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ABSTRACT

Park, 1l. Ph.D., Purdue University, August, 2003. Implicitly-Multithreaded Proces-
sors. Major Professor: T. N. Vijaykumar.

Simultaneous Multithreading (SMT) is proposed to improve pipeline throughput by
overlapping execution of multiple threads. However, SMT cannot improve single-thread
performance. To improve single-thread performance, | proposelntipdicitly-Multi-
Threaded(IMT) architectureto execute compiler-specified speculative threads on to a
modified SMT pipeline. IMT reduces hardware complexity by relying on the compiler to
select suitable thread spawning points and to orchestrate inter-thread register communica-
tion. This study shows that a naive mapping of even optimized compiler-specified threads
onto SMT performs only comparably to an aggressive superscalar; a naive IMT (N-IMT)
inefficiently shares SMT's resources among threads irrespective of resource availability,
thread resource usage, and inter-thread dependence. Optimized IMT (O-IMT) proposes
key microarchitectural optimizations to alleviate these inefficiencies in N-IMT.

| propose three primary optimizations and two secondary optimizations. The three
primary optimizations are: (1) resource- and dependence-based fetch policy to fetch and
execute suitable instructions, (2) context multiplexing to improve utilization and map as
many threads to a single context as allowed by availability of resources, and (3) early
thread-invocation to hide thread start-up overhead by overlapping one thread’s invocation
with other threads’ execution. Two secondary optimizations are: (1) speculatively releas-
ing register values to avoid the implementation and performance issues of N-IMT’s
thread-level squashing and (2) two-phase commit to reduce register pressure by freeing
some registers at instruction commit, before the thread commits.

Using SPEC2K benchmarks and execution-driven simulatioa study shows the
performance comparison among an aggressive superscalar, N-IMT, O-IMT, previously-
proposed Threaded Multipath Execution (TME), and Dynamically MultiThreaded (DMT)
Processors. The results indicate that N-IMT outperforms DMT, but outperforms neither an
aggressive superscalar nor TME. With three primary microarchitectural mechanisms, O-
IMT improves performance by considerable speed-up over an aggressive superscalar and



TME. Even though two secondary optimizations do not increase the O-IMT’s speed-up
significantly on average, they significantly improve some specific benchmarks’ perfor-
mance.



1 INTRODUCTION

As CMOS technology continually improves, chips are able to hold more and more
transistors. However, wire delays have been failed to scale with transistors, and this trend
will continue into the future as long as we will use CMOS technology. Unfortunately,
there are lots of programs that inherently do not have enmsjtuction-level parallelism
(ILP) to exploit the higher number of transistors and to hide wire delays with useful work.
For instance, more than half of SPEC 2K benchmarks do not have enough ILP to exploit
all of the on-chip transistors available today.

Architects are now explorinthread-level parallelisnfTLP) to exploit the continuing
improvements in CMOS technology to deliver higher performance. Chip MultiProcessor
(CMP) is proposed to mitigate wire delays within a chip and to improve overall through-
put by running multiple (either multiprogrammed or explicitly parallel) threads simulta-
neously on multiple cores in a chip [27,16]. Simultaneous multithreading (SMT) [29] is
proposed to improve pipeline throughput by overlapping multiple (either multipro-
grammed or explicitly parallel) threads on a single wide-issue superscalar. The proposed
Alpha 21464, the recently-announced IBM Power5, and the hyperthreaded Pentium 4 cur-
rently in production [15] are examples of SMT processors. However, these architectures
do not speed up a sequential program when the program is not explicitly threaded. Unfor-
tunately, it is not easy for a compiler to generate explicitly parallelized threads from a sin-
gle sequential program. For instance, a compiler cannot easily handle indirect memory
accesses and indirect calls, and most C programs have these problems.

Speculative threading has been a popular approach to speed up sequential programs.
Previous proposals use software [12,23,19,13,24,25,8] or hardwdrg b peel off
potentially-dependent threads from a single sequential program. While speculative thread-
ing executes potentially-dependent threads speculatively, it uses hardware to enforce the
sequential execution semantics later but before commit. However, the majority of these
proposals use CMP-based hardware platforms to support speculative threading
[12,23,19,13,24,25,8,17]. Unlike SMT, which is a centralized architecture that has a single
core on a chip, CMP is a distributed architecture with multiple cores on a chip. Because of



this architectural characteristic of CMP’s, the previous proposals that uses CMP require
special customized hardware to support register communication and memory disambigua-
tion across separate processing cores or pipelines. The difficult design requirement of such
extra hardware greatly reduces the chance of realizing speculative threading proposals into
commercial products.

Recently, researchers have also advocated using SMT's multithreading support to
improve the execution time of a single sequential program. Examples include Threaded
Multipath Execution (TME) [31] and Dynamically MultiThreaded (DMT) processors [1].

| propose thdmplicitly-MultiThreaded(IMT) processor to utilize SMT’s architec-
tural support for multithreading by executing speculative threads extracted from a sequen-
tial program. IMT executes compiler-specified speculative threads from a sequential
program on a wide-issue SMT pipeline. IMT is based on the fundamental observation that
Multiscalar's execution model — compiler-specified speculative threads [10,23] — can be
decoupled from the processor organization — distributed processing cores. Multiscalar
employs sophisticated specialized hardware, the Register Ring [4] and Address Resolution
Buffer [11], which are strongly coupled to the distributed organization. In contrast, IMT
proposes to map speculative threads onto generic SMT hardware.

IMT goes one step further by proposing a novel microarchitectural optimization to
support multithreading even in one context at SMT. A context at SMT is defined as a con-
ceptual hardware bundle to which a single thread runs. This optimization greatly alleviates
the load imbalance, which is one of the biggest overhead of speculative threading, and it
also enables us to use even genuine superscalar to run speculative threads (i.e., Multisca-
lar's compiler-generated speculative threads) with only minor hardware modification.

IMT differs in many key respects from prior proposals, such as TME, DMT, and slice-
based precomputation for speculative threading on SMT. TME and slice-based precompu-
tation do map their execution onto SMT, but they execute multiple threads in only the
infrequent cases of branch mispredictions and cache misses. In contrast, IMT invokes
threads in even the common cases of correct branch predictions and cache hits, better uti-
lizing SMT resources. Rather than using compiler-specified threads as in IMT, DMT cre-
ates threads in hardware during run-time. Because of the lack of compile-time information
and flexibility, DMT’s threads frequently incur dependence stalls that prohibit them from
extracting thread-level parallelism effectively. In addition, DMT’s threads are inordinately
long, requiring fast, frequent searches through thousands of instructions held in custom
trace buffers that are difficult to implement efficiently. None of these proposals consider
any optimization for alleviating the load imbalance in order to maximize the context



resource usage. Rather these proposals take contexts for granted.

IMT modestly modifies SMT to perform the traditional tasks of fetch, register
rename, and memory dependence enforcement for speculative threads. IMT invokes
threads in program order but fetches instructions out of program order by interleaving ear-
lier and later threads. Out-of-order fetch allows independent instructions in later threads to
enter the pipeline early and overlap with the processing of earlier threads’ dependent
instructions. By appropriately setting up the rename tables, IMT forces later threads’
instructions, which are register dependent on earlier threads’ yet-to-be-fetched instruc-
tions, to wait until the earlier instructions execute. Because IMT needs to enforce memory
dependences across its threads, loads and stores from one thread search other threads’
loads and stores in the load/store queue to enforce inter-thread memory dependences.

Unfortunately, a naive mapping of compiler-specified speculative threads onto SMT
performs poorly. Despite using an advanced compiler [30] to generate threads, a naive
IMT (N-IMT) implementation performs only comparably to an aggressive superscalar. N-
IMT’s key shortcoming is its indiscriminate approach to fetching/executing instructions
from threads without accounting for resource availability, thread resource usage, and inter-
thread dependence information. The resulting poor utilization of pipeline resources (e.g.,
issue queue, load/store queues, and register file) in N-IMT negates the advantages of spec-
ulative threading.

This dissertation identifies the key inefficiencies in N-IMT and proposes optimized
IMT (O-IMT), which has three primary and two secondary microarchitectural optimiza-
tions necessary to alleviate the inefficiencies of N-IMT. The three primary optimizations
are:

* Novel fetch policy: Because the choice of which thread to fetch from every cycle fun-
damentally impacts performance, IMT carefully controls fetch via a resource- and
dependence-based thread fetch policy. The policy employs a highly accurate (~97%)
dynamic resource predictor (DRR) gauge dynamic resource (physical registers, load/
store queue slots, and active list entries) availability to avoid thread squashes due to
lack of resources midway through execution. The policy also empiays-thread
dependence heurist{tTDH) to avoid the delay of earlier threads’ instructions in favor
of fetching and front-end processing later threads that are data-dependent on earlier
threads anyway. In contrast, Multiscalar statically partitions its resources and fetches
from as many threads as the number of cores. TME, DMT, and N-IMT use variations of
ICOUNT [28] or round-robin fetch policies that do not account for resource availability
and result in suboptimal performance.



» Multiplexing hardware contexts to bring more suitable instructions: As in TME
and DMT, N-IMT assigns a single thread to each SMT context [28] consisting of an
active list and a load/store queue. Because many programs have short-running threads
and SMT implementations are likely to have only a few (e.g., 2-8) contexts, such an
assignment severely limits the number of instructions in flight. Unfortunately, a brute-
force increase in thread size would result in an increase in misspeculation frequency
and in the number of instructions discarded per misspeculation [30]. To obviate the
need for larger threads, O-IMT multiplexes the hardware contexts by mapping as many
contiguous threads onto a single context as allowed by the resources. While others have
alluded to overlapping one thread’s wait-to-commit time with another’s execution
[24,8], multiplexing overlaps multiple threads siynultaneouslgxecuting them.

» Hiding thread start-up delay to increase overlap among suitable instructions
Speculatively-threaded processors incur the delay of setting up register rename tables at
thread start-up to ensure proper register value communication between earlier threads
and a newly-invoked thread. As in TME, N-IMT incurs extra start-up delay prior to
thread invocation. Because the compiler-specified inter-thread register dependence
information is available well before the thread starts, O-IMT hides the delay by over-
lapping rename table set-up with previous thread execution. Other proposals for specu-
lative threading, including DMT and Multiscalar, do not address this issue.

The two secondary optimizations are:

» Speculative releasingUpon a branch misprediction within a thread, IMT does thread-
level squashing, which squashes all subsequent instructions only within the thread and
not later threads, saving later instructions. Much like Multiscalar, N-IMT disallows
communication of speculative register values across threads, delaying values until
intra-thread speculation is resolved [3]. While this strategy enables thread-level squash-
ing by guaranteeing that an intra-thread squash does not affect later threads, it causes
considerable performance loss by delaying values and an implementation issue of
releasing values from instructions that are not in the pipeline anymore. O-IMT avoids
the performance loss and implementation issue by speculatively communicating values.

* Reducing Register pressureOut-of-order fetch, employed by IMT and others, over-
laps instructions farther than in-order fetch, increasing physical register pressure. O-
IMT employs a two-phase commit strategy in which an instruction commits within its
thread freeing instruction resources, and threads commit in global order freeing thread
resources. Two-phase commit alleviates register pressure by freeing some registers at



instruction commitbeforethe thread commits. Multiscalar and TME do not address
this issue. DMT reduces resource pressure by employing prohibitively large custom
instruction trace buffers (holding thousands of instructions and all register and memory
data for them) and retiring instructions from the pipeline and active list speculatively. In
the case of any misspeculation, DMT searches the trace buffer and selectively rolls
back all relevant data. Unfortunately, frequent associative searches through such large
buffers are slow and impractical.

Using the SPEC2000 benchmarks, results show that N-IMT actually degrades perfor-
mance in integer benchmarks by 3% on average, and it improves performance negligibly
in floating-point benchmarks relative to a comparable baseline superscalar with compara-
ble hardware resources. In contrast, O-IMT achieves average speedups of 20% and 29% in
the integer and floating-point benchmarks, respectively, over superscalar. The results also
indicate that TME and DMT are on average not competitive relative to a comparable
superscalar.

While the techniques | propose in this dissertation are essential for IMT to perform
well, they can also help improve performance in distributed microarchitectures such as
[23]. However, | focus on SMT platform in this study.

The rest of this dissertation is organized as follows. Chapter 2 shows the background
of this research. Chapter 3 briefly explains compiler-specified threads. Chapter 4 describes
implementing N-IMT on SMT and Chapter 5 proposes key microarchitecture optimiza-
tions to alleviate the inefficiency of N-IMT. Chapter 6 presents experimental results and
Chapter 7 derives conclusions. Chapter 8 discusses the future direction of the research.



2 BACKGROUND

Simultaneous Multithreading (SMT) [29] has been proposed to improve pipeline
throughput by overlapping execution of multiple (either multiprogrammed or explicitly
parallel) threads on a single wide-issue processor. Figure 1 compares SMT with supersca-
lar and Multithreaded processors [2]. SMT can issue multiple instructions from multiple
threads each cycle, which is different from Multithreaded processors that execute instruc-
tions from one thread on a given cycle even though processors have hardware states for
multiple threads at the same time.

Threaded Multiple Path Execution (TME) [31], Dynamic Multithreading (DMT) [1],
slice-based recomputation [32,22], and Simultaneous Subordinate Microthreading
(SSMT) [6] are earlier proposals to improve the performance of single application on
SMT hardware. These machines utilize SMT’s multithreaded hardware only for problem-
atic but infrequent cases of branch mispredictions and/or cache misses, only when there
are spare contexts to use. TME fetches instructions from both paths of hard-to-predict
branches. When TME spawns a new thread, it incurs extra cycles to set up the rename
tables, and employs an extra dedicated bus for a bus-based write-through scheme to copy
rename maps. Slice-based recomputation and SSMT use helper threads (speculative slice

[ | OO [ | Bl Thread 1
[ | |mm [ | | EEEN [] Thread 2
NN | [HE KIRA[] K Thread 3
HE[] HE] [ | [HIN B Thread 4

. [ | KIRIRX ] BXIX] ,

Time EEEE EEEE T 11 [ 1 Unused issue slot
NN HINEE [ |HEn
[ | |mm %)% [ | | |m
Y (a) (b) ()

Fig. 1. Utilizing issue bandwidth: (a) superscalar, (b) multithreaded processor, (c) SMT



or micro instructions) designed for problem instructions, which are in the critical path and
cause delay due to cache misses or branch mispredictions. Executing helper threads before
executing those problem instructions from the main threads will bring the effect of
prefetching and give more information for branch predictions in the main threads.

Another proposal, Dynamic Multithreading (DMT) also uses SMT as the underlying
architecture [1]. To handle inter-thread dependences, DMT resorts to value prediction by
using substantially more hardware for an aggressive copying mechanism to set up rename
tables magically within a cycle, an entire extra pipeline for selective recovery from mis-
speculations, and a large trace buffer to hold thousands of instructions in flight.

There are other proposals to execute speculative threads on distributed architectures
such as Multiscalar [12,23], Multiplex [19], Hydra [13], Stampede [24,25], Speculative
NUMA [8], SUN Microsystems MAJC [27], and others [17,16]. These proposals employ
Chip MultiProcessor (CMP) as the underlying architecture. As a result, these architectures
have multiple processor cores in a single chip, and each core has dedicated hardware
resources including the pipeline.

While CMP statically partitions and allocates all hardware resources, such as fetch
unit (including fetch bandwidth and caches) and execution unit (including functional units
and physical registers), SMT shares them for all threads in flight. So, under the assumption
of the same number of transistors used, SMT may have higher Instructions Per Cycle
(IPC) than SMP does, a distributed architecture SMP has a clock-speed advantage over the
centralized architecture SMT.



3 COMPILER-SPECIFIED SPECULATIVE THREADING

Speculatively threaded architectures may use the hardwat&][br compiler
[23,13,25] to partition a sequential program into multiple implicit threads. IMT uses Mul-
tiscalar’s compiler-specified speculative threads. The Multiscalar compiler employs sev-
eral heuristics to optimize thread selection [30]. The compiler forms reasonably-sized
threads without exceeding the number of targets emanating from a thread. To the extent
possible, the compiler exploits loop parallelism by capturing entire loop bodies into
threads, avoids inter-thread control-flow mispredictions by enclosing both if and else paths
of a branch within a thread, and reduces inter-thread register dependences. Typical threads
contain 10-20 instructions in integer programs, and 30-100 instructions in floating-point
programs. These instruction counts give an idea of the order of magnitude of resources
needed and overheads incurred per thread, and help understand the optimizations intro-
duced in this dissertation.

The compiler provides summary information of a thread’s register and control-flow
dependences in thtaread descriptarln the descriptor, the compiler identifies: (1) The set
of registers live into the thread via thise maskand the set of registers written in at least
one of the control-flow paths through the thread viadteate mask(2) The possible con-
trol-flow exits out of the thread via thimrgets The compiler also annotates the instruc-
tions to specify each instance of the dependence summarized in the descriptor. An
instruction that is the last write to an architectural register in all the possible control flow
paths is annotated witforward bits. Instructions that lead to a target are annotated with
stopbits.

Figure 2 shows an example thread. The thread shown here has two targets: B1 and B5.
The branch at the bottom of B4 is annotated with stop bits (shown by S). The create mask
contains rl, r2, and r3. r2 is read before written in B3. r4, r5, and r6 are read and never
written. Hence r2, r4, r5, and r6 are in the use mask. In B2 and B3, the writes to r3 are the
last write in the both path B1B2B4 and B1B3B4, and these instructions are annotated with
forward bits (shown by F). However, there are cases where forward bits are not sufficient.
For instance, in the figure, the write to rl in B1 is not the last write in the path B1B2B4 but



Bl

Targets: B1, B5 5
Create: r1, r2, r3
Use r2, r4, r5, 16
try yilse
Flri:=r6 |B2 release r1
F|r3:= r3:=r2+r4
\: / ]
beqrl, 0 B1

B5

Fig. 2. Compiler-specified speculative threads: an example.

it is in the path B1B3B4. To handle this case, the compiler insem¢easeinstruction in
B3. In Section 4.3, | explain how the hardware uses forward and release instructions to
implement inter-thread register communication.

Typical threads in integer programs contain 10-20 instructions, and 30-100 instruc-
tions in floating point programs. These instruction counts give an idea of the order of mag-
nitude of resources needed and overhead incurred per thread, and help understand the
following sections.

In contrast to IMT, the prior proposals for speculative threading on SMT, DMT [1]
and TME [31] create threads in hardware. DMT spawns a new thread when the fetch unit
reaches a function call or a backward branch. The start address of the new thread is the
addressafter the call or backward branch. DMT'’s threading has two weaknesses: First,
DMT cannot exploit any parallelism across inner loop iterations, although the largest
opportunity for exploiting parallelism resides in inner loop iterations. Second, the threads
are inordinately long, of the order of thousands of instructions, and require large custom
trace buffers to hold their speculative state. In TME, threads are simply created upon iden-
tifying an unpredictable branch. However, TME’s opportunity for extracting thread-level
parallelism is severely limited due to targeting the uncommon cases of unpredictable
branches.
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4 IMPLICITLY-MULTITHREADED PROCESSORS

This study proposes tHeplicitly-MultiThreaded(IMT) architecture to utilize SMT’s
support for multithreading by executing compiler-specified speculative threads. Figure 3
illustrates how a single application can be partitioned into speculative threads by compiler
and how those threads can be mapped into SMT’s shared pipeline. IMT expipltsit
parallelism, as opposed to programmer-specigaglicit parallelism exploited by conven-
tional SMT and multiprocessors. Like the Multiscalar architecture, IMT predicts and
spawns the threads in program order with the help of compile time information, and it
maps the threads to execution resources with the earliest thread asrtfspeculative
(head) thread, followed by subsequaepeculativethreads [23]. IMT leverages the con-
ventional register renaming to honor the inter-thread control-flow and register depen-
dences specified by the compiler. IMT uses the load/store queue (LSQ) to enforce inter-
thread memory dependences. Upon completion, IMT commits the threads in program
order.

SMT places instructions from all threads in a singl&ue queu@ which instructions
wait until source operands become available enabling out-of-order issue. As each instruc-
tion issues out of the issue queue, it stays in its thread’s praetiee listand commits
from the active list in the thread’s program order, enabling precise interrupts. SMT con-
ceptually bundles all the per-thread resources such as the active list, load/store queue and
register renaming logic into bardware contextand allows as many threads as there are
contexts. SMT shares the functional units, physical registers, issue queue, and memory
hierarchy among all the contexts.

Figure 4 depicts the anatomy of an IMT processor based on an SMT pipeline. IMT
uses the rename tables for register renaming, the issue queue for out-of-order scheduling,
per-context load/store queue for memory dependences, and the active list for instruction
reordering prior to commit. As in SMT, IMT shares the functional units, physical registers,
issue queue, and memory hierarchy among all contexts. This research presents two varia-
tions of IMT processors, mapping compiler-optimized threads [30] onto the SMT pipe-
line: (1) a naive IMT (N-IMT) that performs comparably to an aggressive superscalar, and
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(2) an optimized IMT (O-IMT) that uses novel microarchitectural techniques to signifi-
cantly improve performance.

The rest of this chapter is organized as follows. | first explain the thread invocation in
N-IMT. Then | show how N-IMT does register communication and memory disambigua-
tion. Finally, | explain the thread execution and thread completion in N-IMT.

4.1 Thread Invocation

IMT invokes threads in program order by predicting the next thread from among the
targets of the previous thread, using a thread predictor like Multiscalar. Using the pre-
dicted target number, IMT obtains the next thread’s start PC from the previous thread’s
descriptor. Like Multiscalar, IMT caches thread descriptors in a descriptor cache.
Although IMT invokes threads in program order, it fetches later threads’ instructions out
of order before fetching all of earlier threads’ instructions, interleaving instructions from
multiple threads. To decide which thread to fetch instructions from every cycle, IMT con-
sults the fetch policy.
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Fig. 4. The anatomy of an IMT processor.

4.1.1 Instruction fetch policy

The base IMT processor, N-IMT, uses an unmodified ICOUNT policy [28], in which
the thread with the least number of instructions in decode, rename, and the issue queue is
chosen to fetch instructions from every cycle. The rationale is that the thread that has the
fewest instructions is the one whose instructions are flowing through the pipeline with the
fewest stalls. By choosing the “best” thread each cycle, the fetch policy can minimize the
issue queue clog and maximize the overall system throughput. Previous study examined
diverse fetch policies and concluded that ICOUNT was the best among them [28].

However, unlike SMT’s independent threads, IMT's threads are potentially depen-
dent. This difference has a big implication to fetch policy, and it is expected that ICOUNT
may not be the best fetch policy for IMT-like machines.

4.1.2 Mapping threads onto contexts

Multiscalar targets Chip MultiProcessor (CMP) as a base hardware platform. Multi-
scalar assigns one thread to each core in a chip. Therefore, Multiscalar simultaneously
executes as many threads as the number of cores in a chip.

As mentioned before, SMT conceptually bundles all the per-thread resources such as
the active list, load/store queue and register renaming logic into a hardware context, and
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allows as many threads as there are contexts. Therefore, the context of SMT has similar
meaning as the core of CMP. N-IMT assigns one thread to a context, much like prior pro-
posals including Multiscalar.

Previous study shows that the load imbalance is one of the biggest inefficiency (over-
head) of speculative threading machines [19]. Because N-IMT maps threads to contexts in
the same way Multiscalar maps threads to cores, it is possible to expect that N-IMT may
suffer from the similar inefficiency. Section 5.1.2 will discuss the cause and effect of such
inefficiency in detail and propose the microarchitectural optimization to alleviate the inef-
ficiency.

4.2 Control Flow Speculation

In a conventional superscalar or SMT, the control flow is predicted at the instruction-
level by a branch predictor that chooses one of two possible outcomes, namely taken or
not-taken. Unlike SMT/superscalar, N-IMT has two different types of control flow predic-
tions, which are instruction-level speculation and thread-level speculation. While IMT’s
instruction-level speculation is the same as SMT'’s control flow speculation, thread-level
speculation is different from SMT’s control speculation. Like Multiscalar implementation,
N-IMT employs two different types of branch predictors [3]. A conventional branch pre-
dictor, calledintra-branch predictor,is used for speculating the instruction-level control
flow. A modified branch predictor, calledter-branch predictorjs used only for speculat-
ing the thread-level control flow.

In the inter-branch predictor, the next thread has to be predicted before reaching the
end of the current thread. The thread generated by the Multiscalar compiler has N (> 2)
possible control flow edges and therefore N successors. (The binaries | used for this
research have four possible successors for each thread.) Therefore, the inter-branch pre-
dictor chooses from among multiple control flow targets, and the hardware has to be built
to keep N targets for each control flow point. The inter-branch prediction table is shared
across threads, and the predictor generates one outcome per cycle.

The intra-branch predictor is the same as the conventional branch predictor with one
exception. Even though threads are invoked in-order and instructions are fetched in-order
within a thread, threads are executed out of program order. As a result, instructions are
fetched out of program order with respect to instructions from other threads. Therefore,
IMT’s global branch history cannot be managed in the same way as the conventional
superscalar’'s. When a thread is activated (not invoked) for fetching, the branch history
register from the inter-branch predictor is copied to the intra-branch predictor’'s global
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branch history register if the intra-branch predictor uses a global predictor. This copying
warms up the global prediction within a thread and alleviates the disadvantage of a non-
contiguous branch history due to out-of-order fetching. The intra-branch prediction table

is shared across threads, and its branch history registers are maintained separately per
thread. To utilize the fetching bandwidth fully, the intra-branch predictor is designed to
make as many predictions as the number of ports in the L1 instruction cache.

4.2.1 Thread-level squash

As thread execution proceeds, the front-end predicts branches, as mentioned in
Section 4.1. In N-IMT’s threads, a branch could transfer control-flow to another thread
(inter-thread control flow), or a non-sequential instruction within the thread (intra-thread
control flow). Mispredictions of the two cases are not handled in the same manner. On an
intra-thread branch misprediction, N-IMT selectively squashes only within the thread,
keeping later threads in the pipeline. Using SMT’s ability to squash instructions from a
specific thread, N-IMT squashes only the thread’s later instructions. Superscalar can
achieve a similar effect by selectively squashing only incorrect instructions. By leveraging
thread-level granularity, however, N-IMT’s thread-level squashing is significantly simpler
than superscalar’s selective squashing [21] and does not require substantial hardware like
other machines [1].

The main problem with internal squashing is that if incorrect register or memory val-
ues from an incorrect branch path would have been consumed by later threads, then later
threads would have to be squashed even if they had been correctly predicted. To avoid
such squashes, N-IMT disallows communication of speculative register values across
threads, delaying values until intra-thread speculation is resolved, in the same way Multi-
scalar does [3]. This strategy enables thread-level squashing by guaranteeing that an intra-
thread squash does not affect later threads. This thread-level squashing mechanism gives
the advantage to N-IMT over superscalar by allowing N-IMT to avoid squashing instruc-
tions from later threads in flight in the event of intra-branch misprediction.

The inter-branch prediction is resolved when executing the last dynamic instruction of
each thread. Upon resolving the last dynamic instruction’s control flow in the current
thread, N-IMT verifies the inter-thread prediction for the next thread and either allows the
next thread to commit or squashes later threads on a thread misprediction. Section 4.6 dis-
cusses inter-thread branch mispredictions with other related activities.
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4.3 Register Communication through Renaming

SMT'’s register rename table links register value producers to consumers using the
fact that SMT fetches instructions in program order. N-IMT’s out-of-order fetch raises two
issues in linking producers in earlier threads to consumers in later threads. First, N-IMT
has to ensure that the rename maps for earlier threads’ source registers are not clobbered
by later threads. Second, N-IMT has to ensure that later threads’ consumer instructions
obtain the correct rename maps and wait for the yet-to-be fetched earlier threads’ producer
instructions.

Figure 5 illustrates examples of these two issues for N-IMT’s out-of-order fetch. In
Figure 5 (a), the consum&2in thread A+1should get the value from the produde2in
thread A Because N-IMT fetches and renames the prod&R&in thread A+2before it
fetches and renames the consurR@rin thread A+l the conventional renaming incor-
rectly links the consumeR2in threadA+1 with the produceR2in thread A+2 not with
the correct produceR2 in thread A In Figure 5 (b), the consumdR7 in thread A+2
should get the latest value from the produB&tin thread A+1 Because N-IMT fetches
and renames the consunfey in thread A+2before it fetches and renames the producer
R7in thread A+, the conventional renaming incorrectly links the consuRém thread
A+2 with the produceR7in thread A not with the correct produc®&?7in thread Ar1.

While others [1,17] employ hardware-intensive value prediction or complicated
recovery to address these issues, N-IMT uses the create mask and use mask (Chapter 3),
and existing rename tables. Although Multiscalar proposed the use of create mask to aid in
inter-thread register communication, Multiscalar does not leverage conventional rename
tables for this purpose. Figure 6 shows an example of how IMT handles rename map table
when a thread is invoked.

For the first issue, before fetching any instruction from the next thread, N-IMT copies
the rename maps, corresponding to the current (most recent) thread’s use and create mask
registers, from thenaster rename tabl® the current thread®cal rename tableAt this
point, the master table reflects the program’s register state up to the current thread begin-
ning. The next thread modifies the master table, but not the current thread’s local table.
Later, when the current thread’s instructions are fetched, they use the maps in the local
table. In addition to use-mask registers’ maps, the local table also copies the maps corre-
sponding to create-mask registers from master rename table before the current thread
updates the master rename table with any new mapping. Figure 6 shows that the current
thread A copies maps not only for use-mask registers (R10:P102, R11:105, R12:P110,
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Fig. 6. Example of handling register rename map tables.
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R18:P96), but also for create mask registers (R3:P151) from master table to local rename
table. Conventional pipelines also perform such copying, on an instruction-by-instruction
basis, to checkpoint rename maps for branch misprediction recovery. | explain the reason
for copying the create-mask registers’ maps at the end of this subsection.

For the second issue, a thread’s create mask gives N-IMT a prior knowledge of the
thread’s yet-to-be fetched instructions. Upon invoking a thread, N-pvé&llocatesand
preassignghysical registers for all the create mask registers (e.g., map architectural cre-
ate mask register R3 to preallocated physical register P103, register R12 to P104, and reg-
ister R18 to P140 in Figure 6). N-IMT modifies the master table with the preassignments
and marks the physical registers busy. Because N-IMT invokes threads in program order,
the master table is updated in program order and provides the correct maps for later
threads. Additionally, N-IMT allocates anothpreassign rename tabland updates the
table with the create mask’s preassigned maps for later use. In Figure 6, the current thread
A has new maps for create mask registers in the preassign rename table. Instructions use
the local (andhot master) table both to get their source rename maps and to put their desti-
nation rename maps. If an instruction’s source is a use mask register, the local table pro-
vides the rename map for the register. An instruction that is data dependent on an earlier-
thread instruction waits until the corresponding preassigned physical register is ready (or
bypassed). Data-independent instructions proceed without waiting, much as in SMT.
When the earlier-thread’s forward or release eventually completes execution, its preas-
signed register gets the value, allowing all waiting instructions to proceed.

If an instruction is neither a forward nor release (Chapter 3), it dotgse the preas-
signed physical register for its destination; instead, it newly allocates a physical register
for the destination. A forward or release uses the preassigned physical register in the pre-
assign table as its destination. Thereby, forwards and releases correctly bind the values live
at the thread end to the preassigned registers. Forwards write their results in the preas-
signed physical registers. Releases copy values from the physical registers given by the
local table to the preassigned physical registers. Thus, forwards and releases allow all
waiting instructions to proceed. By copying the create mask maps at thread start-up from
the master table to the local table, the local table holds the latest rename map for the cre-
ate-mask registers irrespective of whether the thread actually writes to the create-mask
registers or not. Therefore, releases copy the correct values by referring the local rename
table when the thread actually does not write to the create-mask registers.
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4.4 Memory Disambiguation through Load/Store Queue

N-IMT imposes program order in the load/store queues to enforce memory dependen-
cieswithin andacrossthreads. Memory accesses from a thread search its context’s load/
store queue (LSQ) to honor memory dependencies. If there is no match in the local load/
store queue, accesses proceed to search other context’s load/store queues. The non-specu-
lative thread’s loads do not search other contexts, but its stores search later contexts to
identify and squash premature loads. Speculative threads’ loads search in earlier contexts
for previous matching stores, and stores search in later contexts for later premature loads.
Thus, N-IMT uses the LSQ to achieve the same functionality as ARB’s [11].

Figure 7 illustrates how to honor memory dependences through the LSQ. Dashed
arrows are the N-IMT's extra search to other threads’ LSQs. In this example, red arrow
finds the premature loddad B2in thread 2, and N-IMT squashes thread 2 and any fol-
lowing threads. Meanwhildpad Alfrom thread 1 needs to search previous threads’ LSQ
(thread 0 in this example) to find the latest store to the same address

Unlike a load which is serviced out of program order, a store should be sent to the
memory in program order when the store commits. The store queue entry will be cleared
when the store commits. However, there is a gap between the time the store commits and
the time it finishes updating the memory when the store is a cache miss in L1. This gap
can vary with a range of a few cycles to hundreds of cycles. The store information will
reside in the MSHRs (Miss Status Holding Registers) until the store finishes updating the
memory. Therefore, all loads will get the latest store value from the MSHRs if there is any.

Multiple searches through LSQs from different contexts cause two design challenges.
First, searching multiple LSQs to find the most recent store value requires extra cycles that
impact load hit latency. Second, this searching also makes the hit latency variable because
of the uncertainty of the latest store’s existence and the port contention. For high perfor-
mance, superscalar processors speculatively schedule instructions dependent on the load
with the assumption that the load is a cache hit. Variable hit latencies may complicate such
a scheduling mechanism. To avoid complicating the scheduler, N-IMT foregoes early-
scheduling for the instructions that are dependent on the load.

However, there is one important exception to this rule. The most critical access is the
load from the non-speculative thread (the head thread). This load does not need to search
any previous segment because no previous segment exists. Therefore, the hit latency for
this load is constant. Although the load from the non-speculative thread still has to search
the MSHRs, this search also exists in the base case and it does not make the hit latency



20

More speculation

»
|

@ Thead 0's LSQ Thead 1's LSQ Thead 2's LSQ Thead 3's LSQ
3 |
Ie5) 1
X | *
g store Al 4 : store AO load B2
> store B2 | | load C1 store C2 load A1l
£
= load B1 : : load Al load B1 load Z
y load A2 ! |

Instruction “store B2” needs to search:

— > 1. thread 0’s LSQ (common in superscalar)
- — — — - 2 thread 1's and thread 2’s LSQ (N-IMT specific)

Instruction “load B1” needs to search:

— 1. thread 1's LSQ (common in superscalar)
-— — — - 2 thread 0's LSQ (N-IMT specific)

Fig. 7. Example of honoring memory dependences via load/store queue

variable. Therefore, N-IMT keeps performing early-scheduling for the load-dependent
instructions if the load is from the non-speculative thread.

Search latency incurred by speculative threads’ loads is hidden under N-IMT'’s
instruction-level and thread-level parallelism. To avoid being jeopardized by speculative
threads’ too many searches, N-IMT gives less-speculative threads higher priority of LSQ
port access. In the example of Figure 7, it is possible ltheed A1from thread 1 never be
able to finish searching due to port contention while thread 1 is speculative. However,
when thread 1 finally becomes a non-speculative thread, thread 1 has the highest priority
for accessing LSQ ports and so it is guaranteed to finish searching. As mentioned above,
on a memory dependence violation, N-IMT squashes the offending threads. N-IMT can
avoid such squashes via well-known memory dependence synchronization techniques
[18].



21

4.5 Speculative status overflow

Even though some physical registers can be freed when instructions commit, the load/
store queue cannot be freed at instruction commit if the memory instruction is not from the
head thread (i.e., non-speculative thread). So, due to this limitation of reusing load/store
gueue slots, it is possible that no slot in the load/store queue will be available for a specu-
lative thread at some point. If this situation happens, no more instruction can be fetched
from the thread until the thread finally becomes the head thread so that it can free and
reuse the load/store queue slots. This is more likely to happen with floating-point applica-
tion’s larger threads, rather than with integer application’s smaller threads.

4.6 Thread Completion

When a thread completes, N-IMT verifies the next-thread prediction, and frees the
thread’s processor resources. N-IMT flags thread completion on executing an instruction
annotated with stop bits (mentioned in Chapter 3). Upon resolving the stop instruction’s
control flow, N-IMT verifies the next-thread prediction and either allows the next thread to
commit or squashes later threads on thread misprediction. If squashed, the later threads’
instructions free their physical registers and load/store queue slots, as squashed instruc-
tions do in SMT. If allowed to commit, a thread continues execution until the stop instruc-
tion performs instruction commit, and then the thread commits in program order after
previous threads commit.

Thread commits free the processor resources occupied by the threads. Freeing active
list slots and load/store queue slots is straightforward. Thread commit frees the physical
registers not freed by instruction commits and removes the instructions left in the active
list.

4.7 Precise Interrupt

When a thread has an interrupt or exception, it immediately squashes subsequent
instructions within the thread and also squashes all following threads. N-IMT neither
fetches instructions from the thread nor activates any thread until the instruction with the
interrupt or exception becomes the oldest non-speculative instruction in the pipeline. After
servicing the interrupt, N-IMT fetches instructions from the thread again and also activates
new threads for fetching. By using this approach, N-IMT supports precise interrupts while
still supporting speculative execution.
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S5 OPTIMIZATIONS

Section 5.1 proposes and discusses three primary optimizations, which are R&D-
based fetch policy, multiplexing hardware contexts, and hiding thread start-up overhead.
Then, Section 5.2 proposes and discusses two secondary optimizations, which are specu-
lative releasing and reducing register pressure.

5.1 Primary Optimizations

5.1.1 Resource- & dependence-based fetch policy

As mentioned in Section 4.1.1, N-IMT, uses an unmodified ICOUNT policy [28]. |
make the observation that the ICOUNT policy may be suboptimal for a processor in which
threads exhibit control-flow and data dependence, and resources are relinquished in pro-
gram (and not thread) order. For instance, later (program-order) threads may result in
resource (e.g., physical registers, issue queue and load/store queue entries) starvation in
earlier threads, forcing the later threads to squash and relinquish the resources for use by
earlier threads. Unfortunately, frequent thread squashing due to indiscriminate resource
allocation without regards to demand incurs high overhead. Moreover, treating (control-
and data-) dependent and independent threads alike is suboptimal. Fetching and executing
instructions from later threads that are dependent on earlier threads may be counter-pro-
ductive because it increases inter-thread dependence delays by taking away front-end fetch
and processing bandwidth from earlier threads. Finally, dependent instructions from later
threads exacerbate issue queue contention because they remain in the queue until the
dependences are resolved.

To mitigate the above shortcomings, O-IMT employs a novel Resource- and Depen-
dence-based fetch policy (R&D-based fetch policy) that is bimodal. In the “dependent
mode”, the policy biases fetch towards the non-speculative thread when the threads are
likely to be dependent, fetching sequentially to the highest extent possible. In the “inde-
pendent mode”, the policy uses ICOUNT when the threads are potentially independent,
enhancing overlap among multiple threads. Because loop iterations are typically indepen-
dent, the policy employs aimter-Thread Dependence Heuris{i’DH) to identify loop
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Fig. 8. Dependence-based fetch.

iterations for the independent mode, otherwise considering threads to be dependent. ITDH
predicts that subsequent threads are loop iterations if the next two threads’ start PCs are
the same as the non-speculative (head) thread’s start PC.

Figure 8 illustrates the effect of using the dependence-based fetch for O-IMT, com-
pared to N-IMT that always uses ICOUNT fetch regardless of inter-thread dependence.
The figure uses an example code that has non-loop dependent threads and loop indepen-
dent threads together. N-IMT uses ICOUNT fetch policy to fetch instructions equally even
from dependent threads. N-IMT has lots of stalls in executing instructions thieead 3
because¢hread 3is dependent othread landthread 2 and it cannot make progress until
thread landthread 2are done.

In contrast to N-IMT, O-IMT sequentially fetches instructions from threads when
ITDH considers the threads to be dependent. Therefore, O-IMT does not have stalls that
happen in N-IMT due to the fact that N-IMT blindly fetches from dependent threads
equally. When ITDH considers threads (i.#wead 4, thread 5andthread § to be loop
iterations, O-IMT uses ICOUNT to fetch from threads to maximize the thread-level paral-
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Fig. 9. Resource-based fetch: an example with registers.

lelism across loop iterations. As a result, N-IMT does not distinguish dependencies of
threads for fetching, but O-IMT does.

To reduce resource contention among threads, the policy emploRgnamic
Resource Predictor (DRRp initiate fetch from an invoked threamhly if the available
hardware resources such as physical registers, active list entries, and load/store queue
entries exceed the predicted demand by the thread. DRP dynamically monitors the threads
activity and allows fetch to be initiated from newly invoked threads when resources
become available (either by thread commit or by instruction commit, as explained in
Section 4.6). Section 5.1.2 will describe the implementation and issues of DRP in detail.

Figure 9 illustrates the performance impact of the resource-based fetch by using reg-
isters as an example. Physical registers are shared and occupied by different threads as
soon as instructions are fetched and renamed. The figure assumes 60 physical registers to
begin with. N-IMT fetches equally from different threads. Later, each thread occupies 15
registers and so N-IMT runs out of registers. Howetlenead 1 which is the head thread
(the non-speculative thread), needs 20 more registers. To make overall progress or to avoid
deadlock, N-IMT has to squash younger threads to take resources back for the head
thread. In the figure, N-IMT has to squatiiread 3andthread 4 While thread 3and
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Fig. 10. Combining Resource-based and dependence-based fetch mechanism.

thread 4 have been competing for fetch and processing bandwidth thitad 1and
thread 2and slow down the execution dhread 1andthread 2 they are eventually
squashed anyway.

O-IMT avoids such inefficiency by predicting resource demand and preallocating
resources for each thread before fetching. In the figure, O-IMT uses DRP to predict the
demand for physical registers and preallocates registers for each thread. Unlike N-IMT, O-
IMT does not fetch any instructions frothread 4because it knows that there are not suf-
ficient registers fothread 4 As a result, O-IMT does not delay the execution of older
threads (i.e.thread landthread 2 for useless execution dfiread 4 and it avoids thread
squashes.

Figure 10 illustrates how the resource-based fetch mechanism and dependence-based
fetch mechanism work together. Among invoked threads, namelytioead 1(the oldest
thread) tathread N(the youngest thread), DRP chooses the group of threads to activate for
fetching only fromthread1to thread M which are the biggest group of threads composed
of under the assumptions as follows: (1) the group of activated threads is the subset of the
group of invoked threads, (2) the group of activated threads should include the oldest
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thread, (3) the activated threads in the group should be contiguous, and (4) the size of the
group of activated threads should be limited by the resource demand of threads and the
resource availability in the pipeline. Then ITDH decides how to fetch among the activated
threads (i.e.thread 1, thread2,... thread MIf the threads are loop iterations, ITDH
chooses ICOUNT to fetch from among the threads. Otherwise, the policy biases fetch
towards the non-speculative thread to fetch from.

O-IMT’s R&D-based fetch policy increases instruction throughput by choosing suit-
able instructions, thus making room for earlier threads when necessary. The policy allevi-
ates inter-thread data dependence by processing producer instructions earlier and
decreasing instruction execution stalls, thereby reducing pipeline resource contention.

In contrast to O-IMT, prior proposals for speculative threading using SMT (e.g., TME
and DMT) do not address these issues in their fetch policies. TME uses biased-ICOUNT, a
variant of SMT's ICOUNT which, as discussed above, does not consider resource avail-
ability and loop-level independence. DMT uses a variant of round-robin fetch policy with-
out accounting for resource availability or independence. The policy statically partitions
DMT’s two fetch ports, and allocates one port for the non-speculative thread and the other
for speculative threads in a round-robin manner. To alleviate resource pressure, DMT
employs prohibitively large custom trace buffers to hold thousands of instructions, allow-
ing DMT to retire instructions speculatively from the active list and to free resources so
that DMT can make forward progress. However, DMT requires searching through the
buffers upon committing and misspeculation recovery. Unfortunately, allowing frequent
(associative) searches through large custom trace buffers is prohibitively slow and imprac-
tical.

5.1.2 Multiplexing hardware contexts

Much like prior proposals, N-IMT assigns one thread to a context. Because many pro-
grams have short threads [30] and real SMT implementations are bound to have only a few
(e.g., 2-8) contexts, this approach often leads to insufficient instruction overlap. Larger
threads, however, increase both the probability of control-flow or data dependence mis-
speculation [30] and the number of instructions discarded per misspeculation, and cause
speculative buffer overflow [13]. Instead, to increase instruction overlap without the
unwanted side-effects of large threads, O-Ikitltiplexeghe hardware contexts by map-
ping as many threads as allowed (on average 3-6 threads for SPEC2K) by the resources in
one context.

Figure 11 shows how O-IMT maps multiple threads to a context. Without context
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Fig. 11. Instruction overlap with context multiplexing.
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multiplexing, there are only 47 in-flight instructions in the pipeline. Even though overall
pipeline resources are available, IMT runs out of the context and so cannot bring more
instructions into the pipeline. As opposed, IMT with context multiplexing can thegad

1, thread 2 andthread 3to context 1together. As a result, context multiplexing enables
IMT to keep 126 in-flight instructions in the pipeline.

Two design complexity issues arise when mapping multiple threads to one context.
First, conventional active list and load/store queue (LSQ) designs assume that instructions
enter these queues in (the predicted) program order. This assumption enables the active list
to be a non-searchable (potentially large) structure, and allows honoring memory depen-
dences via an ordered (associative) search in the LSQ. If care is not taken, multiplexing
would invalidate this assumption if multiple threads were to place instructiohef pro-
gram orderin the shared active list and LSQ. Such out-of-order placement would require
an associative search on the active list to determine the correct instruction(s) to be
removed upon commit or misspeculation. In the case of the LSQ, the requirements would
be even more complicated: A memory access would have to search through the LSQ for
an address match among the entries from the access’s thread, and then (conceptually)
repeat the search among entries from the thread preceding the access’s thread, working
towards older threads. Unfortunately, the active list and LSQ cannot afford these addi-
tional complications because the conventional active list is made large precisely due to the
fact that the list does not have to be searched and the LSQ’s ordered, associative search is
already complex and time-critical.

Second, if one context has multipt®n-contiguoughreads, managing inter-thread
dependence would become complicated. Two contiguous threads would be mapped to dif-
ferent contexts. To honor memory dependences, memory accesses would have to search
other contexts holding earlier or later threads. Such searches complicate the critical LSQ.

O-IMT uses DRP to avoid the first issue. As mentioned in Section 5.1.1, DRP dynam-
ically monitors the threads activity. Figure 12 (a) depicts an example of DRP. O-IMT
indexes into the DRP table using the start PC of each thread. Each entry holds the numbers
of physical registers, active list entries, and load/store queue entries used by the thread’s
last four execution instances. As the thread executes, the pipeline monitors a thread’s
resource needs. Upon thread commit, O-IMT updates the thread’s DRP entry replacing the
oldest instance’s statistics with those of the current instance. DRP supplies the maximum
among the four instances for each resource as the prediction for the next instance’s
resource requirement. It may seem that tracking the maximum among the last four
instances of a thread may overestimate the thread’s resource needs, and waste resources.
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(a) DRP table
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Fig. 12. Normal (successful) case of using DRP for context multiplexing:
(a) DRP table. (b) Context multiplexing.

Section 6.2.1 shows the results indicating that overestimating resource usage using the
maximum value among the last four instances works well in practice due to low variation
in resource needs across nearby instances of a thread.

Using DRP, O-IMT avoids the first issue by placing instructions in program order.
Within one context, O-IMT uses DRP’s information to keep instructions in the active list
in program order, despite out-of-order fetch among the threads assigned to a context. O-
IMT creates a gap in the active list for the thread’s yet-to-be-fetched instructions using
resource prediction’s gap length estimate. The next thread (invoked in program order) cre-
ates its gap after the previous thread’s gaps, maintaining program order among the con-
text’s threads.

Because the gap lengths are estimates based on previous instances, it is possible that
the gaps fill up before all the thread’s instructions are fetched. In that case, O-IMT simply
squashes later threads in the context to make room for the earlier thread. Figure 13 shows
an example for that case. In such a way, DRP helps dynamically partition a context's
active list so that instructions from one thread do not interfere with any other threads
within the context. LSQ is handled similarly. To support multiplexing, O-IMT uses the
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Fig. 13. Example of exceptional (unsuccessful) case of DRP prediction and effect on the
context multiplexing.

DRP to create appropriately-sized gaps in the context’s LSQ, similar to the active list.
Thus, memory accesses from threads in a context are kept in program order in the LSQ.
This approach is similar to that proposed in [7], which creates a gap in the LSQ to skip
around a problematic branch.

O-IMT avoids the second issue by mapping contiguous threads to one context. Inter-
thread dependences across threads within a context are treated similar to intra-thread
dependence in the context, without involving other contexts. Figure 12 (b) shows how
contiguous threads X and X+1 are mapped to a context. In addition to program order
within contexts, O-IMT tracks the global program order among the contexts themselves
for precise interrupts.

Context multiplexing further exploits the benefit of thread-level squashing. IMT with
multiple threads in a context does not need to squash all subsequent instructions of the
mispredicted branch within the context, but it needs to squash subsequent instructions
only within the current thread of the mispredicted branch and keeps in-flight instructions
from other threads in the same current context.

O-IMT’ context multiplexing differs from previous proposals [24, 8] to map multiple
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threads onto a core and alleviate load imbalance. The schemes do not psopoka-
neouslyexecuting multiple threads in a context, but advocate executing the next thread
only after suspending [24] or finishing [8] the previous thread. Such serialization underuti-
lizes resources. Moreover, these proposals do not mention the complexity issues discussed
above.

5.1.3 Hiding thread start-up overhead

Even though the next thread’s start PC is known, fetching instructions from the next
thread has to wait until the rename tables are set up. The updating of local, and master and
preassign tables must completeefore the thread’s instructions can be renamed
(Section 4.3). The rate of rename table updating is limited by the rename table bandwidth.
In conventional pipelines, this bandwidth matches the pipeline width and is sufficient for
the peak demand. In contrast, N-IMT’s requirement of updating the tables creates a burst
demand that may exceed the bandwidth. Therefore, updating the tables may take a few
(e.g., 2-4) cycles to finish.

O-IMT prevents the bandwidth constraint from imposing an overhead on thread start.
While the current thread’s instructions are fetched, O-IMT invokes the next thread, obtains
the next thread’s descriptor from the descriptor cache, and sets up the rename tables well
before needing to fetch the next thread’s instructions. O-IMT utilizes the rename table
bandwidth unused by the current thread’s instructions to update the three tables. For
instance if in a cycle only 6 instructions are renamed but the rename tables have the band-
width to rename 8 instructions, O-IMT uses the unused bandwidth to modify the tables.
Thus, O-IMT overlaps starting up a thread with the execution of previous threads, hiding
thread start-up overheads.

Thread start-up overhead exists for Multiscalar, TME, and machines like DMT. In
Multiscalar, the next thread needs to set up its rename tables so that the next thread can
appropriately wait for register values from previous threads. However, Multiscalar does
not address this issue. TME incurs extra cycles to set up the rename tables, and employs an
extra dedicated bus for a bus-based write-through scheme to copy rename maps. DMT
copies not only register values but also the entire return address stack at the start of a
thread. DMT does not concretely address the delay of the copying, and instead assumes
the delay away using extra wires to do the copying.
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5.2 Secondary Optimization

5.2.1 Speculative releasing

As mentioned in Section 4.2.1, N-IMT disallows communication of speculative regis-
ter values across threads, delaying values until intra-thread speculation is resolved. How-
ever, this approach has issues of not only implementation difficulty but also performance
loss.

Holding the speculative value until the speculation is resolved does not cause an
implementation difficulty. The problem is to release the value when the speculation is
resolved. When intra-thread speculation is resolved, it is possible that the instructions
holding destination register values are already gone from the pipeline (but do not commit
yet). These instructions are sitting in the active list, which is the reorder buffer in supersca-
lar. The possible implementation is to search the active list to find instructions that need to
release the destination values to later threads whenever any intra-thread speculation is
resolved. However, the conventional active list is the non-searchable structure, which
facilitates high clock speeds and avoids the wiring complexity. To make the active list non-
searchable structure, conventional SMT (or superscalar) separates the issue queue from
the active list (or reorder buffer) and searches only the issue queue to find ready-to-execute
instructions. Searching the active list whenever intra-speculation is resolved adds signifi-
cant complication to the conventional SMT pipeline.

From the performance point of view, the rational of holding speculative values is that
the chance of squashing later threads from intra-thread misspeculation can be removed by
delaying propagation of speculative register values to later threads until intra-thread spec-
ulation is resolved. However, superscalar does not have such delaying overhead and uses
the produced values as soon as the values become ready. Such delaying overhead clearly
introduces the inefficiency to speculative execution.

Fortunately, there have been lots of proposals to improve branch predictions since
Multiscalar was proposed [3], including hybrid predictor [5]. The improvement of the
branch prediction gives us chance to release speculative values with less worry about
incorrect intra-thread speculation. Therefore, N-IMT releases the speculative register val-
ues to later threads as soon as the values are ready just like superscalar, and it minimizes
the waiting time of dependent instructions from later threads. Section 6.3.1 shows that
some benchmarks loose considerable amount of performance due to the delaying of val-
ues, and releasing speculative values alleviates the performance loss.

The problem with releasing speculative values to later threads is that register or mem-
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ory values from incorrect intra-thread execution can be consumed by later threads, and
later threads must be squashed even if they have been correctly predicted when the incor-
rect intra-thread speculation is resolved.

O-IMT annotates the rename tables and load/store queue entries to identify when val-
ues are consumed bsomelater thread. If the thread producing the values internally
squashes the values and there is an indication that the values were consumed by some later
thread, then all later threads are squashed. To track whether a register value is consumed
by a later thread, O-IMT tags the rename maps, which are copied into the local table at
thread start-up, to identify the register values that are produced by previous threads and
that may be consumed by the current thread. Maps added to the local table for registers
produced by the current thread aret tagged so. If an instruction sources a value via a
tagged map, then the physical register corresponding to the map is marked as consumed
by a later thread. To track whether a memory value is consumed by a later thread, later
threads tag the earlier thread’s load/store queue entry upon obtaining the entry’s value. In
the process of internal squashing, if a physical register or load/store queue entry being
rolled back is marked as consumed by a later thread, O-IMT squabktasr threads.

IMT could keep track of which threads actually consumed the incorrect speculative
values and minimize the penalty of misspeculation by squashing only contaminated
threads, instead of squashing all subsequent threads whenever the value was consumed by
any later thread. However, to minimize the hardware complexity, O-IMT does not choose
this implementation option at this research.

5.2.2 Reducing physical register pressure

N-IMT’s out-of-order fetch overlaps farther instructions than SMT’s in-order fetch.
As a result, more instructions are in flight in N-IMT than SMT, especially for programs
with long threads (e.g., floating-point codes). To alleviate the resulting physical register
pressure, O-IMT employs a two-phase instruction and thread commit strategy. Instructions
commit in program order within the thread, but out of order compared to the instructions
in preceding threads; threads commit in global program order. Instruction commits free
some physical registers out of program order, well before the thread commits. Thread
commits free the rest of the physical registers later. If there are pending exceptions, then
instruction commit within the thread is frozen till all previous threads commit, maintain-
ing precise interrupts.

Conventional pipelines free the physical register previously mapped to the same
architectural register as the committing instruction’s destination. Along the same lines, the
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create mask specifies the collective architectural destination registers of a thread. Instruc-
tion commits and thread commits free only the set of physical registers that are previously
mapped to the thread’s create-mask registers. Within this set, instruction commit frees its
destination’s previous physical register only if the register was allocated within the thread,
and not some earlier thread. If the previous register was allocated by an earlier thread, then
three implications follow: (1) The previous register visible to later threads must be a preal-
located register in the earlier thread. (2) There is no guarantee that all use (i.e., read) of the
previous register value in the earlier thread is complete. (3) Thread commit frees the regis-
ter later. To identify registers allocated within the thread, O-IMT annotates the rename
map (in the local table) for all non-preallocated registers, so that a later instruction with
the same destination can free the register when the later instruction commits.

Freeing physical registers at instruction commit, even if previous threads may not
have committed, does not cause loss of correctness due to two reasons: One, because
instruction commit is in program order within the thread, there are no rollbacks of the
committed instruction due to internal branch mispredictions. Two, rollbacks due to exter-
nal misspeculations (thread mispredictions and inter-thread memory dependence viola-
tions) restart from the beginning of the thread and recompute the freed registers. These
two reasons guarantee that the freed physical registers need not be resurrected due to roll-
backs.

Because most of the previous speculative architectures [23,13,25] do not map multi-
ple threads to one core, they may not experience register pressure. As such, the architec-
tures do not address this issue. However, for programs with long threads, register pressure
is an issue even for these architectures.
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6 RESULTS

A execution-driven simulator of an out-of-order SMT pipeline with extensions is built
to evaluate a base superscalar processor (using a single SMT context), and the three spec-
ulatively-threaded processors, IMT, DMT, and TME. The Multiscalar compiler [30] is
used to generate optimized MIPS binaries. The superscalar, TME, and DMT experiments
use the plain MIPS binaries (without Multiscalar annotations). The IMT binaries include
Multiscalar’'s thread specifications and register communication instructions

Table 1 depicts the system configuration parameters for this study. The base pipeline
assumes an eight-wide issue out-of-order SMT with eight hardware contexts. The pipeline
assumes two i-cache ports for all machines including the base superscalar. To exploit the
extra i-cache port for superscalar, the branch predictor allows up to two predictions per
cycle. In addition to the base pipeline, O-IMT also uses a 64-entry DRP table and a 4-
entry ITDH table to optimize fetch. To gauge speculative threading’s potential conserva-
tively, IMT’s performance is compared against an aggressive superscalar implementation
that assumes the same resources available within the SMT pipeline including the high-
bandwidth of branch prediction and fetch, and the large register file. The aggressive super-
scalar also assumes a large active list of 1024 entries, because active lists are FIFO struc-
tures and are inherently scalable.

Table 2 shows the SPEC2K applications used in this study, and the branch prediction
accuracy and superscalar IPC achieved per application. The reference input set is used for
all of the benchmarks. To allow for practical simulation turnaround times, the simulator
skips the first 3 billion instructions before simulating a total of 500 million instructions
(plus overhead instructions, in IMT’s case). Total number of cycles is used as the base
metric to compare performance. In the case of IMT, the cycle counts include the overhead
instructions.

The rest of the results are organized as follows. The performance of N-IMT and O-
IMT are compared to the aggressive superscalar, and | break down the performance bottle-
necks O-IMT optimizes. Then results on the effectiveness of O-IMT’s microarchitecture
optimizations are presented. Then | present O-IMT’s ability to increase issue queue and



Table 1. System configuration parameters.

Processing Units System
Issue width 8| DRP table 64 entrieg
Issue queue 64entries (3 x 356bytes
Number of 8| ITDH 4 program counters
contexts
Branch unit hybrid GAg & Pag L1 cache 64K 2-way,
4Kentires each, 2-port i-cache pipelined 2-cycle hit
1K-entry 4-way BTB| & 32-byte block
Mis Penalty 7cycles 4-port d-cache
Functional 8 integer, L2 cache 2M 8-way,
units 8pipelined pipelined 10-cycle hit,
floating-point 64-byte block
Register file 356 INT/ 356 FR Memory 80 cycles
Per Context
Active list 128 entrieg Squash buffer 64 entrieg
LSQ 32 entries| Thread 16K 2-way,
2 ports| desc. cache 2-cycle hit
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Table 2. Applications, and their branch misprediction rates and superscalar IPCs.

INT

Bench.

pzIp
gap
gcc
gzip
mcf
parser
perl
twolf
vortex
vpr

Branch Branch
misp. (%) FP Bench. misp. (%) IPC
5.5 ammp T.1] 1.1
2.8 applu 01| 2.4
4.7 art 0.6/ 04
6.2 equake 05| 1.0
7.6 mesa 20 26
3.3 mgrid 0.8 23
5.3 sixtrack 1.9, 24
10.9 swim 0.1y 0.9
0.6 wupwise 0.2 24
6.8
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Fig. 14. Performance comparison of N-IMT and O-IMT normalized to the baseline
superscalar.

load/store queue efficiency as compared to superscalar using thread-level parallelism.
Finally, | compare and contrast O-IMT with TME and DMT, two prior proposals for spec-
ulative threading using SMT hardware.

6.1 Base System Results

Figure 14 motivates the need for optimizing the speculative threading performance on
SMT hardware. The figure presents execution times under N-IMT and O-IMT normalized
to the base superscalar. The figure indicates that N-IMT’s performance is actually inferior
to superscalar for integer benchmarks. N-IMT reduces performance in integer benchmarks
by as much as 24% and by on average of 3% as compared to superscalar. Moreover, while
the results for floating-point benchmarks vary, on average N-IMT only improves perfor-
mance slightly over superscalar for these benchmarks. The figure also indicates that
microarchitectural optimizations substantially benefit compiler-specified threading,
enabling O-IMT to improve performance over superscalar by as much as 69% and 65%
and by on average of 20% and 29% for integer and floating-point benchmarks respec-
tively.

Figure 15 compares the key sources of execution overhead in superscalar (left bar), N-
IMT (middle bar) and O-IMT (right bar). From top to bottom, the breakdown shows the
overhead of squashing instructions due to branch misprediction (both within and across
threads) and resource pressure (in N-IMT and O-IMT), underutilized instruction fetch
bandwidth, memory waiting stalls (due to data cache misses), register data dependence
stalls, and runtime instruction overhead for IMT machines.
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Fig. 15. Breakdown of execution into instruction execution and pipeline stalls.

Not surprisingly, the dominant execution time component in superscalar that specula-
tive threading improves is the register data dependence stalls. The IMT machines extract
parallelism across threads and increase the likelihood inserting suitable instructions (from
across the threads) into the pipeline, thereby reducing data dependence stalls. Speculative
threading also helps overlap latency among cache misses in benchmarks with available
memory parallelism across threads, reducing memory stalls as compared to superscalar.
These benchmarks most notably inclymkel, applu, mgrid, andswim Finally, the cycles
spent executing instructions (denoted by “useful run”) across the machines are compara-
ble, indicating that the instruction execution overhead of compiler-specified threading is
negligible.

There are a number of benchmarks in which N-IMT actually reduces performance as
compared to superscalar.gap vpr, ammp andmesaN-IMT simply fetches instructions
indiscriminately without regards to resource availability and from the wrong threads
(using round-robin) resulting in high misspeculation/squash frequenayncinvpr, and
art, N-IMT increases the data dependence or memory stalls by bringing unsuitable
instructions into the pipeline. Imcf N-IMT increases the L1 data-cache miss ratio as
compared to superscalar because later threads’ cache accesses conflict with those from the
non-speculative thread. Brt, N-IMT increases the L1 data-cache miss ratio by delaying
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the issue of data cache misses from the non-speculative thread. FinddBipiN-IMT
incurs a high thread start-up delay and increases the fraction of stalls due underutilized
fetch.

The graphs also indicate that O-IMT substantially reduces the stalls as compared to
N-IMT. O-IMT’s resource- and dependence-based fetch policy and context multiplexing
reduce data dependence and memory stalls by fetching and executing suitable instructions.
Accurate resource allocation and prediction minimizes the likelihood of misspeculation
and reduces squash stalls. Finally, hiding the thread start-up delay reduces the likelihood
of underutilized fetch cycles by increasing the overlap among instructions. The combined
effect of these optimizations results in superior performance in O-IMT as compared to
superscalar and N-IMT. Section 6.2 presents detail analysis on these techniques’ contribu-
tions to O-IMT’s performance.

6.2 Primary Optimizations

In this section, | present the result of resource allocation and prediction. Then, |
present the results of O-IMT's R&D-based fetch policy and context multiplexing, which
use the proposed resource allocation and prediction techniques. Then, | present the results
of the optimization of hiding the thread start-up delay.

6.2.1 Resource allocation & prediction

Figure 16 illustrate the need for dynamic resource allocation, and the impact of DRP’s
accurate prediction on performance in O-IMT. Figure 16 (a) compares performance under
dynamic partitioning using DRP against static partitioning for the load/store queue (LSQ)
entries, and Figure 16 (b) does for the register file. In the register file case, the figure also
plots demand-based allocation of entries by threads, allowing for threads to allocate regis-
ters upon demand without partitioning or reservation. Meanwhile, in the LSQ case, the fig-
ure does not plot demand-based allocation of entries. The reason is that the LSQ entries
cannot be simply shared by multiple threads because the LSQ supports the associative
searches to honor the memory dependence (Section 5.1.2).

The graphs plot average performance (for integer and floating-point benchmarks sep-
arately) as a fraction of that in a system with unlimited resources. Context multiplexing
allows more threads per context, thereby requiring a different (optimal) number of threads
depending on the availability of resources. These graphs plot the optimal number of
threads (denoted by the letter T) for every design point on the x-axis.

Figure 16 (a) indicates that DRP successfully eliminates all stalls related to a limited
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number of LSQ entries in integer benchmarks with as few as 16 LSQ entries per context.
In contrast, a static partitioning scheme requires as many as 64 LSQ entries to achieve the
same results. Similarly, in floating-point benchmarks, DRP can eliminate virtually all LSQ
stalls with 32 entries per context, whereas static partitioning would require two times as
many entries per context. Moreover, static partitioning can have a severe impact on bench-
mark performance, reducing performance on average by 40% given 16 entries per context.

Figure 16 (b) indicates that the results for allocating registers are more dramatic. DRP
allocation of registers can achieve the best performance with four times fewer registers in
integer and floating-point benchmarks. Moreover, static partitioning of registers for
smaller register file sizes (>256) virtually brings execution to a halt and limits perfor-
mance. Demand-based allocation of registers substantially improves performance over
static partitioning, allowing threads to share a large pool of registers effectively even with
as few as 128 registers per integer and floating-point register files. Demand-based alloca-
tion, however, only reaches within 10% of DRP-based allocation and, much like static par-
titioning, requires four times as many registers to bridge the performance gap with DRP.
Demand-based allocation’s performance improves gradually beyond 256 registers. Regis-
ter demand varies drastically across threads resulting in a slow drop in misspeculation fre-
guency, and consequently gradual improvement in performance, with an increase in
register file size.

Table 3 presents statistics on the accuracy of DRP for the dynamic allocation of regis-
ters, active list and LSQ entries. Unfortunately, demand for resources actually slightly var-
ies even across dynamic instances of the same (static) thread. The predictors learn and
predict the worst-case demand on a per-thread basis, thereby opting for over-estimating
the demand in the common case. Alternatively, predictors that would target predicting the
exact demand for resources may frequently under-estimate, thereby causing later threads
to squash and release resources for earlier threads (Section 5.1). The table depicts the frac-

Table 3. Accuracy of dynamic resource prediction and allocation.

LSQ Registers Active List
Benchmarks|acc(%) avg. avg.|acc(%) avg. avg.|acc(%) avg. avg.

used over used over used over
integer 99.2 7.4 08 975 159 3.0 98.9 17.0 2.1
floating-point 99.6 19.7 18 984 2938 2.9 99.7 439 1.8
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tion of the time and the amount by which DRP on average over-estimates demand. The
results indicate that predicting based on the demand for the last four executed instances of
a thread leads to high accuracy for (over-)estimating the resources. More importantly, the
average number by which the predictors over-estimate is relatively low, indicating that
there is little opportunity lost due to over-estimation.

6.2.2 Resource- & dependence-based fetch policy

O-IMT'’s fetch policy gives the priority to the non-speculative (head) thread and only
fetches from other threads when: (1) ITDH indicates the likelihood of parallelism and the
availability of suitable instructions, and (2) DRP indicates the availability of resources
based on the predicted demand. In contrast, a round-robin policy (used in DMT) would let
later dependent threads hog the resources while earlier threads attempt to make forward
progress, potentially reducing performance. Similarly, an ICOUNT policy [9] (used in
SMT) that favors a thread with the fastest issue rate without regards to resource usage or
dependence may indiscriminately allocate resources to speculative threads, leading to
resource bottlenecks. Finally, a constant bias in the non-speculative thread’s fetch priority
in a biased-ICOUNT policy [31] (used in TME) may improve performance only slightly
when resource usage and dependence across threads drastically vary.

Figure 17 shows O-IMT'’s performance under four different fetch policies. From left
to right, the figure plots three priority-based fetch policies, ICOUNT, biased-ICOUNT,
and resource- and dependence-based fetch policy. The graphs plot the performance
improvement of those fetch policies over round-robin fetch policy for all benchmarks and
the average of integer and floating-point programs separately.

Among integer benchmarkggap shows the most benefit from employing the
resource- and dependence-based fetch policy for O-IMTnaefdhows the least benefit.

The figure indicates that indeed in integer benchmarks, ICOUNT reduces the average per-
formance over round-robin, because it allows speculative threads issuing at a high rate to
inadvertently fetch, allocate resources, and subsequently squash. The figure also shows
that without an efficient fetch policy, all the optimizations that O-IMT employs to bring
more instructions (from speculative threads) to the pipeline or to increase overlap among
fetched instructions can actually hurt the performance. As a result, some benchmarks
including bzip and gapperforms even worse than N-IMT (This comparison is not shown
here, but it can be seen by comparing the performance degradation in this figure to that in
Figure 14), which uses ICOUNT as a fetch policy. Biased-ICOUNT addresses this short-
coming in ICOUNT by biasing the priority towards the non-speculative thread by a con-
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stant value, and improving performance over round-robin. O-IMT’s resource- and
dependence-based fetch policy significantly improves performance over round-robin by
preventing later threads from fetching unless: (1) there are resources available, and (2) the
threads are loop iterations and likely to be independent.

Among floating-point benchmarkspplu shows the most benefit from all priority-
based fetch policy compared to round-robin. As a result, the floating-point benchmarks
actually slightly benefit from ICOUNT and biased-ICOUNT on average. The floating-
point applications exhibit a high fraction of thread-level parallelism and independence
across threads. As in SMT, ICOUNT allows for the threads making the fastest rate of
progress to proceed, improving performance over a round-robin policy. Biased-ICOUNT
reduces the likelihood of misspeculation due to resource pressure, and as such improves
performance over ICOUNT. O-IMT's fetch policy performs best by allowing the most
suitable instructions to flow through the pipeline.

6.2.3 Multiplexing hardware contexts

Multiplexing offers two key advantages for applications with short threads. Multiple
threads per context help increase the number of suitable in-flight instructions. Alterna-
tively, multiplexing makes unused contexts available to threads across multiple applica-
tions in a multiprogrammed (SMT) environment. Figure 18 illustrates the impact of
multiplexing on O-IMT’s performance. The Y axis shows the fraction of O-IMT perfor-
mance with different number of contexts. The X axis shows the benchmarks and the aver-
age of the integer and the floating--point programs separately. The base case is the O-IMT
performance with unlimited resources including contexts. The left bar shows the perfor-
mance of O-IMT without context multiplexing, and the right bar shows the performance
of O-IMT with context multiplexing. To accurately gauge the overall impact on perfor-
mance with an increase in available resources, the register file size are varied linearly from
132 to 356 (adding 32 registers to the base case with every context) when varying the
number of contexts from one to eight.

The figure indicates that without multiplexing, neither integer nor floating-point
benchmarks can reach best achievable performance even with eight hardware contexts.
Moreover, performance substantially degrades (to as low as 35% in integer applications on
average) when reducing the number of contexts. Without multiplexped, shows the
worst performance as low as 20% of the unlimited resources case, when there is only one
context. Meanwhile, with multiplexinggerl achieves the performance as high as 69% of
the unlimited resources case.
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Fig. 18. The impact of context multiplexing.
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Multiplexing’s performance impact is larger with fewer contexts because context
resources are used more efficiently. Multiplexing best benefits integer benchmarks with
short-running threads allowing for two contexts (e.g., as in a HyperThreaded Pentium 4
[15]) to outperform eight contexts without multiplexing. Multiplexing also benefits float-
ing-point benchmarks, reducing the required number of contexts. Floating-point bench-
marks’ performance, however, scale well with an increase in the number of contexts even
without multiplexing due to these benchmarks’ long-running threads.

6.2.4 Hiding thread start-up overhead

Figure 19 illustrates the impact of thread start-up delay on O-IMT’s performance.
From left to right, the bars represent the performance of four-cycle start-up delay, four-
cycle start-up delay, and O-IMT’s overlap to hide the start-up delay. The base case is an O-
IMT with no start-up delay. The graphs plot the performance of three different cases nor-
malized to the performance of the base case. The figure indicates that a higher start-up
delay of four cycles on average can reduce performance by 10% on average in integer
benchmarksperl is the one which suffers most from the thread start-up delay. The results
show that in integer benchmarks with multiple-cycle start-up delay, there are enough
slacks in the SMT’s shared pipeline. Consequently, hiding the slacks by overlapping exe-
cutions of multiple threads improves the performance.

Because of their long-running threads, the floating-point benchmarks can amortize a
higher start-up delay, and as such show less performance sensitivity to start-up delay. In
contrast, O-IMT’s mechanism for overlapping thread start-up on average almost achieves
ideal performance (incurring no start-up delay).

6.3 Secondary Optimizations

In this section, | will discuss the results of the secondary optimizations such as specu-
lative releasing and reducing register pressure by two-phase commit.

6.3.1 Speculative releasing

One of the benefits of IMT is its ability to do thread-level squashing. It means that for
an intra-thread branch misprediction, IMT squashes instructions only from the current
thread of the mispredicted branch, while it keeps later thread instructions intact. To isolate
the intra-thread misprediction, N-IMT does not release register values to later threads until
all previous internal branches are resolved. However, this approach has an implementation
issue and performance issue, as mentioned in Section 6.3.1. O-IMT solves these two
issues by speculatively releasing register values to later threads.
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Figure 20 illustrates the impact of thread-level squashing on O-IMT’s performance
with and without speculative releasing. The base case is an O-IMT that does not use
thread-level squashing but speculatively releases the register values. From left to right, the
bars represent (1) a O-IMT with thread-level squashing but without speculative releasing,
(2) a O-IMT with thread-level squashing and speculative releasing but no tracking, and (3)
a O-IMT with thread-level squashing, speculative releasing, and tracking. The second bar
represents the performance of the optimization used for O-IMT in this dissertation. The
third bar is the performance of the aggressive implementation of the optimization, which
keeps tracking the threads that actually use the speculative values from the mispredicted
control path and so tries to minimize the squash penalty of internal branch misprediction
while releasing values speculatively (Section 5.2.1).

The figure shows the performance improvement in integer and floating-point bench-
marks when using thread-level squashing. The figure also compares the impact of holding
on to speculative register values — to remove the chance of squashing later threads on
internal branch mispredictions — and releasing speculative register values — to minimize
the waiting time of dependent instruction from later threads.

The figure indicates that thread-level squashing has a considerable impact on O-
IMT’s performance in integer applications due to the higher internal branch mispredic-
tions, improving performance by 11% on average. In integer applications, thread-level
squashing saves 20 instructions among 43 instructions in flight on average per branch
misprediction. Moreover, releasing speculative register values further improves perfor-
mance by additional 7%, indicating the low likelihood of speculative register values used
by later threads with branch mispredictions occur in earlier threads.

Table 4 shows the statistics for the extra squashes due to speculative releasing. The
second and fifth column show the number of intra-thread branch mispredictions occurred
while executing 500 million instructions. The third and sixth columns show the number of
squashes occurred due to speculative releasing without tracking and ratio of the squashes
over the intra-thread branch mispredictions. The statistics show that only 14% (on aver-
age) of internal branch mispredictions cause squashing later threads due to consuming
incorrect register values speculatively. While thread-level squashing does not greatly ben-
efit floating-point applications due to extremely low internal branch misprediction rates
(only 2% of performance improvement over the base case), speculative releasing adds 2%
of performance improvement, resulting 4% of performance improvement over the base.

As mentioned in Section 5.2.1, tracking the threads that actually use the speculative
value from the mispredicted control path may complicate the pipeline design, and | do not
consider it as a design option in this dissertation. Moreover, the results in this figure show
that the performance improvement from tracking over non-tracking is trivial.
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O-IMT allows later threads to commit their instructions out of program order and
release physical registers. Figure 21 illustrates the impact of IMT’s two-phase commit on
relieving register pressure. The figure compares the performance of regular commit
against two-phase commit in O-IMT. To show O-IMT’s potential for performance
improvement using two-phase commit, the numbers are normalized to an O-IMT with an

Table 4. Squashes due to speculative releasing.
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unlimited number of registers. The results indicate that two-phase commit has limited
advantage over regular commit in integer benchmarks and does not benefit them beyond
356 registers due to lack of register pressure. Floating-point benchmarks show similar
results. With 356 registers, two-phase commit reduces register pressure over regular com-
mit improving performance by 8% on average with maximum of 20%gap, mgrid

su2cor andtomcatv Two-phase commit’s advantage eventually disappears when there are
enough registers to satisfy the demand for registers by threads.

6.4 Miscellaneous Results

This section first discusses the performance implication of O-IMT from the issue
gueue’s and LSQ’s point of view. Then it discusses the performance loss when O-IMT for-
goes early-scheduling for the instructions that are dependent on loads, in order to avoid
increasing the complexity of the scheduler design.

6.4.1 Issue queue & LSQ performance sensitivity

In SMT/superscalar pipelines, the issue queue and LSQ(S) sizes are often the key
impediments to performance scalability [20]. Thread-level speculation helps increase the
effectiveness of these queues of a given size by allowing suitable instructions from across
the threads to enter the queues. Figure 22 illustrates improvements in superscalar and O-
IMT performance with increasing number of entries in the issue queue and LSQ. The
graphs indicate that as compared to a superscalar with a 32/16 entry queue pair, O-IMT
can achieve the same performance with half as many queue entries. Because the issue
gueue and LSQ are often on the pipeline’s critical path, O-IMT can actually help reduce
the critical path and increases clock speed by requiring smaller queues.

The graphs also indicate that for integer applications, performance levels off with 64/
32 entry queue pairs, with up to 50% performance improvement over a 16/8 entry queue
pair. O-IMT maintains a 25% additional improvement in performance over superscalar by
extracting thread-level parallelism. Moreover, superscalar's performance never reaches
that of O-IMT’s even with 256/128 entry queues. High branch misprediction frequency in
integer applications ultimately limits performance even with a larger issue queue and
LSQ. In O-IMT, a mispredicted branch within a thread only squashes instructions from
that thread, thereby allowing suitable instructions from future threads to remain in the
pipeline while a branch from an earlier thread mispredicts.

In contrast, superscalar’'s performance continues to scale for floating-point applica-
tions with higher levels of ILP, up to the 256/128 entry queues. O-IMT significantly
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enhances queue efficiency over superscalar and achieves superscalar's performance at the
256/128 design point with less than a quarter of the queue entries. Moreover, O-IMT’s
performance levels off at the 64/32 design point, obviating the need for large queues to
extract the available parallelism.

6.4.2 Forgoing early-scheduling for load-dependent instructions

As mentioned in Section 4.4, IMT does memory disambiguation by searching
through LSQs from different contexts. Such multiple searches make the L1 hit latency
variable because of the uncertainty of the latest store’s existence and the port contention.
Meanwhile, high performance superscalar processors speculatively schedule instructions
dependent on the load with the assumption that the load is a cache hit. Variable hit laten-
cies complicate such a scheduling mechanism. To avoid complicating the scheduler, IMT
foregoes early-scheduling for the instructions that are dependent on the load. The excep-
tional case is for loads that are from the head context. The loads from the head context do
not search any earlier context because there is no earlier context, and so their latencies are
not variable.

Figure 23 shows the performance loss when O-IMT forgoes early-scheduling for the
instructions that are dependent on the load. The base case is an O-IMT with the aggressive
scheduler that can do early-scheduling even with variable hit latency of loads. The left bar
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Fig. 23. Impact of early-scheduling for load-dependent instructions

shows the performance of an O-IMT that forgoes early-scheduling for all instructions that

are dependent on any load. Therefore, the scheduler of this bar will be even simpler than
that of conventional superscalar. The right bar shows the performance of the O-IMT that
does early-scheduling for the instructions dependent on the load only if the load comes
from the head context. Otherwise, the O-IMT forgoes early-scheduling. The performance
of these two mechanisms is normalized to that of the base case in the figure.

The figure shows that no-early-scheduling degrades O-IMT'’s performance by 5% on
average, as much as 10% for integer benchmarks and by 3% on average, as much as 9%
for floating-point benchmarks. However, O-IMT does not need to forgo early-scheduling
for the instructions dependent on the load that is from the head context. When O-IMT
takes this fact into the consideration, it reduces the performance loss only to 2%. O-IMT
does context multiplexing. Therefore, the head context will accommodates multiple con-
tiguous threads including the head thread (the non-speculative thread), and the loads that
are from the head context cover the majority of important loads. As a result, early-schedul-
ing only for the instructions dependent on the load from the head context alleviates most
of performance degradation due to inefficient scheduling compared to the base case.

Floating-point benchmarks show different resufisvimshows the most interesting
results. Unlike integer benchmarks, floating-point benchmarks have lots of parallelism so
that the efficient scheduling is less required. Early-scheduling also has negative impact to
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the performance. Early-scheduling assumes that all loads are going to be L1 hit, and it
flushes out and reissues all instructions subsequent to a load when the assumption turns
out to be wrong and the load is L1 miss. As a ressitimshows a little performance ben-

efit by completely forgoing early-scheduling. As shown in Section 6.2.3, O-IMT’s context
multiplexing in floating-point benchmarks is less effective than in integer benchmarks
because of bigger thread size. Therefore, in floating-point benchmarks, early-scheduling
only for the instructions dependent on the load from the head context does not improve the
performance of completely foregoing early-scheduling because the head context will
accommodate only a few threads.

6.5 Comparison to TME & DMT

In this section, O-IMT'’s performance is compared against TME and DMT. The mod-
els used in this comparison for TME and DMT are quite aggressive allowing for a conser-
vative comparison against these machines. | assume no contention for TME’s mapping
synchronization bus [31]. | also assume a 256-entry custom trace buffer per context (for a
total of 2048 entries) with zero-cycle access penalty and selective recovery (squash) for
DMT. As proposed, TME fetches from two ports using biased-ICOUNT, and DMT uses a
dedicated i-cache port for the non-speculative thread and a shared i-cache port for specula-
tive threads. | also assume an improvement over the proposed machines by allowing TME
and DMT to take advantage of both i-cache ports when there are no speculative threads
running. | compare these improved models against the original proposals.

Figure 24 compares speedups of the optimized TME and DMT machines, against O-
IMT normalized to the baseline superscalar. Unlike O-IMT, TME and DMT reduce the
average performance with respect to a comparable superscalar. TME [31] primarily
exploits thread-level parallelism across unpredictable branches. Because unpredictable
branches are not common, TME’s opportunity for improving performance by exploiting
parallelism across multiple paths is limited. TME’s eagerness to invoke threads on unpre-
dictable branches also relies on the extent to which a confidence predictor can identify
unpredictable branches. A confidence predictor with low accuracy would often spawn
threads on both paths, often taking away fetch bandwidth and processing bandwidth from
the correct (and potentially predictable) path. An accurate confidence predictor would
result in a TME machine that performs close to, or improves performance slightly over,
the baseline superscalar machiivg@r and mesaare benchmark examples in which the
confidence predictor predicts accurately, allowing TME to improve performance over
superscalar.
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Fig. 24. Performance comparison of TME, DMT, and IMT normalized to baseline
superscalar.

DMT's poor performance is due to the following reasons. First, DMT often suffers
from poor thread selection because it spawns a new thread when the fetch unit reaches a
function call or a backward branch, and selects the new thread to include instructions after
the call or backward branch. Therefore, DMT precludes exploiting the potentially high
degree of parallelism that exists across inner loop iterations. Moreover, DMT's threads are
typically inordinately long, increasing the probability of data dependence misspeculation
despite using “dataflow” dependence prediction. Second, DMT achieves low conditional
branch and return address prediction accuracies because DMT spawns threads out of pro-
gram order while global branch history and return address stack require in-program-order
information to result in high prediction accuracy. The results indicate that DMT results in
lower branch and return address prediction accuracies whether the branch history register
and return address stack contents are cleared or copied upon spawning new threads.

Due to the low accuracy of DMT’s branch and data-dependence prediction, DMT
fetches, executes, and subsequently squashes twice as many instructions as it commits
(i.e., DMT’s commit rate is one third of its fetch/execute rate). With the exceptionabf
twolf, vpr,andequakein which branch prediction accuracies remain high, all benchmarks
exhibit significantly lower branch prediction accuracy as compared to our baseline super-
scalar, resulting in a lower average performance than superscalar.

Figure 25 corroborates the results that the optimized models for TME and DMT actu-



56

80%
o 60% 1 1 TME-orig.
S - O TME
U .
O 40% : = DMT-orig.
Q m DMT
(V)] .
7 Baseline
20% ’_Lj Superscalar
0%

integer floating-point

Fig. 25. Performance comparison of TME, DMT, and IMT normalized to prior-work’s
superscalar [31].

ally improve performance over the original proposals. The figure compares the speedups
from the original proposals for TME and DMT against the optimized proposals for them
normalized to a less aggressive superscalar processor with a single i-cache fetch port and a
single branch prediction per cycle used in the prior studies [31,1]. The figure also plots the
speedups for the baseline superscalar assumed in this dissertation with two i-cache ports
and two branch predictions per cycle. Not surprisingly, TME substantially benefits from
the second i-cache port in the common case when there are no speculative threads but fails
to improve performance over the baseline superscalar. DMT’s performance also improves
slightly due to a better utilization of the second i-cache port when the speculative threads
do not actively fetch. However, DMT’s poor threading severely limits the performance
improvement, resulting inferior performance compared to TME or the aggressive (Base-
line) superscalar.

6.6 Comparison to single thread run on single SMT context

This section shows how much performance gain IMT can actually get compared to a
genuine SMT when there is enough contexts available on a SMT. Figure 26 shows O-IMT
performance compared to a base case, which is different from the base case that | used
through the Result chapter. The base case used in this figure is a superscalar that has only
hardware resources as much as a single SMT context.

Perl achieves the biggest performance improvement with 199% speed-up and the bar
goes beyond the range of Y axis. This figure shows that IMT improves the single program
performance by an average of 50% for Integer benchmarks over genuine SMT execution
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Fig. 26. Performance comparison of O-IMT normalized to the superscalar with
hardware resources as a single SMT context.

when the number of contexts is not a limitation. Floating-points benchmarks achieve less
impressive speed-up than Integers, but they still achieve an average of 32% speed-up over
SMT. This result shows that the programs with characteristiggapf perl, twolf, vortex,

mgrid, andswimcan greatly benefit from IMT architectures compared to genuine SMT.
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7 CONCLUSIONS

SMT has emerged as a promising architecture to share a wide-issue processor’s data-
path across multiple program executions. This dissertation proposed the Implicitly-Multi-
Threaded (IMT) processor to utilize SMT's support for multithreading to execute
compiler-specified speculative threads from a single sequential program. The dissertation
presented a case arguing that a naive mapping of even highly-optimized threads onto SMT
performs only comparably to an aggressive superscalar. | proposed a naive IMT (N-IMT)
that incurs high thread execution overhead because it indiscriminately divides SMT'’s
shared pipeline resources (e.g., as fetch bandwidth, issue queue, load/store queues, and
physical registers) across threads without regard to resource availability, thread resource
usage, or inter-thread dependence.

| also proposed an optimized IMT (O-IMT) that employs three primary mechanisms
and two secondary optimizations to improve speculative thread execution efficiency in an
SMT pipeline. The three primary optimizations are as follows: (1) O-IMT employs a novel
resource- and dependence-based fetch policy to decide from which thread to fetch every
cycle. (2) O-IMT multiplexes contexts by mapping as many threads as allowed by the
hardware resources, increasing instruction overlap. (3) Speculatively-threaded architec-
tures incur rename table set-up overhead at thread start-up to ensure proper register value
communication between earlier threads and the newly invoked thread. O-IMT virtually
eliminates the rename table set-up overhead incurred in speculatively-threaded architec-
tures by overlapping the start-up delay with previous threads’ execution. The secondary
optimizations are as follows: (1) O-IMT speculatively releases register values to avoid the
implementation and performance issues of N-IMT’s thread-level squashing, and (2) O-
IMT employs two-phase commit to reduce register pressure by freeing some registers at
instruction commit, before the thread commits. As SMT and speculative threading become
prevalent, O-IMT’s optimizations will be necessary to achieve high performance.

Using results from execution-driven simulation and SPEC2K benchmarks with refer-
ence input sets, | showed that O-IMT improves performance by an average of 20% and
29% with a maximum of 69% and 65% for integer and floating-point benchmarks, respec-



59

tively, over an aggressive superscalar. | also presented performance comparisons against
two prior proposals, TME and DMT, which execute speculative threading on SMT-based
architectures. | showed that O-IMT outperforms a comparable TME by 26% and a compa-
rable DMT by 38%.

In the future, the circuit technology will continue to scale the transistor size but not
the wire delay. This trend means that there will be billions of transistors in a chip, but the
wire delay will severely limit the design options for utilizing transistors. The CMP could
be an answer for that situation. However, one open question is what the design options for
each core within a CMP will be. Will it be an SMT? Or will it be a regular wide-issue
superscalar? How can IMT be applied to those design options?

If each core will be an SMT, all of IMT’s architectural optimizations will be directly
applicable to the future designs as long as single-program performance remains an impor-
tant issue. Even though there is no reason not to believe that each core within a CMP will
be an SMT, let us assume that each core will be a regular superscalar. Under that assump-
tion, before | can decide whether IMT will be effectively applicable there, | have to answer
the following question. Can | apply context multiplexing to CMP? One of the biggest
overheads of CMP-based speculative threading is the load imbalance. Context multiplex-
ing will effectively remove this overhead with no doubt. However, unlike on SMT, context
multiplexing on a CMP will complicate the cache design. Even without context multiplex-
ing, the cache design for CMP-based speculative threading is already too complicated.
Context multiplexing on a CMP requires that each cache block should keep a thread iden-
tifier as a tag. It means not only increasing storage overhead in caches but also increasing
the number of tag comparisons for cache accesses due to identifying thread ID.

If context multiplexing will be taken as a design point to reduce the load imbalance in
spite of those issues, all IMT techniques will be effective for future designs. If not, only
some of IMT’s optimizations will be applicable, but others will not. Hiding thread start-up
delay and speculative releasing will still benefit future designs. However, the R&D-based
fetch policy will not benefit the CMP with superscalar cores, because there is no resource
sharing across threads and so there is no need to steer the fetching unit to prioritize the
best instructions to bring ahead. The two-phase commit will not benefit for the same rea-
son, because reducing register pressure will not affect other threads’ running in separate
cores.
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8 FUTURE DIRECTION

This dissertation proposed key microarchitectural optimizations to remove the ineffi-
ciencies of speculative threading on Simultaneous Multithreading (SMT), which is a cen-
tralized architecture. It will be interesting to see how these optimizations react with
different architectures such as the Chip MultiProcessor (CMP), which is a distributed
architecture. Multiscalar was the first proposal for speculative threading, and it uses the
CMP as a hardware platform. Although | expect that O-IMT’s optimizations will still be
effective on CMP-based speculative machines, including the previously-proposed Multi-
scalar, different optimizations may be found to be more effective on CMP-based specula-
tive machines. The comparison of the previously proposed Multiscalar with and without
optimizations against O-IMT will be also interesting to see. However, the wire delay fac-
tor should be considered carefully for such a comparison because these two architectures
use different hardware platforms and have different implications on wire delay.

Recently, there have been commercial products that support only in-order execution
but with multithreading, such as Intel Itanium [14] and Sun Niagara [26]. By not support-
ing out-of-order execution, these architectures have the advantage of simplifying pipeline
components such as the issue queue. With faster CPU clocks and wider pipelines, all rele-
vant microarchitectural components should scale accordingly. Otherwise, the processor
performance will show little improvement despite the faster clock and wider pipeline.
Unfortunately, such scaling becomes extremely difficult with the faster clock and wider
pipeline. Therefore, the advantage of reducing the design complexity of the pipeline is
appealing.

However, when supporting in-order execution only, these architectures have the dis-
advantage of losing instruction-level parallelism (ILP) and consequently performance.
These in-order-execution cores maintain the performance by increasing the pipeline
throughput through thread-level parallelism (TLP). Meanwhile, single-thread performance
suffers significantly, reducing the attractiveness of the in-order execution with multi-
threading. The performance of speculative threading when applied to the multithreading
in-order execution cores with and without O-IMT’s optimizations will be an interesting
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topic. The O-IMT’s optimizations could improve single-thread performance in multi-
threading in-order cores enough to overcome the performance deficit due to the in-order
execution.

O-IMT’s context multiplexing enables superscalar to run speculative threading by
dynamically allocating the active list entries and load/store queue entries for multiple
threads. In this dissertation, | showed that O-IMT’s context multiplexing improves perfor-
mance even when only one context is available. The optimizations proposed in this disser-
tation can be changed or extended to accommodate speculative-threading execution even
on conventional superscalar pipelines.
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