
Reducing Design Complexity of the Load/Store Queue

Il Park, Chong Liang Ooi, and T. N. Vijaykumar
School of Electrical and Computer Engineering, Purdue University

{parki, cliang, vijay}@ecn.purdue.edu

To
for
yet

. In
ue,
m-
g
the

rts
en-

it is
e
ad/

le-
: (1)
ht
re
ory

cia-
ed-
ng
ecial
ms
der
the

e
id
R4

e
ue to

the
arch
her

nd-
ad
].

ine
Abstract

With faster CPU clocks and wider pipelines, all relevant
microarchitecture components should scale accordingly.
There have been many proposals for scaling the issue queue,
register file, and cache hierarchy. However, nothing has been
done for scaling the load/store queue, despite the increasing
pressure on the load/store queue in terms of capacity and
search bandwidth. The load/store queue is a CAM structure
which holds in-flight memory instructions and supports
simultaneous searches to honor memory dependencies and
memory consistency models. Therefore, it is difficult to scale
the load/store queue.

In this study, we introduce novel techniques to scale the
load/store queue. We propose two techniques, store-load
pair predictor and load buffer, to reduce the search band-
width requirement; and one technique, segmentation, to
scale the size. We show that a load/store queue using our
predictor and load buffer needs only one port to outperform
a conventional two-ported load/store queue. Compared to
the same base case, segmentation alone achieves speedups
of 5% for integer benchmarks and 19% for floating point
benchmarks. A one-ported load/store queue using all of our
techniques improves performance on average by 6% and
23%, and up to 15% and 59%, for integer and floating-point
benchmarks, respectively, over a two-ported conventional
load/store queue.

1 Introduction

In a modern out-of-order microprocessor, the load/store
queue is designed to absorb bursts in cache accesses and to
maintain the order of memory operations by keeping all in-
flight memory instructions in program order. As CPU clocks
become faster, wire delays to the cache hierarchy worsen
and the processor-memory performance gap widens. As a
result, there are more in-flight memory instructions in the
pipeline, increasing the pressure on the load/store queue.
Therefore, we needhigher capacityin the load/store queue.
In addition, modern microprocessors employ wider issue for
higher performance, requiringhigher search bandwidthin
the load/store queue to allow more memory instructions to
overlap.

With faster processor clocks and wider pipelines, all rel-
evant microarchitecture components should scale accord-
ingly. Otherwise, the processor performance will show little

improvement despite the faster clock and wider pipeline.
address this problem, a lot of research has been done
scaling the issue queue, register file, and cache hierarchy;
nothing has been done for scaling the load/store queue
fact, the techniques proposed for scaling the issue que
register file, and cache hierarchy increase not only the nu
ber of in-flight instructions but also the overlap amon
instructions [8,7,5]. These techniques greatly increase
demand for bothhigher capacityand higher search band-
width in the load/store queue.

The load/store queue is a CAM structure that suppo
simultaneous associative searches to honor memory dep
dencies and memory consistency models. Consequently,
extremely difficult to scale the capacity and bandwidth of th
load/store queue. Brute-force approaches to scaling the lo
store queue are not likely to work.

In a modern processor, the load/store queue is imp
mented as two separate queues and has three functions
The load/store queue buffers and maintains all in-flig
memory instructions in program order. (2) The load/sto
queue supports associative searches to honor mem
dependence. A load searches thestore queueto obtain the
most recent store value, and a store searches theload queue
to find any premature loads (store-load order violation). (3)
In some processors, the load/store queue supports asso
tive searches to enforce memory consistency (in shar
memory multiprocessors). Specifically, the ordering amo
loads that access the same address is an important sp
case. If this ordering is relaxed, subtle correctness proble
arise: if two loads to the same address are issued out of or
and the value is changed by another processor in between
two loads [1], the later load will obtain an earlier valu
whereas the earlier load will obtain a later value. To avo
this problem, some processors (e.g., Alpha [3] and POWE
[10]) guarantee load-load ordering for loads to the sam
address. For this guarantee, a load searches the load que
find any out-of-order-issued loads (load-load order viola-
tion).

In this paper, we propose three techniques to scale
load/store queue; two of these techniques reduce the se
bandwidth demand on the load/store queue, and the ot
technique increases the capacity of the load/store queue.

We use two key observations to reduce the search ba
width demand. First, previous studies show that store-lo
order violations are highly predictable and infrequent [6, 2
They use this observation to reduce the number of pipel

m-
tion
9%
ue
by

at-
n-

e
dth
the
cy.
ues

es
pa-
tore

all
ad
lue
s, it
e
ger,

ore-
es
f all

hes
ll

gain

ore
at

nly
do
f the
squashes due to store-load order violations, while allowing
out-of-order memory operations as much as possible. While
they show that store-load order violations are rare, we
observe that not only are the violations rare but a majority of
stores and loads do not even access the same address. We use
this observation to reduce the search bandwidth demand on
the store queue. We use the store-set predictor from [2] to
predict store-load dependencies. If a load is predicted to be
independent of any preceding stores, the load will not search
the store queue. If there is a dependent earlier store, then the
prediction is wrong. Consequently, when the store completes,
it will squash the load and subsequent instructions.

Second, we observe that in order to detect a load-load
order violation, any given load needs to search only those
loads that were issued out of order with respect to the load,
and that out-of-order-issued loads are far fewer in number
than all in-flight loads. Across the SPEC2K benchmarks, the
average number of out-of-order-issued loads is less than 3,
while the number of in-flight loads is 41. We use this obser-
vation to reduce the search bandwidth demand on theload
queue. We introduce theload buffer, which is a small buffer
to hold loads that are issued out of order with respect to ear-
lier yet-to-be-issued loads. When a load issues, it searches
the much-smaller load buffer instead of searching the entire
load queue. Thus the load buffer moves the detection of load-
load order violations away from the load queue.

The contributions of the paper are as follows:
• Reducing the search bandwidth demand on the store

queue: While [2] uses the store-set predictor to avoid
store-load order violations, our novelty is in applying the
predictor to the new problem of reducing the store queue
bandwidth and appropriately changing the load/store
queue implementation. With this technique, we reduce
the search bandwidth demand on the store queue by 72%
on average for SPEC2K benchmarks.

• Reducing the search bandwidth demand on the load
queue: Our novelty is in observing that out-of-order-
issued loads are only a few in number and in proposing
the load buffer. With this technique, we reduce the
search bandwidth demand on the load queue by 76% on
average for SPEC2K benchmarks.

• Increasing the load/store queue capacity:We segment
the load/store queue into multiple smaller queues and
connect them in a chain. The idea of segmentation is not
new—e.g., [4] [8] segment the issue queue. While [8]
treats the segments as a hierarchy by moving instruc-
tions from slow to fast segments, and [4] treats the seg-
ments as discrete units of power dissipation, our novelty
is that we treat the segments as a pipeline. Such pipelin-
ing essentially makes our load/store queue a variable-
latency structure, a design point not explored before.

Using the SPEC2K benchmarks, we show that a load/
store queue using our techniques needs only one port to out-

perform a two-ported, conventional load/store queue. Co
pared to the same base case, segmentation in isola
achieves speedups of 5% for integer benchmarks and 1
for floating point benchmarks. A one-ported load/store que
using all our techniques improves performance on average
6% and 23%, and up to 15% and 59% for integer and flo
ing-point benchmarks, respectively, over a two-ported co
ventional load/store queue.

This paper is organized as follows. In Section 2 w
introduce two techniques to reduce the search bandwi
demand. In Section 3 we discuss the segmentation of
load/store queue and its impact on bandwidth and laten
We present and analyze the results of these three techniq
in Section 4. Finally, we conclude in Section 5.

2 Reducing Search Bandwidth Demand

A modern processor performs three important search
on the load/store queue which is implemented as two se
rate queues. Figure 1 shows these searches in the load/s
queue. First, when a load executes, it searches thestore
queueto compare its load address to the addresses of
stores. If there is a match with an earlier store, then the lo
obtains its value from the store queue and ignores the va
from the cache. Second, when a store has a valid addres
searches theload queueto compare its store address to th
addresses of all loads. If the address matches with a youn
speculatively-serviced load, thispremature loadand all sub-
sequent instructions are squashed and fetched again (st
load order violation). Third, when a load executes, it search
the load queue to compare its address to the addresses o
loads, in some processors ([3, 10]). If the address matc
with a younger out-of-order-issued load, this load and a
subsequent instructions are squashed and fetched a
(load-load order violation).

2.1 Reducing Store Queue Search: Store-Load
Pair Predictor

As mentioned above, a load needs to search the st
queue to obtain the latest store value. While [6] shows th
store-load order violations are rare, we observe that not o
are the violations rare, but a majority of stores and loads
not even access the same address. Consequently, most o

Figure 1: Searches in the ld/st queue.

store A

load D

load B
store C

Store queue Load queue

Search for the latest store value
Search for a store-load order violation
Search for a load-load order violation

by load D

by store A

by load B

ad
i-
re

ess.
ts.
va-
his
o

to
le

ore
y-
ter
the

set
e
ch
in
nter

y
lid
ibil-

in
ST
on
nt
d
to

r
ad

ore
,

to
or
c-

e-
e
re
re

te
g
tly

r
n

time the search fails, and the load ends up using the value
from the cache hierarchy. Our study confirms that only about
14% of searches find a matching store. If we can tell ahead of
time that a load will not find any matching store, we will
avoid performing useless store queue searches. Thus, we can
reduce the search bandwidth in the store queue by 86% in the
ideal case.

The store-set study shows that the store-load order viola-
tion is highly predictable by using a reasonably simple pre-
dictor [2]. We extend the store-set predictor to predict the
matches between loads and stores. We call our scheme the
store-load pair predictor. A load will search the store queue
only when the store-load pair predictor predicts that there is a
potentially-dependent store in the queue and tells the load to
obtain its value from the store queue. Otherwise, the load
simply obtains its value from the cache hierarchy without
searching the store queue.

While the store-set predictor detects only those store-
load pairs that cause dependence violations, our store-load
pair predictor detectsall matching pairs of loads and stores
regardless of whether they cause violations. Figure 2 illus-
trates this point. The store-set predictor will need to detect
only the store0-load1 pair, while our store-load pair predictor
will detect both the store0-load1 pair and the store0-load2

pair.
In the case of a misprediction of a store-load pair under

our predictor, the load will not search the store queue and
instead will use a stale value from the cache, without know-
ing that there is a matching store in the store queue. There-
fore it is up to the store to detect this problem. The store must
handle two cases: the load is issued either before (e.g., load1)
or after (e.g., load2) the store. The store detects the first case
when it executes and searches the load queue for premature
loads. However, the store cannot detect the second case
because the load has not been issued when the store searches
the load queue.

To handle this conditionwithout increasing the search
bandwidth, we change the timing for the detection of the
store-load order violation; now, a store searches the load
queue for a matching load when the store commits (writes to
the cache) and removes the entry from the store queue, not
when the store executes. Thus, all loads with stale or prema-
ture values will be detected when the store commits. This
change further reduces the number of stores to search the
load queue because the number of stores committed is signif-
icantly less than the number of stores executed. While this
change does not incur more searches, and hence higher band-

width, this change does increase the penalty of store-lo
order violations and store-load pair mispredictions. Prev
ously, a store-load order violation was detected by the sto
when the store executed and computed the effective addr
Now, the store cannot detect the hazards until it commi
Therefore, our store-load pair prediction must be conser
tive enough to avoid the performance degradation due to t
extra misprediction penalty; however, it should not be to
conservative to kill all the opportunity for reducing the
search bandwidth demand on the store queue.

2.1.1 Implementing the Store-Load Pair Predictor

The store-load pair predictor uses structures similar
the store-set predictor, including the Store Set ID Tab
(SSIT) and the Last Fetched Store Table (LFST). Each st
set is a collection of a load and one or more potentiall
matching stores. The SSIT is indexed by the program coun
and maintains the store-sets using a tag for each load and
stores in its store-set. The LFST is indexed by the store-
identifier obtained from the SSIT entry and maintains th
information about the most-recently fetched store for ea
store-set [2]. While the store-set’s LFST has a valid bit
each entry, the store-load pair predictor uses an extra cou
in each LFST entry instead of the valid bit.

In the store-set predictor, the valid bit of an LFST entr
is set when a store relevant to the entry is fetched. The va
bit is reset when the store issues, because there is no poss
ity for the store to violate store-load order after that point
time. When a load is fetched, it accesses the SSID and LF
to determine whether the load is potentially dependent
any store in flight. A load that is predicted to be depende
monitors the valid bit of the LFST entry relevant to the loa
when it is ready to issue. If the valid bit is set, the load has
wait until the valid bit is cleared.

A single valid bit is not sufficient for the store-load pai
predictor. As mentioned earlier, a store searches the lo
queue to detect store-load order violations when the st
commits. From the store-load pair predictor’s point of view
the LFST entry is valid from the time the store is fetched
the time the store commits. As a result, the time interval f
the LFST entry to be valid from the store-load pair predi
tor’s point of view—from fetch to commit—is much longer
than that from the store-set predictor’s point of view—from
fetch to issue.

This longer time interval causes the store-load pair pr
dictor to have a higher probability of encountering multipl
in-flight stores with the same program counter. If there a
multiple stores with the same program counter and we we
to use a single valid bit, then the first store would invalida
the LFST entry at commit without waiting for the remainin
in-flight stores. Subsequent loads would assume incorrec
that there are no more dependent stores in the pipeline.

To solve this problem, we introduce a multi-bit counte
for each LFST entry. By using the multi-bit counter, we ca

Figure 2: Store-set vs. store-load pair prediction.

store0 A
load1 A

load2 A

store0 A

load1 A

load2 A

Program order Issue order

store-set

store-load
pair

K-
ur
to

lid

ce.
nd
ld

am
ad
ro-
der.
s in
m-
tore

ng
is

the
ged

ter
ill

if
sor,
ture
s.
y

on
ro-
e
ns
the
is
correctly infer when all of the in-flight stores commit without
being affected by just one of the stores’ retirement.

The store-load pair predictor’s counter increments when
a store is fetched and decrements when the store commits.
When a load that is predicted to be dependent is ready to
issue, it accesses both the valid bit and the counter. If the
counter is larger than zero, the load is predicted as being
dependent on the stores in flight, and the load must search the
store queue.

2.1.2 Low Cost Implementation

In the simplest design, the store-set predictor and store-
load pair predictor may be implemented separately. However,
because the two predictors use identical structures, we com-
bine the two so that the predictors share the same physical
tables (i.e., SSIT and LFST). This strategy lowers the imple-
mentation cost. The only change is that each LFST entry
includes both a valid bit and a counter. From the store-load
pair predictor’s point of view, the LFST entry is valid when
the counter is non-zero; whereas from the store-set predic-
tor’s point of view, the same LFST entry is valid when the
valid bit is set. Therefore, the same LFST entry has two
meanings of validity (or invalidity) depending on which pre-
dictor is accessing the entry.

In the event of recovery from misspeculations such as
branch mispredictions or memory-dependence violations, the
SSIT and LFST do not need to be modified during roll-back.
However, squashed stores should roll back each counter
properly for accuracy of future prediction. To model this
extra work in recovery, we charge an extra cycle to our
misprediction penalty. Our study shows that a three-bit
counter is large enough to achieve high prediction accuracy.

By definition, store-load pair prediction subsumes store-
set prediction. Therefore, only the store-load pair predictor
updates the prediction tables, causing two problems for store-
set prediction.

First, as shown in Figure 2, the store-load pair predictor
has to keep the pairing information for not only the store0-
load1 pair but also the store0-load2 pair in the prediction
table. However, from the store-set predictor’s point of view,
keeping the store0-load2 pair in the prediction table is not
necessary and would reduce the effective size of the table.
Such unnecessary store-load pairs may increase aliasing in

the store-set prediction, leading to false alarms. We use a 4
entry SSIT as was used in the previous work [2], and o
experiments show that a 4K-entry table is large enough
absorb this extra pressure on the SSIT.

Second, having the unnecessary store0-load2 pair in the
prediction table causes the store-set predictor to find a va
entry for load2, even though load2 has not incurred any store-
load order violation. However, store0 issues and invalidates
the entry of the store0-load2 pair before load2 issues. There-
fore, load2 issues without waiting for store0. Hence, such
unnecessary store-load pairs do not affect performan
Figure 3 summarizes the duties of the store-set predictor a
store-load pair predictor in the pipeline. Statements in bo
are performed by the store-load pair predictor.

2.2 Reducing Load Queue Search: Load Buffer

Modern processors send stores to the cache in progr
order. However, loads are handled differently. Because lo
values are needed for the computation to proceed, most p
cessors allow loads to access the cache out of program or
Servicing loads out of order causes correctness problem
the context of memory consistency models for shared-me
ory multiprocessors. Some processors use the load/s
queue to avoid the correctness problems.

Specifically, there is a special case of load-load orderi
when the loads go to the same address. If this ordering
relaxed, subtle correctness problems arise: if two loads to
same address are issued out of order and the value is chan
by another processor in between the two loads [1], the la
load will obtain an earlier value whereas the earlier load w
obtain a later value. Note that this problem cannot happen
the value is changed by a store from the same proces
because the store would detect the later load to be prema
and squash the load along with all subsequent instruction

This load-load ordering problem may be handled b
either software or hardware. We explain the software opti
first. If the consistency model supported is a relaxed one, p
cessors provide a “memory barrier” instruction to allow th
programmer to enforce ordering among memory operatio
wherever needed. The details depend on the specifics of
particular relaxed model implemented. The programmer
expected to use the instruction to prevent the problem.

Figure 3: Combining the store-load pair predictor with the store-set predictor.

store-set only

store-set
+

store-load pair

store

load

store

load

Fetch Issue Commit Commit stores
Valid = true;

access SSID&LFST

access SSID&LFST

Valid = false;

read Valid

Valid = false;

read Valid

Valid = true;
Counter++;

read Counter

update SSIDupdate LFST

update LFST

update SSID

update SSID

update SSID

Counter--;

an

er

er.
it
r-
s

ds
nly
e

is

d
s
try.
xt
ts
s
e

LP

he

ach
fer
he
and
li-

t-
However, extensive use of memory barriers is an overkill
and hurts performance. To spare the programmer from using
too many memory barriers, some processors provide hard-
ware support to prevent this problem by guaranteeing load-
load ordering for loads to the same address (.e.g., Alpha [3]).
This guarantee is typically provided by using one of two
schemes. (1)Any load violating load-load ordering is
squashed regardless of whether an intervening store (from
another processor) occurs or not. (2) Squash is doneonly
whenan intervening store is detected.

In the first scheme, the load queue is searched byevery
load to ensure that no later load to the same address executes
out of order and obtains an old value. When a load executes,
it searches the load queue to compare its address to the
addresses of all loads. If there is a match with a younger load
issued out of program order, then the out-of-order-issued
load and subsequent instructions are squashed and fetched
again. While this search reduces the burden on programmers
and improves performance, the search bandwidth pressure on
the load queue greatly increases. Therefore, we target these
searches and optimize them.

The second scheme does not significantly increase the
load queue search bandwidth. The invalidation signal from
the other processor’s store is used to detect ordering viola-
tions. For example, the MIPS R10000 uses the invalidation
signal to find all outstanding loads (including premature
loads) when a shared value is changed by another processor
[9]. The invalidation searches the load queue and ifany
matching outstanding load (premature or otherwise) is found,
the load and the subsequent instructions are squashed. The
fact that the Alpha supports a relaxed consistency model and
the MIPS supports sequential consistency does not matter
here; load-load ordering causes problems in all models.
Because invalidations are significantly less frequent than out-
of-order loads, and because invalidations may be filtered fur-
ther by L2 or L3 caches, the load queue searches caused by
invalidations may not need any special bandwidth-reduction
technique. Therefore, we do not address this invalidation-
caused search bandwidth.

To maximize performance, some recently-announced
processors (e.g., POWER4 [10]) implement a combination of
the two schemes. However, the POWER4 also searches the
load queue to identify out-of-order-issued loads. Because the
industry trend is in the direction of performing load queue
searches, we optimize these searches.

To that end, we observe that an issued load needs to
search only those loads that were issued out of order before
previous non-issued loads. Across the SPEC2K benchmarks,
the average number of out-of-order-issued loads is small (<
3). We use this observation to reduce the search bandwidth
demand on the load queue. We employ an extra buffer with
fewer than four entries, called theload buffer, to keep only
out-of-order-issued loads separate from the load queue.
When a load executes, instead of searching the entire load

queue, it searches the load buffer, which is much smaller th
the load queue.

Figure 4 shows the basic idea of how the load buff
works. Whenload E and load G issue, there are older non-
issued loads, namelyload C and load D. Therefore,load E
and load G are out-of-order-issued loads. Whenload E and
load G execute, they put their addresses in the load buff
When load E does not have any older non-issued load,
invalidates its relevant load buffer entry. To find out-of-orde
issued loads,load E searches the load buffer and compare
its address against the address ofload G. When load C
issues, there is no older non-issued load. Therefore,load C
does not put itself in the load buffer. Whenload C executes
later, it searches the load buffer for out-of-order-issued loa
and compares its address against the load buffer (i.e., o
load E and load G) instead of comparing against the entir
load queue.

2.2.1 Implementing the Load Buffer

The key implementation concern for the load buffer
how to allocate and access entries in the load bufferwithout
accessingthe load queue. We employ the Non-Issued Loa
Pointer (NILP) and Load Issue Vector (LIV) to handle thi
concern. The NILP points to the oldest non-issued load en
Top points to the oldest load entry, and Tail points to the ne
available entry for a new-coming load. The pointer star
from Top and cannot go beyond Tail. The NILP move
toward Tail when the load to which it points issues, and th
pointer skips over loads that are already issued, so that NI
always points to the oldest non-issued load.

To avoid accessing the load queue for updating t
NILP, we employ the Load Issue Vector (LIV). The LIV has
the same number of entries as the load queue itself. In e
entry, there is a single issue bit and a pointer to a load buf
entry. Each issue bit in the LIV corresponds to an entry in t
load queue. The bit is set when the relevant load issues,
the bit is reset when the relevant load commits or is inva
dated due to misspeculation.

When a load issues, it checks where the NILP is poin
ing. If the NILP is pointing to the LIV entry for the load, it

Figure 4: Load buffer implementation.

Load queue Load buffer

program-order issued load
non-issued load

P
ro

gr
am

 o
rd

er Top

Tail

NILP

load A
load B
load C
load D
load E
load F
load G

out-of-order-issued load

load E
load G

1
1
0
0
1
0
1

LIV

0
0

ct a
e
ent

g-
iple
les
hit
es-
the
le
m.
d-
d.
e
any

the
er-
ns

ch
he
ous
hes

the
can
nal

ue,
-

d

ct a

ad-

ed
ues
means that the load is the oldest non-issued load. Hence, this
load searches the load buffer to detect the load-load order
violation as soon as it has a valid address. Also, the load sets
its LIV bit, which triggers the NILP to move toward Tail. The
NILP skips over any entry whose issue bit is already set, so
that the NILP will always stop at an LIV entry whose issue
bit is cleared. If the NILP is not pointing to the LIV entry for
the load, then the load is not the oldest load among non-
issued instructions. For this case, if there is an available entry
in the load buffer, the load copies its address to the load
buffer entry as soon as it has a valid address. The pointer of
the LIV entry should point to this newly-allocated load buffer
entry and the LIV bit is set.

If the load buffer is full, the load stalls until there is an
available entry in the load buffer or until the NILP points to
the LIV entry for this load, which means that this load can be
issued in program order and elides the load buffer. Such a
stall mechanism is similar to what the store-set predictor uses
to stall a load that has non-issued dependent stores in the
pipeline.

Load buffer entries can be released and reused in the fol-
lowing way. As the NILP moves toward Tail, if the NILP
encounters an LIV entry with an issue bit that is already set,
then the load corresponding to this LIV entry was issued out
of order, and the load occupies an entry in the load buffer.
The load buffer entry that is pointed to by the LIV entry can
now be invalidated, because the corresponding load does not
have any older non-issued load and cannot cause a load-load
order violation after that point in time. Then, this load buffer
entry can be used by later out-of-order-issued loads. At this
time, the load relevant to the LIV entry has to search the load
buffer for an out-of-order-issued load.

3 Increasing Queue Capacity

We apply segmentation to increase the size of the load/
store queue by concatenating multiple smaller load/store
queues serially. We allocate a load/store queue entry for each
memory instruction within a segment. If a segment runs out
of entries to allocate, we move on to the next segment.
Figure 5 illustrates the basic idea of the segmented load/store
queue. For brevity, we show load and store instructions
together in the same queue. We call the segment with the old-
est memory instruction thehead segmentand the segment
with the youngest memory instruction thetail segmentin this
study.

A memory instruction first performs a memory depen-
dence search on the segment corresponding to its load/store
queue entry, and the search extends to other segments as
needed. As shown in Figure 5,load C (or store G) searches
its own segment first. If there is no match within the segment,
the search continues to other segments. If the goal of the
search is to find the most recent value from a matched store,
the search goes to the previous segment and continues
searching toward the head segment until it finds a match or

completes the search. If the goal of the search is to dete
load-load order violation or a store-load order violation, th
search continues to the next segment toward the tail segm
until it detects a violation or completes the search.

However, such multiple searches through different se
ments cause two design challenges. First, searching mult
segments to find the latest store value requires extra cyc
that impact load hit latency. This searching also makes the
latency variable. For high performance, superscalar proc
sors speculatively schedule instructions dependent on
load with the assumption that the load is a cache hit. Variab
hit latencies may complicate such a scheduling mechanis
To avoid complicating the scheduler, we forego early sche
uling for the instructions that are dependent on the loa
However, there is one important exception to this rule: if th
load is in the head segment, it does not need to search
previous segment because no previous segment exists, so
hit latency for the load is constant. Therefore, we keep p
forming early scheduling for the load-dependent instructio
if the load is from the head segment.

Second, unlike the conventional load/store queue whi
limits the total number of searches to the number of ports, t
segmented load/store queue may have more simultane
searches than the number of ports. As long as such searc
are distributed among the segments without any conflicts,
segmented load/store queue can pipeline searches and
handle more simultaneous searches than the conventio
load/store queue.

For example, assuming a two-ported load/store que
the conventional queue allows any combination of two mem
ory accessesin total at one cycle, whereas the segmente
queue allows any combination of two memory accessesfor
each segmentat one cycle. In Figure 5,store Candstore Eof
segment #1 are allowed to search the load queue to dete
store-load order violation at t1. Meanwhile,load D and load
F of segment #3 can search the load queue to detect a lo
load order violation in the same cycle.

3.1 Allocation

Strategies for allocation of a new entry in the segment
load/store queue allow a trade-off between the above iss

Figure 5: Memory disambiguation in the
segmented load/store queue.

lo
ad

 B

st
or

e
C

st
or

e
E

lo
ad

 C

lo
ad

 A

st
or

e
G

lo
ad

 D

lo
ad

 F

Head segment Tail segment
Program order

Segment #1 Segment #2 Segment #3

search to detect load-load order violation
search to detect store-load order violation

search to find the most recent store value

port
sig-
the
ore

f-
ra-
of
ted
of
ad/
try

of

ce
-
e

d
ch
the
ith
ch-
e.
of latency and bandwidth. We consider two such strategies.
One strategy isno-self-circular, which spreads out entries
across many segments, and the other isself-circular, which
compacts entries into only a few segments. Spreading out
entries provides higher aggregate bandwidth by using many
segments simultaneously, but it increases latency by having
to search more segments. Compaction has the opposite
effect.

The no-self-circular treats all segments as a single
queue, and allocation of a new entry uses a single head and
tail. Allocation moves linearly from one segment to the next
even if the current segment has free entries at the top. The
self-circulartreats the segmented load/store queue as ordered
segments with a head and a tail for each segment. In this
method, allocation of new entries is circular within each seg-
ment. Allocation moves to the next segment only if there are
no free entries at the top of the current segment. Thus, no-
self-circular spreads out allocation across many segments
while self-circular tends to restrict allocation to fewer seg-
ments.

3.2 Contention

Segmentation introduces a contention problem. Going
back to the example in Figure 5, there are two situations that
can cause port contention problems in cycle t2. store Cand
store E from segment #1 go to segment #2 to continue the
search for a store-load order violation at cycle t2. In one con-
tention situation, segment #2 may initiatestore Gto search
for a store-load order violation. Then the total number of
searches required in cycle t2 in segment #2 will exceed seg-
ment #2’s search bandwidth. This situation is easily solved
by delaying the commit of the store, because the store is not
in the pipeline anymore.

The other contention situation occurs if segment #2 ini-
tiatesload Candload Ato search for a load-load order viola-
tion while store Candstore Ereach segment #2 in cycle t2.
We cannot simply delay the searches because the loads are
already in the memory stage of the pipeline. Fortunately, this
situation can happen only when several conditions aresimul-
taneouslysatisfied: (1) more than one load is issued or a store
starts the search for a store-load order violation from a seg-
ment #A at cycle ta, and more than one load is issued out of
order from a segment #B at cycle tb, (2) segment #A is closer
to the head segment than segment #B, (3) the time ta is earlier
than the time tb, and (4) the distance between two segments is
the same as the time difference between ta and tb. However,
we found that the average number of out-of-order-issued load
instructions in the pipeline is small (< 3) (Section 4.1.2).
Therefore, the probability of all four conditions being satis-
fied at the same time is low.

If contention does occur, we squashload Cand load A,
along with all instructions between the issue stage and the
execute stage, similar to a flush due to a load miss in conven-
tional pipelines. Alternatively, we can stall the pipeline

between the issue stage and the memory stage until the
contention is resolved. Because our previous techniques
nificantly reduce the load/store queue search bandwidth,
port contention rarely occurs when the segmented load/st
queue is combined with the techniques.

4 Results

We have built a cycle-accurate simulator of an out-o
order superscalar pipeline. Table 1 shows the base configu
tion for the experiments. Because we vary the number
load/store queue ports from 1 to 4, we assume a four-por
d-cache so that the d-cache does not limit the number
requests to the load/store queue. Because we vary the lo
store queue size from 32 to 128, we assume a 256-en
active list so that the active list does not limit the number
in-flight memory instructions.

We use the the SPEC2K applications with the referen
input set. We skip the first 3 billion instructions and then sim
ulate a total of 500 million instructions. Table 2 shows th
applications we use in this study and their base IPCs.

In Section 4.1, we examine the effect of the store-loa
pair predictor and the load buffer in isolation on the sear
bandwidth and performance. In Section 4.2, we examine
impact of increasing the capacity of the load/store queue w
segmentation. In Section 4.3, we combine the three te
niques and examine their impact on processor performanc

Table 1: System configuration parameters.

ROB size 256 entries

Issue queue 64 entries

Issue width 8

Functional units 8 integer, 8 pipelined floating-point

Register file 356 INT/ 356 FP

2-port L1 i-cache &
4-port L1 d-cache

64K 2-way, pipelined 2-cycle hit,
32-byte block

L2 cache 2M 8-way, pipelined 12-cycle hit,
64-byte block

Memory 150 cycles

Store-set predictor with
store-load pair

4K-entry SSIT,
128-entry LFST

Branch predictor
Mispredict penalty

hybrid GAg & PAg 4K-entries each,
14 cycles

Table 2: Applications and their base IPCs

INT INT FP FP

bzip 2.5 perl 3.0 ammp 1.2 mgrid 2.2

gcc 2.1 twolf 1.5 applu 2.6 sixtrack 2.9

gzip 2.0 vortex 2.2 art 0.3 swim 1.0

mcf 0.3 vpr 1.3 equake 1.1 wupwise 2.9

parser 1.9 mesa 3.3

g a

re-
se
res-
rch
or
or
and
by
se

of
re 6.
ch

dth
tore
e,
in

en

h it
%.

es
d
er
he
of

e
as

re-
4.1 Reducing Search Bandwidth Demand

In this section, we present the results of the store-load
pair predictor and the load buffer separately. Then we present
the results of combining these two techniques.

4.1.1 Reducing Store Queue Search

In this subsection, we evaluate our technique for reduc-
ing the search bandwidth demand on the store queue. We
apply the store-load pair predictor to predict whether a load
is dependent on any earlier store. A load that is predicted to
be independent does not search the store queue, thus reduc-
ing the search bandwidth demand on the store queue. In
Figure 6, the Y axis shows the search bandwidth demands on
the store queue of three different predictors (perfect, aggres-
sive and store-load pair) normalized to the search bandwidth
of the base case. The X axis shows our benchmarks and the
average of the integer and the floating-point programs sepa-
rately. The base case is a two-ported conventional load/store
queue in which all loads search the store queue. We choose
two ports because that is a commonly-used design point in
current high-performance processors.

The perfect predictor flags a search for only those loads
that are dependent on an in-flight store. The aggressive pre-
dictor uses unrealistic hardware to emulate an alias-free ver-
sion of our store-load pair predictor — i.e., store sets which
may conflict in our tables do not do so in the aggressive pre-
dictor. Consequently, with the aggressive predictor, a load
avoids searching the store queue as much as possible. In
comparison, because our store-load pair predictor uses realis-
tic hardware, as described in Section 2.1, it incurs aliasing
(only as much as the original store-set predictor). Therefore,

our predictor ends up being more conservative in predictin
load to be independent.

Figure 6 shows that the store queue with a perfect p
dictor (left bar) reduces the search bandwidth of the ba
case by 86% (demand is 14% of the base case). The agg
sive predictor (middle bar) manages to reduce the sea
bandwidth by 81% for integer benchmarks, and by 84% f
floating-point benchmarks. Our store-load pair predict
(right bar) manages to reduce the search bandwidth dem
on the store queue by 67% for integer benchmarks and
76% for floating-point benchmarks compared to the ba
case.

In Figure 7, the Y axis shows the performance benefit
the predictors compared to the same base case as Figu
We see that the perfect predictor does not achieve mu
improvement, even though it reduces the search bandwi
demand by 86%. Recall that the base case uses two s
queue ports, which provide sufficient bandwidth. Therefor
reducing the demand does not translate to performance
this figure. The benefit of reducing the demand will be se
in Section 4.1.3, where we show a 1-ported store queue.

The aggressive predictor performsworse than the base
case in a few cases by as much as 19%, even thoug
reduces the search bandwidth demand by more than 80
The lack of aliasing in the aggressive predictor also impli
lack of constructive interference (a similar effect is reporte
in [2]). Consequently, the aggressive predictor is overly eag
to predict a load to be independent of earlier stores. T
resulting high misprediction rate causes a large number
squashes that degrade performance, especially forvortexand
wupwise.Our store-load pair predictor is more conservativ
and does not incur misprediction squashes as frequently
the aggressive predictor. As a result, our store-load pair p

Figure 6: Search bandwidth reduction in the store queue by using different predictors.

Se
ar

ch
 d

em
an

d
re

la
tiv

e
to

a
co

nv
en

tio
na

l s
to

re
 q

ue
ue

Perfect predictor Aggressive predictor Our store-load pair predictor

ap
plumcf

pa
rse

r
vprpe

rl
vor

tex
eq

ua
ke

mesa mgri
d

six
tra

ck

wup
wisegccbzi

p
gzi

p

Fp.
Avg.

sw
im

Int
. A

vg.
twolf

am
mp

art

0.2

0.0

0.4

0.8

0.6

1.0

0.2

0.0

0.4

0.8

0.6

1.0

Figure 7: Performance benefit from the search bandwidth reduction in the store queue.

Perfect predictor

Our store-load pair predictor

-0.2

-0.1

0.0

0.1

Aggressive predictor 0 00

0 0 0

00 0 00

ap
plumcf

pa
rse

r
vprpe

rl
vor

tex
eq

ua
ke

mesa mgri
d

six
tra

ck

wup
wisegccbzi

p
gzi

p

Fp.
Avg.

sw
im

Int
. A

vg.
twolf

am
mp

art

Sp
ee

du
p

ag
ai

ns
t

a
co

nv
en

tio
na

l s
to

re
 q

ue
ue

-0.2

-0.1

0.0

0.1

by
of

d-
er
re
the
on
er

la-

r-
ow
2).
ch-
ds
we

he
e
di-
to

ns
er
(1)
ad
the

ut
ad

ore
e.
dictor does not incur performance degradation invortexand
wupwise. Our store-load pair predictor performs comparably
to the perfect predictor, and it outperforms the base case on
average by 2% and up to 7% for both integer and floating-
point benchmarks.

Table 3 shows the accuracy of our store-load pair predic-
tion. The misprediction causes pipeline squashes or unneces-
sary searches in the store queue. The results show that our
predictor successfully avoids squashes without sacrificing the
opportunity to save bandwidth.

4.1.2 Reducing Load Queue Search

In this subsection, we evaluate our technique for reduc-
ing the search bandwidth demand on the load queue. The
load buffer separates the search for detecting a load-load
order violation from the load queue. Thus, the load queue
only needs to support associative searches by stores to detect
store-load order violations. Therefore, we expect the load
buffer to reduce substantially the search bandwidth demand
on the load queue.

In Figure 8, the Y axis shows the search bandwidth
reduction in the load queue by using a load buffer with two
entries. The base case is a conventional load queue without
the load buffer. In the figure, the search bandwidth in the load
queue with the load buffer is normalized to the search band-
width in the load queue of the base case. The load buffer
reduces the search bandwidth demand on the load queue by
an average of 74% for integer benchmarks and 77% for float-
ing-point benchmarks. Inmgrid, the load buffer achieves the

most benefit by reducing the search bandwidth demand
96%. The reason for this large reduction is that 51%
dynamic instructions inmgrid are loads and just 2% are
stores.Vortexshows the least reduction in the search ban
width demand. This result is not a surprise when we consid
that just 18% of dynamic instructions are loads and 23% a
stores. Therefore, even though the load buffer removes
searches required for detecting a load-load order violati
from the queue, the load queue still has a significant numb
of searches from stores for detecting store-load order vio
tions invortex.

Table 4 shows the average number of out-of-orde
issued loads in flight every cycle. This average indicates h
large the load buffer needs to be (as mentioned in Section
Even though these numbers are rather small across ben
marks, the performance impact of out-of-order-issued loa
is significant. We can see the impact of these loads when
look at the first two bars in Figure 9.

Figure 9 illustrates the performance benefit of using t
load buffer. An N-entry load buffer allows up to N loads to b
issued out of program order. We vary N as 1,2 and 4. In ad
tion, we also show two designs that issue loads in order,
justify out-of-order issue of loads. Note that in these desig
loads are in order only with respect to each other. In-ord
issue of loads has two different impacts on performance:
the ILP reduces, but (2) the bandwidth pressure on the lo
queue also reduces (because there is no need to search
load queue for load-load order violations). Thein-order-
always-search load queue (the leftmost bar) fruitlessly
searches the load queue to incur not only the loss of ILP b
also the bandwidth pressure of an out-of-order issue lo
queue. On the other hand, thezero-entryload buffer (the next
bar in white) does not search the load queue and theref
incurs only the loss of ILP without the bandwidth pressur

Table 3: Accuracy of the store-load pair predictor.

INT Mispred. Squash FP Mispred. Squash

bzip 17.3% 7.3x10-5 ammp 4.3% 3.9x10-4

gcc 27.8% 8.4x10-4 applu 22.2% 8.0x10-5

gzip 9.0% 6.7x10-5 art 0.0% 3.6x10-5

mcf 8.1% 1.1x10-4 equake 0.9% 1.6x10-5

parser 12.3% 2.1x10-4 mesa 15.5% 2.4x10-4

perl 15.5% 7.8x10-5 mgrid 8.6% 7.6x10-6

twolf 5.0% 2.8x10-5 sixtrack 4.3% 1.3x10-4

vortex 19.1% 2.2x10-3 swim 0.0% 1.4x10-5

vpr 22.3% 1.2x10-4 wupwise 24.7% 6.6x10-5

Figure 8: Search bandwidth reduction in the load queue by using the load buffer.
ap

plumcf
pa

rse
r

vp
r

pe
rl

vo
rte

x
eq

ua
ke

mes
a

mgri
d

six
tra

ck

wup
wisegc

c
bz

ip gz
ip

Fp.
Avg

.

sw
im

Int
. A

vg
.

twolf
am

mp
art

0.2

0.0

0.4

0.8

0.6

1.0

Se
ar

ch
 d

em
an

d
re

la
tiv

e
to

a
co

nv
en

tio
na

l l
oa

d
qu

eu
e

0.2

0.0

0.4

0.8

0.6

1.0

Table 4: Average number of loads issued out of
program order.

INT INT FP FP

bzip 3.4 perl 3.2 ammp 1.2 mgrid 2.9

gcc 0.3 twolf 1.0 applu 1.5 sixtrack 1.0

gzip 0.8 vortex 1.9 art 3.4 swim 0.9

mcf 0.2 vpr 1.5 equake 2.5 wupwise 2.3

parser 0.8 mesa 0.9

ys
e is
the
th
and
-

h is

ues
d/

e
the
as a
ent
in

ess
t we
nsate
o-
ach

or

ss
a-

for
int
e

The base case is a conventional load queue without the load
buffer.

From the figure, the first two bars show that in-order
issue of loads performs poorly. The zero-entry load buffer’s
bandwidth-pressure advantage allows it to perform better
than in-order-always-issue. However, the advantage is not
enough to overcome the ILP loss of in-order issue. We also
see that by allowing only one load to be issued out of order,
we can realize the significant benefit of the load buffer. A
four-entry load buffer is close to an infinite load buffer in
terms of performance, but we can see most of the benefit with
just two entries. The figure shows that the load/store queue
with a two-entry load buffer improves performance by an
average of 3% and 7% with a maximum of 12% and 18% for
integer and floating-point benchmarks, respectively.

4.1.3 Combining the Two Reduction Techniques

In this subsection, we combine the store-load pair pre-
dictor with the load buffer to reduce the search bandwidth
demand on both the store queue and the load queue.
Figure 10 shows the performance of a load/store queue with
our two reduction techniques relative to the base case, which
is a two-ported conventional load/store queue.

From left to right, the bars represent a one-ported con-
ventional queue, a one-ported queue with our techniques, a
two-ported queue with our techniques, and a four-ported con-
ventional queue. The leftmost bar represents the extreme
case of low design complexity and low performance, and the
rightmost bar represents the extreme case of high design
complexity and high performance.

The figure shows that the performance of the conven-
tional one-ported load/store queue drops by 24% from the

conventional two-ported load/store queue. This result sa
that without our techniques, a one-ported load/store queu
not an option because of its poor performance. However,
one-ported load/store queue with our search bandwid
reduction techniques achieves an average speedup of 2%
7% with a maximum of 7% and 25% for integer and floating
point benchmarks, respectively, over the base case, whic
the conventionaltwo-ported load/store queue. We can also
see that the two-ported load/store queue with our techniq
performs comparably to the conventional four-ported loa
store queue.

4.2 Increasing Queue Capacity

In this section, we show the result of segmenting th
load/store queue to increase its capacity. Figure 11 shows
effect of the segmented load/store queue. The base case h
32-entry load queue and a 32-entry store queue. We segm
the load/store queue into four segments with 28 entries
each segment for a total size of 112. We keep the acc
latency of each segment the same as the base case, bu
make each segment smaller than the base case to compe
for any potential overhead that segmentation would intr
duce. A search within one segment takes one cycle, and e
additional segment takes an extra cycle.

In the figure, we show the results of our two methods f
allocation, no-self-circular and self-circular. Recall from
Section 3.1 that no-self-circular spreads out allocation acro
many segments while self-circular tends to compact alloc
tion within fewer segments.

On average, the no-self-circular shows no speedup
integer benchmarks and 16% speedup for floating-po
benchmarks. Five (bzip, gcc, gzip, parser, and twolf) of th

Figure 9: Performance benefit from the search bandwidth reduction in the load queue.
applu

mcf
parse

r
vpr

perl
vorte

x
equake

mesa
mgrid

six
tra

ck

wupwisegccbzip gzip

Fp. A
vg.

sw
im

Int. A
vg.

twolf
ammp

art

0-entry (in-order) 1-entry 2-entry 4-entryIn-order-always-search

-0.2

-0.3

-0.1

0.1

0.0

0.2

Sp
ee

du
p

ag
ai

ns
t

a
co

nv
en

tio
na

l l
oa

d
qu

eu
e

0

0 00

-0.2

-0.3

-0.1

0.1

0.0

0.2

Figure 10: Performance benefit from combining the two techniques to reduce the search bandwidth.

Sp
ee

du
p

ag
ai

ns
t

a
2-

po
rte

d
co

nv
en

tio
na

l L
SQ 1port 4port2port+techniques

00

000

ap
plumcf

pa
rse

r
vprpe

rl
vor

tex
eq

ua
ke

mesa mgri
d

six
tra

ck

wup
wisegccbzi

p
gzi

p

Fp.
Avg.

sw
im

Int
. A

vg.
twolf

am
mp

art

1port+techniques

0

-0.6

-0.8

0.2

0.0

0.4

-0.6

-0.8

0.2

0.0

0.4

the
int
due
it
eir

re
to

the
ces-
ale
the
2

oth
lo-
er-

ues
p on

e-
or-
9%
er
nine integer benchmarks actually perform worse than the
base case. We explain this poor performance in Table 5 by
showing the average number of entries needed in the load/
store queue. We see that in the five benchmarks (shaded) the
average number of entries needed in these benchmarks can fit
within one segment. However, no-self-circular spreads their
entries across two segments, incurring extra search overhead
that does not exist in the base case. Therefore, no-self-circu-
lar does not perform as well as the base case when there is
less demand for higher capacity of the load/store queue. On
the other hand, even thoughvortexdoes not need a large load
queue, its high demand on the store queue explains its
speedup using the segmented load/store queue.

The self-circular achieves an average speedup of 5% and
19% with a maximum speedup of 15% and 33% for integer
and floating-point benchmarks, respectively. By restricting
the entries within one segment as much as possible, self-cir-
cular reduces the possibility of spanning load/store queue
entries across two segments. Therefore, self-circular man-
ages to outperform no-self-circular. Because segmentation
provides higher bandwidth by using many segments simulta-
neously, self-circular outperforms the unrealistic 128-entry
unsegmented load/store queue as well (Section 3).

Table 6 shows the distribution of the number of searched
segments by loads for the latest stores using the self-circular.
For example, inmcf,84.4% of the load accesses search only
one segment, 9.9% search two segments, 0.3% search three
segments, and 5.4% search all four segments to find a latest
store value from the store queue. For integer benchmarks,

90% of the load accesses search only one segment, while
same is true for 79% of the load accesses for floating-po
benchmarks. This table shows that the extra search cycle
to segmentation is not likely to hurt the average load h
latency (Section 3) because the majority of loads end th
searches within one or two segments.

4.3 Combining Search Bandwidth Reduction and
Higher Capacity

In this section, we combine the segmented load/sto
queue with the store-load pair predictor and the load buffer
see the overall benefit from these techniques. Apart from
base processor configuration, we also show a scaled pro
sor to see the benefit of our techniques in the future. To sc
the processor, we increase the issue width from 8 to 12,
issue queue size from 64 to 96, and the L1 hit latency from
to 3 cycles, while keeping the cache size the same. For b
processors, we use a two-entry load buffer, self-circular al
cation, and four 28-entry segments. Figure 12 shows the p
formance of theone-portedload/store queues with our three
techniques compared to atwo-portedconventional load/store
queue. The white bar shows the speed up of our techniq
on the base processor, and the dark bar shows the speed u
the scaled processor.

The figure shows that with today’s processor, the on
ported load/store queue with our techniques improves perf
mance on average by 6% and 23%, and up to 15% and 5
for integer and floating-point benchmarks, respectively, ov

Figure 11: Performance benefit from the segmentation of the load/store queue.

Sp
ee

du
p

ag
ai

ns
t

ap
plumcf

pa
rse

r
vprpe

rl
vor

tex
eq

ua
ke

mesa mgri
d

six
tra

ck

wup
wisegccbzi

p
gzi

p

Fp.
Avg.

sw
im

Int
. A

vg.
twolf

am
mp

arta
32

-e
nt

ry
 c

on
ve

nt
io

na
l L

SQ no self-circular, 4-segmented (28 entries/segment) LSQ
self-circular, 4-segmented (28 entries/segment) LSQ
128-entry un-segmented LSQ

0.0

-0.1

0.1

0.3

0.2

0.4

0.0

-0.1

0.1

0.3

0.2

0.4

Table 5: Average number of entries needed in the
load and store queues.

INT Benchmarks Avg.(ld/st) FP Benchmarks Avg.(ld/st)

bzip 16 / 6 ammp 65 / 28

gcc 7 / 6 applu 49 / 19

gzip 14 / 7 art 49 / 17

mcf 40 / 9 equake 72 / 15

parser 21 / 9 mesa 33 / 20

perl 34 / 20 mgrid 90 / 4

twolf 18 / 6 sixtrack 60 / 30

vortex 13 / 18 swim 70 / 21

vpr 41 / 15 wupwise 47 / 31

Table 6: Distribution of the number of searched
segments by loads for the latest stores.

Bench. 1 2 3 4 Bench. 1 2 3 4

bzip 97.8 1.4 0.0 0.8 ammp 74.0 13.8 0.3 11.9

gcc 98.0 1.5 0.0 0.6 applu 78.1 11.4 0.0 10.5

gzip 97.7 1.8 0.0 0.5 art 89.1 5.9 0.1 4.9

mcf 84.4 9.9 0.3 5.4 equake 75.3 13.9 0.1 10.7

parser 93.3 5.0 0.0 1.7 mesa 74.7 14.8 0.2 10.3

perl 81.5 13.5 0.0 5.0 mgrid 94.1 3.6 0.0 2.2

twolf 92.5 6.1 0.0 1.4 sixtrack 71.8 17.0 0.2 11.0

vortex 79.2 13.9 0.3 6.6 swim 81.3 9.6 0.0 9.1

vpr 84.0 13.9 0.0 2.1 wupwise 74.9 15.1 0.4 9.6

y-
er.
rd

ry
2,
e

ce

e
-

-
or

d
on

c-

in-
nce
m

d

the two-ported conventional load/store queue. As a processor
scales, there are more in-flight instructions in the pipeline,
hence there is more pressure on the load/store queue. With a
scaled system, we can see that our techniques further
improve performance, especially for floating-point bench-
marks. Floating-point benchmarks have more instruction-
level parallelism than integer benchmarks. Therefore, float-
ing-point benchmarks can utilize the extra hardware to over-
lap more instructions so that these programs put more
pressure on the load/store queue.

5 Conclusions

A modern load/store queue holds in-flight memory
instructions and supports simultaneous searches to honor
memory dependences and memory consistency models. In
this paper, we proposed three techniques to scale the load/
store queue; two of these techniques — the load-store pair
predictor and load buffer — reduce the search bandwidth
demand on the load/store queue, and the other technique —
segmentation — increases the capacity of the load/store
queue. Using SPEC2K benchmarks, we showed that our pre-
dictor reduces the search bandwidth demand by 72% in the
store queue and a two-entry load buffer reduces the search
bandwidth demand by 76% in the load queue. Then, we
showed that a load/store queue that combines these two tech-
niques needs only one port to outperform a conventional
load/store queue with two ports. We also showed that our
segmentation improves performance on average by 5% and
19%, and up to 15% and 33%, for integer and floating-point
benchmarks, respectively. Finally, our results show that a
one-portedload/store queue using all our techniques com-
bined improves performance on average by 6% and 23%, and
up to 15% and 59%, for integer and floating-point bench-
marks, respectively, over thetwo-portedconventional load/
store queue.

Our techniques not only reduce the complexity of the
load/store queue design but also improve performance by
reducing the search bandwidth demand and increasing the
capacity. Our techniques will become more important as the
pressure on the load/store queue increases with the scaling of
processors in the future.

Acknowledgements

We would like to thank Chad Scarbrough and the anon
mous reviewers for feedback on earlier drafts of this pap
This research is supported in part by NSF CAREER awa
9875960-CCR and Instrumentation grant CCR-9986020.

References

[1] Sarita V. Adve and Kourosh Gharachorloo. Shared memo
consistency models: A tutorial. Technical Report 951
Department of Electrical and Computer Engineering, Ric
University, September 1995.

[2] George Z. Chrysos and Joel S. Emer. Memory dependen
prediction using store sets. InProceedings of the 25th Inter-
national Symposium on Computer Architecture, pages 142–
153, June 1998.

[3] Compaq Computer Corporation.Compiler Write’s Guide for
the 21264/21364, January 2002.

[4] Daniele Folegnani and Antonio Gonzalez. Energy-effectiv
issue logic. InProceedings of the 28th International Sympo
sium on Computer Architecture, pages 230–239, June 2001.

[5] Alvin Lebeck, Jinson Koppanalil, Tong Li, Jaidev Patward
han, and Eric Rotenberg. A large, fast instruction window f
tolerating cache misses. InProceedings of the 29th Interna-
tional Symposium on Computer Architecture, pages 59–70,
June 2002.

[6] Andreas I. Moshovos, Scott E. Breach, T.N. Vijaykumar, an
Gurindar S. Sohi. Dynamic speculation and synchronizati
of data dependences. InProceedings of the 24th Interna-
tional Symposium on Computer Architecture, pages 181–193,
June 1997.

[7] Il Park, Michael D. Powell, and T. N. Vijaykumar. Reducing
register ports for higher speed and lower energy. InProceed-
ings of the 35th International Symposium on Microarchite
ture, pages 171–182, November 2002.

[8] Steven E. Raasch, Nathan L. Binkert, and Steven K. Re
hardt. A scalable instruction queue design using depende
chains. InProceedings of the 29th International Symposiu
on Computer Architecture, pages 318–329, June 2002.

[9] Silicon Graphics, Inc.MIPS R10000 Microprocessor User’s
Manual version 2.0, October 1996.

[10] J. M. Tendler, J. S. Dodson, J. S. Fields, H. Le Jr., an
B. Sinharoy. Power4 system microarchitecture.IBM Journal
of Research and Development, 46(1), October 2002.

Figure 12: Performance of a one-ported ld/st queue with the three techniques combined.

1-ported LSQ with techniques, 8-way issue, 64-entry issue queue, 2-cycle L1

1-ported LSQ with techniques, 12-way issue, 96-entry issue queue, 3-cycle L1

0.2

0.0

0.4

0.6

ap
plumcf

pa
rse

r
vprpe

rl
vor

tex
eq

ua
ke

mesa mgri
d

six
tra

ck

wup
wisegccbzi

p
gzi

p

Fp.
Avg.

sw
im

Int
. A

vg.
twolf

am
mp

art

Sp
ee

du
p

ag
ai

ns
t

a
2-

po
rte

d
co

nv
en

tio
na

l L
SQ

0.2

0.0

0.4

0.6

	Abstract
	1 Introduction
	2 Reducing Search Bandwidth Demand
	2.1 Reducing Store Queue Search: Store-Load Pair Predictor
	2.1.1 Implementing the Store-Load Pair Predictor
	2.1.2 Low Cost Implementation

	2.2 Reducing Load Queue Search: Load Buffer
	2.2.1 Implementing the Load Buffer

	3 Increasing Queue Capacity
	3.1 Allocation
	3.2 Contention
	Table 1: System configuration parameters.

	4 Results
	Table 2: Applications and their base IPCs
	4.1 Reducing Search Bandwidth Demand
	4.1.1 Reducing Store Queue Search
	Table 3: Accuracy of the store-load pair predictor.

	4.1.2 Reducing Load Queue Search
	Table 4: Average number of loads issued out of program order.

	4.1.3 Combining the Two Reduction Techniques

	4.2 Increasing Queue Capacity
	Table 5: Average number of entries needed in the load and store queues.
	Table 6: Distribution of the number of searched segments by loads for the latest stores.

	4.3 Combining Search Bandwidth Reduction and Higher Capacity

	5 Conclusions

	Acknowledgements
	References

