1999.

[17] P. Marcuello and A. Gonzalez. Thread-spawning schemes for speculative m
threading. In9th Annual Symposium on High Performance Computer Architectu,
pages 55–64, Feb. 2003.

[18] A. I. Moshovos, S. E. Breach, T. Vijaykumar, and G. S. Sohi. Dynamic specula
and synchronization of data dependences. InProceedings of the 24th Internationa
Symposium on Computer Architecture, pages 181–193, June 1997.

[19] C.-L. Ooi, S. W. Kim, I. Park, R. Eigenmann, B. Falsafi, and T. N. Vijaykumar. Mu
tiplex: Unifying conventional and speculative thread-level parallelism on a chip m
tiprocessor. In Proceedings of the 2001 International Conference
Supercomputing, pages 368–380, June 2001.

[20] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-effective superscalar
cessors. InProceedings of the 24th International Symposium on Computer Archi
ture, pages 206–218, June 1997.

[21] E. Rotenberg, Q. Jacobson, , and J. E. Smith. A study of control independence
perscalar processors. In5th Annual Symposium on High Performance Computer A
chitecture, pages 115–124, Feb. 1999.

[22] A. Roth and G. S. Sohi. Speculative data-driven multithreading. In7th Annual Sym-
posium on High Performance Computer Architecture, pages 20–24, Jan. 2001.

[23] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar processors. InProceed-
ings of the 22th International Symposium on Computer Architecture, pages 414–425,



 64

to
on

tion
-

ice:
oces-
chi-

xi-
on

ture
June 1995.

[24] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A scalable approach
thread-level speculation. InProceedings of the 27th International Symposium
Computer Architecture, pages 1–12, July 2000.

[25] J. G. Steffan and T. C. Mowry. The potential for using thread-level data specula
to facilitate automatic parallelization. In4th Annual Symposium on High Perfor
mance Computer Architecture, pages 2–13, February 1998.

[26] Stephen Shankland.New chips put spark in Sun. CNET News.com, http://zd-
net.com.com/2100-1103-986048.html, Feb. 2003.

[27] M. Tremblay. An architecture for the new millennium. InIn Proceedings of the 1999
Hot Chips Symposium, Aug. 1999.

[28] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, and J. L. Lo. Exploiting cho
Instruction fetch and issue on an implementable simultaneous multithreading pr
sor. InProceedings of the 23rd Annual International Symposium on Computer Ar
tecture, pages 13–24, May 1996.

[29] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous multithreading: Ma
mizing on-chip parallelism. InProceedings of the 22th International Symposium
Computer Architecture, pages 392–403, June 1995.

[30] T. N. Vijaykumar and G. S. Sohi. Task selection for a multiscalar processor. InPro-
ceedings of the 31st International Symposium on Microarchitecture, pages 81–92,
Dec. 1998.

[31] S. Wallace, B. Calder, and D. M. Tullsen. Threaded multiple path execution. InPro-
ceedings of the 25th Annual International Symposium on Computer Architec,
pages 238–249, June 1998.

[32] C. Zilles and G. S. Sohi. Execution-based prediction using speculative slices. InPro-
ceedings of the 28th International Symposium on Computer Architecture, pages 2–
13, June 2001.



 65

rdue

ech-

on-

t for

tiple

ads

edu/

s time

s, we
VITA

Name : Il Park

Phone: (O) 765-494-0617, (H) 765-409-4259

E-mail : parki@ecn.purdue.edu,

Home page : http://min.ecn.purdue.edu/~parki/

Address : 3118 Salem Courthouse Dr #2B. West Lafayette. IN. 47906

Education

1. PhD (1998 Fall ~ 2003 August) Dept of Electrical and Computer Engineering, Pu

University. West Lafayette. IN

Primary Area: Computer Architecture

Dissertation title : Implicitly Multithreaded (IMT) Processors

2. MS (1993 ~ 1994) Dept of Electrical Engineering, Pohang Institute Science and T

nology (POSTECH). Pohang, KOREA.

Primary Area: Automatic Control and Robotics

Dissertation title : Hybrid algorithm for a mobile robot

3. BS (1989 ~ 1992) Dept of Electrical Engineering, POSTECH. Pohang, KOREA.

Primary Area: Automatic Control

Dissertation title: Micro-mouse robot with DC Motor-Control by 16-bit embedded c

troller

Research Experience

At Purdue University

1. Implicitly MultiThreaded (IMT) Processors (June 2000 ~ )

:Developing the new speculative architecture based on SMT architecture.

- SMT is designed to improve system’s throughput. However, SMT has little benefi

running a single application that cannot be partitioned into independent mul

threads. IMT, which based on SMT architecture, speculatively runs multiple thre

generated from a single program by a compiler. More Info: http://min.ecn.purdue.

~parki/Private/imt-final.pdf

2. Power Management in Register File (Jun 2001 ~ Jul 2002)

:Reducing energy dissipation of register files in high-performance processors.

- The key issues for register file design in high-performance processors are acces

and energy. While previous work has focused on reducing the number of register



 66

s and

le-

or.

DT)

or

l com-

level

on-

ve

Nov.

ext

om-

996)

d the

nit);

hip)
propose to reduce the number of register ports through two proposals, one for read

the other for writes. More Info: http://min.ecn.purdue.edu/~parki/Private/regfi

final.pdf

3. Purdue MULTIPLEX (Dec 1999 ~ May 2000)

:Developed the new radical speculative architecture based on Chip Multi-Process

More Info: http://dynamo.ecn.purdue.edu/~mux/

http://min.ecn.purdue.edu/~parki/Private/ics01.pdf

4. Branch Prediction using Dynamic Decision Tree (DDT) (June 1999 ~ Nov 1999)

:Developed a new branch prediction mechanism using Dynamic Decision Tree(D

that is branched from AI techniques.

At POSTECH

5. Steering algorithm for unmanned tank (Spring 1993 ~ Fall 1994)

:Supported by Korea Agency for Defense &Development (ADD) and Hyundai Mot

; Was responsible for the implementation of the low-level controller.

6. Indoor mobile robot (Spring 1993 ~ Fall 1994)

:Supported by Communication Research Center of Posco (Pohang Iron and Stee

pany); Was responsible for the implementation of the sensor interface and low-

controller.

7. Hybrid algorithm for a mobile robot (Spring 1993 ~ Winter 1994)

; Made a hardware platform (mobile robot), algorithms for steering and low-level c

trollers; Main OS was VrTx -- real-time OS. (Bus:VME, CPU: One 68030, Fi

80C196KC )

Work Experience

1. Engineering Consultant (Assistant Manager). Taehan Telecom, Seoul, KOREA (

1996 ~ Jul. 1998); Work for the project "FSN(Full Service Network) Plan for a n

communication network."; Proposed the network development plan for the 21C c

munication market in KOREA.

2. Research Engineer LG Electronics Company, Seoul, KOREA (Feb. 1995 ~ Oct. 1

; A member of the PDA (Personal Digital Assistance) development team; Manage

power management of the PDA; Designed ASIC for PMU (Power Management U

developed source code of micro controller and main CPU (SH3-Hitachi’s LISC c

interacting with PMU.



 67

pring

Fall

. In

ture

eed

on

/Pri-

d T.

al-

e on

ool of

tp://

nal

due

0

nce.

12)

rdue

494-
Teaching Experience

1. Purdue : Teaching Assistant. West Lafayette, IN; Computer architecture course (S

2000 ~ Spring 2001);

2. POSTECH : Teaching Assistant. Pohang, KOREA; Automatic control course (

1993);

Publications

1. Il Park, Babak Falsafi, and T. N. Vijaykumar, Implicitly Multithreaded Processors

Proceedings of the 30th Annual International Symposium on Computer Architec

(ISCA 30), June 2003. http://min.ecn.purdue.edu/~parki/Private/imt-final.pdf

2. Il Park, Mike Powell, and T. N. Vijaykumar, Reducing Register Ports for Higher Sp

and Lower Energy. In Proceedings of the 35th Annual International Symposium

Microarchitecture (MICRO 35), November 2002. http://min.ecn.purdue.edu/~parki

vate/regfile-final.pdf

3. Chong-Liang Ooi, Seon Wook Kim, Il Park, Rudolf Eigenmann, Babak Falsafi, an

N. Vijaykumar, Multiplex: Unifying Conventional and Speculative Thread-Level Par

lelism on a Chip Multiprocessor. In Proceedings of the International Conferenc

Supercomputing (ICS), June 2001. Also available as Technical Report 00-13, Sch

Electrical and Computer Engineering, Purdue University, October 2000. ht

min.ecn.purdue.edu/~parki/Private/ics01.pdf

4. Il Park, Young D. Kwon, and Jin-Soo Lee, Hybrid algorithm for a mobile robot. Jour

of Korea Automatic Control Assoc. Vol.33-B, No.7, Korea. July 1996.

Reference:

1. T. N. Vijaykumar: Assistant Professor. School of Electrical & Computer Eng. Pur

University. Email: vijay@ecn.purdue.edu; Tel: (765) 494-0592; Fax: (765) 494-644

2. Babak Falsafi: Associate Professor. Electrical & Computer Eng. Computer Scie

Carnegie Mellon University. Email: babak@cmu.edu; Tel: (412) 268-7047; FAX: (4

268-6353

3. Rudolf Eigenmann: Associate Professor. School of Electrical & Computer Eng. Pu

University. Email: eigenman@ecn.purdue.edu; Tel: (765) 494-1741; Fax: (765)

6440


	ABSTRACT
	1 INTRODUCTION
	2 BACKGROUND
	Fig. 1. Utilizing issue bandwidth: (a) superscalar, (b) multithreaded processor, (c) SMT

	3 COMPILER-SPECIFIED SPECULATIVE THREADING
	Fig. 2. Compiler-specified speculative threads: an example.

	4 IMPLICITLY-MULTITHREADED PROCESSORS
	Fig. 3. The IMT concept.
	Fig. 4. The anatomy of an IMT processor.
	4.1 Thread Invocation
	4.1.1 Instruction fetch policy
	4.1.2 Mapping threads onto contexts

	4.2 Control Flow Speculation
	4.2.1 Thread-level squash

	4.3 Register Communication through Renaming
	Fig. 5. Issues of register renaming in out-of-order fetch machine.
	Fig. 6. Example of handling register rename map tables.

	4.4 Memory Disambiguation through Load/Store Queue
	Fig. 7. Example of honoring memory dependences via load/store queue

	4.5 Speculative status overflow
	4.6 Thread Completion
	4.7 Precise Interrupt

	5 OPTIMIZATIONS
	5.1 Primary Optimizations
	5.1.1 Resource- & dependence-based fetch policy
	Fig. 8. Dependence-based fetch.
	Fig. 9. Resource-based fetch: an example with registers.
	Fig. 10. Combining Resource-based and dependence-based fetch mechanism.

	5.1.2 Multiplexing hardware contexts
	Fig. 11. Instruction overlap with context multiplexing.
	Fig. 12. Normal (successful) case of using DRP for context multiplexing: (a) DRP table. (b) Conte...
	Fig. 13. Example of exceptional (unsuccessful) case of DRP prediction and effect on the context m...

	5.1.3 Hiding thread start-up overhead

	5.2 Secondary Optimization
	5.2.1 Speculative releasing
	5.2.2 Reducing physical register pressure


	6 RESULTS
	Table 1. System configuration parameters.
	Table 2. Applications, and their branch misprediction rates and superscalar IPCs.
	6.1 Base System Results
	Fig. 14. Performance comparison of N-IMT and O-IMT normalized to the baseline superscalar.
	Fig. 15. Breakdown of execution into instruction execution and pipeline stalls.

	6.2 Primary Optimizations
	6.2.1 Resource allocation & prediction
	Fig. 16. Dynamic vs. static partitioning of resources.
	Table 3. Accuracy of dynamic resource prediction and allocation.

	6.2.2 Resource- & dependence-based fetch policy
	Fig. 17. The impact of fetch policy.

	6.2.3 Multiplexing hardware contexts
	Fig. 18. The impact of context multiplexing.

	6.2.4 Hiding thread start-up overhead
	Fig. 19. The impact of start-up delay.


	6.3 Secondary Optimizations
	6.3.1 Speculative releasing
	Fig. 20. The impact of thread-level squashing with speculative releasing.
	Table 4. Squashes due to speculative releasing.
	Fig. 21. The impact of two-phase commit.


	6.3.2 Reducing register pressure

	6.4 Miscellaneous Results
	6.4.1 Issue queue & LSQ performance sensitivity
	Fig. 22. Issue queue/LSQ sensitivity.

	6.4.2 Forgoing early-scheduling for load-dependent instructions
	Fig. 23. Impact of early-scheduling for load-dependent instructions


	6.5 Comparison to TME & DMT
	Fig. 24. Performance comparison of TME, DMT, and IMT normalized to baseline superscalar.
	Fig. 25. Performance comparison of TME, DMT, and IMT normalized to prior-work’s superscalar [31].

	6.6 Comparison to single thread run on single SMT context
	Fig. 26. Performance comparison of O-IMT normalized to the superscalar with hardware resources as...


	7 CONCLUSIONS
	8 FUTURE DIRECTION
	REFERENCES
	VITA


