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Abstract file port requirements through two proposals, one for read
ports and the other for write ports.

For the first proposal, we observe that modern pipelines
anticipatorially read the register file to obtain instructions’
'source operandbeforeascertaining that the source register
value comes from the register file and not bypass paths.
About 50-70% of register operands come from bypass
paths, and the corresponding anticipatorially read values are
discarded, wasting substantial bandwidth and energy. Previ-
Bus researclil] has assumed that bypass operands can be
determined prior to reading the register file. However, pro-
cessors such as the Pentium 4 [6] and Alpha 21264 [14]
YYetermine bypass condition during the register read stage
‘while anticipatorially reading the registefil
There are two options for reducing anticipatory register
ads and consequently reducing demand for read ports. The
st option is straightforward and identifies bypass operands
in an extra pipeline stage inserted between out-of-order
issue and register read. For the second option we propose a
novel techniquebypass hintpbased on the observation that
when a consumer’s source operand is woken up in the issue
ELﬁueue by the producer’s result broadcast, the consumer
often issuedeforethe producer writes back. Consequently,
the consumer obtains the operand via bypass except for the
cases in which it is delayed due to structural hazards or
unavailability of another operand. By leveraging off wake-

In high-performance, wide-issue processors, the register!P 0gic, bypass hint isolates operands that are woken up by
file is in the critical path for clock speed and accounts for a in-flight producers from the operands whose producers have
significant fraction of overall processor energy. Register Written back. Because the exceptional cases are rare, bypass
files are large and multiported to keep multiple instructions hint is quite accurate. With virtually no extra hardware or
in flight and to enable wide issue. Because of cycle time €xtra stage delay, bypass hint avoids anticipatory reads,
impact, Alpha 21264 split the register file and pipeline back- €nabling a faster, lower-energy register file. Thus, while pre-
end into two parts [9]. Both large size and high numbers of Vious techniques [1, 12, 3] use banking and caching to
ports result in slow access and high energy dissipation. increase bandwidth supply, we opt to reduce demand.

The key difference between previous work and ours is ~ Reducing the number of read ports introduces the prob-
that previous research on register files focuses on reducinq?m of mapping instructions to ports. Conventional pipe-
the number of registergeither via 2-level register files [12, iN€s, however, do not have this mapping problem because
1] or via caching [3}, and we focus on reducing tmeimber ~ they provide enough register ports for a one-to-one hard-
of ports Previous research on reducing the number of regis-Wired mapping between register file ports and functional
ters has required substantial changes to the pipeline such a4nits. Because bypass hint is available at the same time as
searching the active list every cydi#], or storing register ~ Wakeupbefore select occurs, select can be augmented to
values in the issue queue and handling coherence in registef’@p instructions to functional units and porits,parallel.
caches [3]. These changes create significant complicationsUnlike complications caused by previous techniques, bypass

which we discuss in the next section. In contrast, reducing hint's timing makes our solution simpler to implement.
the number of ports is a simpler solution. We reduce register ~While read bandwidth demand can be reduced, we found

The key issues for register file design in high-perfor-
mance processors are access time and energy. While previ
ous work has focused on reducing the number of registers
we propose to reduce the number of register ports through
two proposals, one for reads and the other for writes. For
reads, we propose bypass hint to reduce register port
requirements by avoiding unnecessary register file reads for

unable to avoid these unnecessary reads due to timing con
straints. For writes, we use register file banking. Current

banking schemes assign different banks to instructions tha
are renamed together, which does not necessarily avoid con
flicts among instructions that writeback together. We use
decoupled rename, a technique which separates dependencl%
and physical tagging of register operands. Decoupled fir
rename allows us to perform physical register allocation
just before writeback, avoiding bank conflicts. Our results
show that combining bypass hint and write banking, our 1-
cycle register file with 6 read ports, and two 4-write-ported

banks achieves a 9% processor energy-delay savings over
system using a perfectly-pipelined, 2-cycle register file with
16 read ports and 8 write ports.

1 Introduction



that write bandwidth demand cannot be easily reduced and banks achieves a 9% processor energy-delay savings
optimizing writes requires more changes. We propose to  over a system using a perfectly-pipelined, 2-cycle regis-

supply high write bandwidth at low cost via banking. While ter file with 16 read ports and 8 write ports.

banking is a well-known bandwidth technique, the novelty

is in our second proposal for reducing the inevitable bank  In the next section, we contrast our techniques from pre-

conflicts. Conventional banking performs round-robin allo- vious proposals. In Section 3, we describe techniques for
cation among the instructions in rename, hoping to evenly reducing register read port demand, and increasing write
distribute bank assignments to avoid conflicts at read andsupply. In Section 4 we discuss access time and energy
writeback. This strategy is ineffective: instructions that impact of our techniques. Section 5 covers experimental

rename in the same cycle are often different from instruc- methodology and Section 6 contains experimental results.
tions that read or write back in the same cycle due to the We conclude in Section 7.

dynamic nature of out-of-order execution and variable-

latency instructions. Our solution is that while conventional 2 Related work

rename uses the same mapping for dependence tags and

physical registers, wdecouplethe two. We assign depen- 2.1 Complications with previous proposals

dence tags as usual in rename, but assign physical registers . . . .
g gn pny 9 Reducing the number of registers decreases register file

in a round-robin fashion (perhaps different than depen- ) . -, )
dence tags) in the ample time between issue and writeback‘:leCeSS time by reducing bitline delay but introduces sub-

avoiding conflicts among writes. [8] proposes such d(_:.Cou_stantial complications to the pipeline. While [12] proposes

pling to reduce the number of registers but not bank con- the possibilities for reducing the number of registers in the
flicts abstract, [1] discusses the implementations details.

[1, 12] use banking for both reads and writes. Because_Because it is difficult to compare performance and energy

bypass hint sufficiently reduces read bandwidth demand,In the apstract_, we contras'g our ideas aga[ﬂi;t_ The 2-
we use banking for writes but not for reads; for reads, we '€V€! register file proposed ifL] places the registers that

use true ports and bypass hint to reduce the demand folyviII not be reused, except in the event of misspeculation, in
those ports the second level. Upon misspeculation, this technique

The main results of this paper are: requires searching for and replacing moved registers.

. . In order to identify which register operands will not be
On average, the SPEC2K benchmarks obtain abOUtreused,the technique requires that during register renaming
66% of source operands from bypasses; bypass hin

) the entire active list be searched to match use of physical
correctly predicts 98.5% of the bypassed Operands'registers in L1 (tracked in the usage list) with existing

Using (zjnlly 6bregg(yp0r:2, 1b8yoBass fhmt reduc(:jes rzad active instructions. Searching the active list every cycle
te_nergy- N ayd)t/ oWl i ) b(IJ pe1r60rma(\jnce telgra ?’ adds significant complication to the out-of-order pipeline.
lon compared to an unreaiizable, read-port, 1-CYCl€ the reason for separating yet-to-issue instructions in the

register file. small issue queue and all in-flight instructions in the large

* Using 2 banks for write banking (4 write-ports per gctive list is to avoid searching the active list. As such, con-
bank) results in little performance degradation. While yentional active lists are non-searchable structures, which
increasing the number of banks reduces energy undefggilitates high clock speeds and avoids wiring complexity.
the constraint of maintaining the same number of total The 2-level register file also uses a copy list that maintains
ports, the constraint forces fewer ports per bank causinginformation needed to restore entries from L2 to L1 after
more bank conflicts. Decoupled rename effectively alle- misspeculation. While misspeculation rollback is already a
viates this conflict problem. 4 banks (2 write-ports per complex aspect of conventional pipelines, the additional
bank) with decoupled rename has energy-delay savingsestoration of register state required by the 2-level register
of 65% compared to 56% for two banks. Using 4 banks fjje requires more resources, and will both increase energy
without decoupled rename degrades performance bygnd time for the recovery.
7%; with decoupled rename degradation is only 3%. Register caching, as proposed in [3], maintains small

* The previously-proposed 2-level register file has a per- register caches close to the functional units and reads regis-
formance degradation of 3.1% assuming 1-cycle ter operands from one of four sources: 1) pre-read before
searches of the active list, bncreasesnergy-delay by  the issue queue, 2) extended forwarding (bypass) logic, 3)
115%. In contrast, bypass hint has a performance degraregister caches, and 4) the register file after a register cache
dation of 1.8% with a register file energy-delay savings miss. Because operands may be read before the issue stage,
of 61% their technique requires storing operands in the issue

e Combining bypass hint and write banking, our 1-cycle queue. Storing register values in the issue gueue increases
register file with 6 read ports, and two 4-write-ported the size of issue queue entries as register values are sub-



stantially larger than the dependence tags stored in convenadd instructions are selected if there are only 4 ALUs. Of
tional issue queues. The additional area and wiring requiredcourse, this change implies that the select logic is more
for such an issue queue are primary reasons why moderrcomplex and may impact the clock speed [13].
issue queues do not store register values.

If the operand is not pre-read into the issue queue, [3] 2.2 Our proposals
next tries to obtain it from bypass logic or the register

cache. The operand may not be present (i.e. a register S ; . ) . .
P Y P ( 9 duce complications like searching the active list, storing

cache miss), or it may be invalid (i.e. a coherence miss). In ds in the i d selecti . Table 1
either case, the valid operand is not available in the registerOperan S I the ISSue queue, and selective reissue. favle

cache. The instruction issues and produces an invaligSuMmmarizes previous proposals and our techniques. Much

result. The correct register value must be brought to theIIke read banking needs to map instructions to banks,

register cache, and the instruction must be reissued. It takegeducmg read ports introduces the problem of mapping

several cycles to identify register cache misses, and Sta"in?}nstructlor}s to ports. Bypass hlnt’_s timing help_s us solve
issue for these many cycles to ensure a valid operand woul he mapping p“’b'em_ V\."thOUt _addmg complications to the
degrade performance. Therefore, the authors assume thg!pelme, as we explain in Sectlon_3.2. Apar_t from the map- )
capability to reissue selectively only the instructions depen- P9 Problem, there are two special cases in our proposals:

dent on the unavailable operand. Supporting selective reis_(kj)ypassl hdmt mlspredﬁtlor;h and W”t.e lbank confhcgs n t
sue would add substantial complexity to the issue queue. ecoupied renaming. For these special cases, we advocate

Many conventional pipelines do not implement selective S|n;p!glstzllz of tzef rfeLeanr:tb;cg-e;n((j)lsﬁagetﬁ. ﬁ]etc 'cll(ueseothlese
reissue for similar circumstances. For example uponaloadSIO clal cases are inirequ nadresolving them lakes only a

miss many conventional designs simply squash and reissué:ydet’ lsltallltr_]g |ntcurs I|ttledpen;ormar_1f<_:e_Iosts. Ft(.)r S|m§I|C|ty,
all instructions between issue and cache stages. we stall entire stages and not Specilic INSructions. because

Another register file technique is banking, which is an we advocate completely stalling the issue stage (and later

inexpensive means of supplying high bandwidth. [1, 12] stages, if need be), there are no complications with the out-

use banking for both reads and writes. For register reads,Of'Order scheduler, as we explain in Section 3.2 and

; : : Section 3.3.
reducing the demand for ports is more desirable than sup- It is worth noting that proposals such as the 2-level reg-

plying bandwidth through banking. Register read bank con- i . . .
flicts must be resolvedefore reads are initiated. Bank 'St file and register caching for reducing the number of

conflict detection must occur in an additional pipeline stage registers may be implemented orthogonally to our propos-
inserted between issue and register read. However, th Is for reducing the number of ports. H_owev_er, b_ecaus_e our
additional stage can onlgetectbank conflicts and stall prop(_)sal_s adequa_tely_ reduc_e the register file size W'thOUt
offending instructions; it canngireventconflicts because the pipeline complications discussed above, combining the

the instructions have already been issued. Prevention Oitechmques may be unnecessary.
read bank conflicts would require augmenting the select
logic in the issue stage to map instructions to specific
banks,in addition to mapplng instructions to functional Decoup|ed rename was proposed in [8] to reduce the
units. For example, if there were four banks with two read number of registers but not bank conflicts. Other register
ports each, an individual register would be accessible fromfijle proposals include compiler-controlled two-level regis-
only two ports. The select logic would be required to select ter files for VLIW processors [17]. Several non-hierarchi-
and map up to eight instructions with sixteen source regis- cal, partitioned register files have been proposed to support
ters to the correct banks to avoid conflicts. Conceptually, clusters of functional units [5,7]. There are a few circuit-
the select logic would need to treat each bank as a func-level techniques for low-energy register files. For ultra low
tional unit and ensure that the number of instructions read-energy dissipation, the NRERL register file is an adiabatic

ing a bank does not exceed the number of read ports pefegister file clocked at less than 1 MHz [11]. In [16], the
bank, much as the select logic ensures that no more than 4

Table 1: Register file technique pipline interaction summary: previous proposals (left) and ours (right).

Unlike previous schemes, our proposals do not intro-

2.3 Other related work

2-level: Bypass hint:
Rename: Search active list to update usage Issue: Bypass bit matches bypass operands. Map reads
Rollback: Search copy list to restore L2 entries to L1 Register read: stall if inadequate b/w

Register Caching: Extra bypass-check stage:
Issue: Pre-read operands and store in issue queue. Extra stage: identify bypass, map ports, stall if needed
Selectively reissue instructions that miss and succegsordNrite banking via Decoupled Renaming:

Read/Write banking: Added stage: non-bypass operands map to physical tags
Rey read: added sfi@ maos ports, ids conflicts, stalls Mem: Non-conflictig assgnment ofphysical tays



(a) Extra bypass-check (BC) stage to determine bypass: Load miss penalty
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(b) Bypass hint: Load miss penalty
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(c) Decoupled rename to resolve bank conflict: Load miss penalty
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FIGURE 1: Out-of-order pipelines: (a) extra stage to determine bypass, (b) bypass hint, and (c)
decoupled rename to resolve bank conflicts.
authors present several circuit-level techniques to reducebranch misprediction penalty. Similarly, the squash penalty
energy dissipation. The paper avoids register reads forincurred during a load miss increases [3]. The performance
bypassed values by determining the bypass conditions angyenalties of BC are similar to those of a perfectly pipelined
then accessing the register file for non-bypassed values,register file. However, a pipelined register file extends
within the same stage. The paper considers only a simplewriteback into multiple stages and introduces the substan-
in-order-issue, five-stage pipeline, and cannot be applied totial additional complexity of requiring additional bypass
wide-issue, out-of-order pipeline where determining paths.
bypass may require an additional stage due to high clock Apart from the performance concerns, BC interacts with
speeds. the pipeline in other ways. In conventional pipelines,
because there are as many ports as the issue width, there is
3 Reduce read demand; increase write supply a one-to-one hardwired mapping between read ports and
) , .. functional units, as shown in Figure 2(a). The select logic
In the register read stage, the conventional pipeline nans selected instructions to functional unitdthout
knowswhatinstructions are issued but does not know from o444 for availability of read ports. Because of the hard-
wherethey will obtain the source operands. Bypass condi- \yiring, the read ports are guaranteed to be available.
tions _are_detefrmmed. using destination reg|s_ter information Reducing the number of ports violates this one-to-one
from in-flight instructions, and at the same time the poten- aning and raises four issues. The first issue is that the
tial (non-bypass) operands are anticipatorially read from jsq 64 instructions have to be steered to the read ports via
the register file. Note that we show bypasses from the endyves. Because bypass conditions are determined in the
of writeback because the register file in wide-issue pipe- g stageafter select, select is unaware of the bypass con-
!mes is too big to be written in the first half cycle and read itions and cannot map the instructions to the ports. Upon
in the next half cycle, as suggested by DLX [10]. issue, any of the instructions may need to access the ports,
and the mapping of instructions to ports can be determined
only after the bypass conditions are known in the BC stage.

One solution to avoid anticipatory reads is to separate Therefore, the muxes may have to be n-to-1 muxes for an
bypass checking and register read, as shown in Figure 1(a)i_ssue width of n. It is likely that the substantial reduction in
Bypass conditions are determined in an extra stage, calledhe number of register file ports makes up for the space and
bypass-check (BC) stage, between issue and read. Onlyime overhead of these muxes.
non-bypass operands are read from the registers in the read 1h€ second issue is that select cannot avoid issuing
stage. Thereby, (1) the bandwidth demand on the re(‘J,iste,instructions requiring more read ports than are available.
file reduces, enabling faster register with significantly There are two options to deal with the excess instructions.

fewer ports, and (2) no energy is wasted on unnecessar)p”e is to stall both the excess instructions and the issue
anticipatory reads. stage, and use the extra muxes to map the excess instruc-

bypass check and register read into two stages increases thiéons are coming from issue. The other is to squash the

3.1 Extra stage for bypass determination



excess instructions and reissue, similar to load miss squastthe number of ports available. Essentially, some of the con-
and reissue in modern pipelines. For the first option to betrol logic that maps instructions to ports (described in
viable, the bypass conditions have to be determined wellSection 3.1) is absorbed into select. This mapping is a little
before the next clock edge so that issue can be stalled fronsimpler than that of read banking (end of Section 2.1).
pushing more instructions into register read in the next Because bypass hint employs ports instead of banks, select
cycle. This timing requirement is likely to be easily met logic has to merely restrict the total number of source oper-
because bypass condition determination entails equality-ands to less than the total read ports. Hence, select can treat
checks of physical register tags and can be done fast. Wherall of the register file as one type of functional unit, as
stalling issue, the structure monitoring functional unit opposed to treating each bank as one type of functional
schedules must also be stalled to maintain correct stateunit. This difference is a minor advantage for bypass hint
regarding functional unit availability. The second option over read banking if the number of banks is large.
may not be desirable because instead of stalling the excess Even if bypass hint were perfectly accurate, the selected
instructions for just a cycle, several cycles (e.g., 5 cyclesinstructions have to be steered to the ports via muxes,
between issue and writeback) are lost in squash. exactly as in BC. The only difference is that because
The third issue is that even if the number of read ports bypass hint is known earlier than in BC, select can separate
are adequate for a set of instructions issued, some controinstructions into “no or partially bypassed” and “fully
logic has to map the instructions to the read ports. Only bypassed” categories. This separation helps in reducing the
those instructions that obtain their operands from the regis-size of the muxes. For example, in Figure 2(b), we show
ter file, and not from bypass, need to be steered to the portsmapping 4 instructions into 3 ports. Assuming bypass hint
The other instructions need not. Again, because the bypasss perfect and these 4 instructions do not need more than 3
conditions are determined later in the BC stage, this map-ports, the combinations in which 3 ports would be needed
ping cannot be done in select. Instead, control logic for this by 4 instructions are: (a) 1 instruction needs 2 ports,
mapping has to be built into the read stage. another needs 1, and the rest need no ports. (b) 3 or fewer
The fourth issue is that the output of each read port hasinstructions need 1 port each, and the rest need no ports. In
to be fanned-out to multiple functional units (in reality, to either case, at least one instruction needs no ports, so select
muxes choosing between bypass inputs and register inputgan separate out that instruction under “fully bypassed”, as
in front of the functional units) to accommodate the excess shown in the far right in Figure 2(b). Similarly the rest of
instructions. This requirement adds wires, but not muxes. the instructions can be separated as shown in the figure.
The solid lines in the figure show the muxing for the above
3.2 Bypass hint combinations. Thus, if bypass hint were perfect, only 2-to-
1 muxes are needed in our example.

The lack of knowledge of the bypass conditions in select In Section 6, we show that 6 ports are sufficient for 8-

is a major drawback of BC. This drawback is overcome by way issue. In that case, the design would include 2 replicas

bypass hint, which is an alternative means of eliminating of our example, and 2-to-1 muxes would still suffice. In

anticipatory registe_r reads. Bypass hint is based on the fun'reality, however, we need 3-to-1 muxes to handle bypass
dam_ental observgtlon that when a consumer's sour?e OPehint mispredictions, but still the mux overhead is reason-
and is woken up in the issue queue by the producer’s resultably low

broadcast, the consumer often issiefore the producer Upon issue, instructions read the register file for only

v_vntes back. Bypass hint avoids BC's performance penal- those operands that have their bypass bit clear. As in con-
tes. . . ventional pipelines, the bypass control logic determines the
we use one _extra bit, called trm/pass_bl,t PET SOUrCe = a0 bypass conditions for the operands, in parallel with the
operand in the issue queue slot. At the time of instruction register reads. The control logic detects mispredictions cor-
issue, the bypass bit indicates whether an operand had beefésponding to the rare exceptional cases when a source

woken up V\éh'tlﬁ thf:hmstructlocr; was walc';mg N tTae f|ssu$h operand is not bypassed but the bypass bit is set. These
queue or whether the operand was ready even before ases occur under two possibilities: (1) The other source

instruction entered the issue queue. If an operand is readyoperand(s) of the instruction became ready much later, by

at t_he time the inst_ruction enters th_e issue queue, its bypasg -, time the previously-woken-up operand has already
bitis clear. At the ime an operand is woken up, the bypaSSbeen written back to the register file (i.e., the operand will

bit is sgtin ;()jar:;\)l_lte ITV;:ith tthhe se_tting of ;[he dc?nventionglt not be bypassed). (2) Although all source operands have
op(;ran Tea ]}/ hl .b us, be_re IS _n%_ex rad gag assocEa_ €heen previously woken up, the instruction is not issued due
with setting of the bypass bit, as indicated by bypass NNt ,ctyral hazards. For both possibilities, although the

being in parallel with issue in Figure 1(b). reviously-woken-up operands have their bypass bits set
The select logic sees the bypass bits and selects instrucP VIOUSYW ub op N " OYP ' '

. the operand values should be read from the register file.
tions so that the number of read ports needed do not exceedh P g



(a) Conventional register file: (b) Bypass hint register file:
Each read port wired to 1 func. unit. Partially-bypassed or No-bypassed  Fully-bypassed
Instr. Instr. | Instr. Instr. | ] Instr. | | Instr.
. a oa [ [ ===t --J--pme=el--- e - T
Extra
Mux
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\fﬂlll_V/ \mux/ \mux/ \mux/ \mux/ \mux/ \mux/ \mux/ \mux/ \mux/  \mux/ \mux/
Func. Func. Func. Func. Func. Func.
Unit | = = = Unit Unit Unit Unit Unit

FIGURE 2: Wiring for read ports: (a) conventional register file. (b) bypass hint register file.

Fortunately, as the real bypass conditions are determined in  Unfortunately, register value death determination is
parallel with register read, such mispredictions can be speculative because of branch mispredictions. A register
detected in the register read stage, as shown by bypasgetting overwritten does not guarantee death because the
check being in parallel with register read in Figure 1(b).  overwriting instruction may be the result of a mispredic-
Bypass hint mispredictions correspond to excesstion. Consequently, registers cannot be deemed to be dead
instructions in BC. Unlike BC'’s excess instructions, bypass until all previous speculations are validated. Deeming a
hint mispredictions are infrequent. Also, the mispredictions register dead before such validation will require resurrect-
are detected early in register read. Hence, simply stallinging the dead value, incurring complications. It is such res-
issue, like BC, works without much performance loss here urrection that forces [1] to search the active list. Therefore,
as well. As before, when stalling issue, the structure moni- we do not pursue this idea.
toring functional unit schedules must also be stalled to Instead, we utilize banking to supply write bandwidth
maintain correct state regarding functional unit availability. for the register file. Conventional banking performs round-
Much like the excess instructions, the mispredicted instruc- robin allocation among the instructions in rename. Instruc-
tions are steered through the muxes in the next cycle. It istions that rename in the same cycle are often different from
this steering that requires the muxes to be 3-to-1.instructions that read or write back in the same cycle, ren-
Figure 2(b) shows this steering in broken lines. Note that dering this strategy ineffective. We udecoupled rename
the instructions to functional unit mapping done by select for write banking to reduce bank conflicts. [8] proposes
remains the same for mispredicted instructions. such decoupling to reduce the number of registers but not
It is also possible that a source operand is bypassed bubank conflicts.
the bypass bit is clear. This possibility occurs due to the  Conventional rename combines the dependence tag and
operands whose producer has already done wake-up beforphysical register number to be the same. Decoupled rename
the consumer enters the issue queue, but the producer haseparates the dependence tagging of operands performed at
not written back by the time the consumer is issued. Suchthe rename stage from the physical register assignment
operands enter the issue queue with their operand-ready bitvhich determines banks. By delaying physical register
set, and are not woken up while in the issue queue. Conseassignment until just before writeback, it is possible to
qguently, such an operand has its bypass bit clear, evermake non-conflicting assignments for registers that write
though the operand is bypassed. However, as in a convenback at the same time. We identify the dependence tag as
tional pipeline, the bypass control logic determines that the the virtual tag and the physical register (and bank) assign-
operand should come from bypass and discards the registement as th@hysical tagthe number of virtual and physical

value. This lost opportunity is insignificant in practice. tags, and physical registers al equal. In [8], the physi-
_ _ cal registers are fewer than the virtual tags, causing dead-
3.3 Decoupled rename for write banking lock problems. But we do not have that problem.

The virtual tag is assigned in rename, stored in the

Reducmg write demand is d|ff|cullt. It may seem that rename table, and used for wakeup and bypass condition,
register value death may be exploited for this PUIPOSE. ginijar to dependence tags in conventional rename. As

Many values are dead even before the instruction prOdUCin,gshown in Figure 1(c), decoupled rename assigns the physi-

them reaches writeback (i.e., the values are consumed Vidal tag in the mem stage, just before writeback. Instructions

bypass;z N andhfare SOt Iread frorg thebreglgter ﬂtl)e)'klt rITayin writeback update thphysical tag tablewvith their physi-
seem that such dead values need not be written back, allowg tag, so that later consumer instructions know which

ing energy savings. physical register holds their value. The physical tag table is



Table 2: System parameters. with bypass hint would annul bypass hint's advantage of
avoiding the extra BC stage, and that combining decoupled

Issue width 8 . . . . o

RUU 128 entries renaming with BC (and doing the physmal_rc_anamlng in the
BC stage) would work as well as combining decoupled

Int. reg. and ports 180 regs. 16 rd and 8 write renaming with bypass hint. In reality, the lack of knowl-

FP reg. and ports 180 regs. 16 rd and 8 write edge of bypass conditions during select is a major draw-

L1 i-cache 64K 2-way, 2-cycle back of BC. Therefore, combining decoupled rename with

L1 d-cache 64K 2-way, 2-cycle, 2-port bypass hint is more advantageous than combining decou-

L2 cache 2M 8-way, 12-cycle pled rename with BC.

Memory latency 80 cycles 4 Access time and energy impact

Branch predictor 2-level hybrid. 8K entry L2

Mispredict penalty 6 cycles Typical register file implementations employ multiple

copies so that each copy provides a reasonable number of
true ports, and together the copies provide a large number
Energy components for one 64 Relative Energy of ports [15]. True multiporting (i.e., multiple bitlines per
|_bit register file copy cell) makes register file cells slow beyond a certain number
Read to 1 of 4 ports 1.0p of bitlines per cell. The optimum number of copies for a
Write to 1 of 8 ports 0.3 given system is specific to technology and access-time
read for all source register operands in an additional stageequirements; in general having more copies (hence fewer
before register read, as shown in Figure 1(c). Because ofditlines per copy) improves access speed unless the
the additional pipeline stage, decoupled rename introducedncreased wire lengths due to more copies offsets the
additional branch misprediction and load-miss penalty sim- advantage of fewer bitlines. For example, to get 8 read and
ilar to BC. 4 write ports, implementations may use 2 copies where
For instructions exiting the issue queue, two cases areeach copy provides 4 read ports and 4 write ports. Because
possible for each operand. The first is that operands, whosdhere are fewer read ports using our techniques, the number
producers have written back, obtain their physical tag from Of copies needed is also reduced. Fewer copies lead to a
the physical tag table and then read the register file. Thesmaller and faster register file.
second is that Operands' whose producers have not yet The effect of banking on access time is similar to that of
reached writeback, withothave a physical tag in the phys- reducing the number of registers or using subarrays
ical tag table. However, these Operands @naranteedo because banks shrink the size of the bitlines and reduce the
get their values from bypass via virtual tag match, making a number of bitlines per cell. Because our designs use only
physical tag unnecessary. In the event of a load miss,Write banking due to timing concerns with read banking
branch misprediction, or exception, the physical tag table is(Section 2.1) and the fact that we reduce read bitlines by
repaired in the same way as the rename table. reducing demand for read ports, our banks only reduce the
Unavoidable conflicts simply stall the pipeline back-end number of write-port bitlines per cell. However, both read
from issue till writeback. Because we do not use read bank-and write access time (and energy) benefit because the size
ing, decoupled renaming presents no additional complica-f the bitlines is reduced.
tions in issue and register read. Both virtual and physical

tags are freed when the next instruction writing the same4'1 Redu_cmg energy L
logical register commits, just like conventional renaming. Bypass hint reduces read energy by avoiding most of the

The physical tag table may be optimized by utilizing Unnecessary anticipatory reads. Becausg th_e_ register file is
bypass hint for energy-optimizeddecoupled rename. read less often, rea_d energy reduces S|gn|f|cantly_. F(_awer
Because the physical tag table need only be read for oper/€ad ports reducesvrite energy due to the way copies in
ands coming from the register file, the bypass bit may be r_nultlpo_rted register flle_s are update_d. To keep the register
used to reduce the number of physical tag table read portd!l® COPies coherent, writes to a register are done to all the
in the same way it is used to reduce register read ports. ThiCOPIES at once. Consequently, each write consumes signifi-
optimization is substantial from an energy standpoint; C@Nt €nergy because it must update multiple copies.
avoiding reading the physical tag table for the high number Energy overhead of the additional structures needed for

of bypass operands substantially reduces the porting and€9/Ster file techniques must also be taken into consider-
energy overhead of the physical tag table. ation. Bypass hint, BC, and banking require additional

A real implementation of our register file techniques WIres outside the register file to map ports to functional
would combine write banking with one of the read tech- units (discussed in S_ectlon 3 and Figure 2), but these wires
niques. It would seem that combining decoupled renamed® Not add substantial energy as they carry the same oper-

Table 3: Register relative energy and overhead.




Table 5: Statistics for bypass hint with 8 and 16 stage pipelines.

Benchmarks crafty eon equake fma3d gcc gzip lucas mesa mgrid twolf vortex wupwise Ayerage
% from bypass 8 stage 63 70 76 78 61 68 57 66 51 69 70 67 66

% misprediction 8 stage 05 1.0 1.1 09 01 02 62 26 22 12 0.4 1.8 15

% from bypass 16 stage 68 77 85 85 64 73 66 74 60 72 78 75 72

% misprediction 16 stage 0.1 0.2 0.1 02 01 01 10 05 02 06 0.1 0.2 0.2

ands as in a conventional system. Bypass hint maintains thenation of eight instructions every cycle, constrained by the

bypass bit for each entry in the issue queue and extratwo-ported L1 d-cache. For each SPEC2K application, we

muxes to map instructions to register read ports. Theuse ref inputs, fastforward 2 billion instructions, and run

energy overhead of the extra bit in the issue queue entries isor 500 million instructions. In the interest of space, we

negligible compared to the energy of the register file, and show results for a subset of the SPEC2K applications

the energy overhead of the muxes is negligible becausewhich are representative of our results over the entire

they only carry register numbers (8 bits), not data (64 bits), SPEC2K suite. We simulated the entire suite and carefully

and the muxes are only one extra pass gate. chose this subset ensuring that the average behavior of this
In contrast, the 2-level register file [i] has substantial  subset closely matched that of the suite.

energy overhead. The authors state that the total overhead

of the usage table and the copy table accesses (not to mer® Results

tion the active list search) is likely to counter any potential

energy savings from the 2-level register file. In each subsection, we show performance and energy-

delay relative to a processor using an idealized 1-cycle, 16
5 Methodology read-port, 8 write-port register file. It is important to note

that this base case is intended to be an unrealizable upper

We modify Wattch [4] to replace the architectural regis- bound for performance; therefore all of our results show
ter file with a physical register file of the simulated size, performancedegradationrelative to this ideal. The ideal-
architecture, latency, and number of ports. Wattch associ-ized base case provides a reasonable comparison against
ates physical register energy with the Register Update Unitour techniques which facilitate an achievable 1-cycle regis-
(i.e., instruction window) and Load/Store queue. We ter file. We report energy-delay, a widely used metric in
removed Wattch’s physical register components from both low power research because it considers both the energy
the Register Update Unit and Load/Store queue in the totaland performance impact of a technique. If enesdgne
energy. Instead, we added our physical register file to thewere used as a metric, results would be biased toward tech-
total energy. For register file energy dissipation, we assumeniques with large energy savings at the cost of large perfor-
that, similar to unused banks in energy-efficient caches [2], mance degradations.
unused register ports do not consume energy from bitline  Section 6.1 through Section 6.3 show energy delay cal-
swing. An example register file energy calculation, based culated only from register file energy and overhead from
on values reported by our modified Wattch, is shown in our techniques while Section 6.4 shows processor energy-
Table 3. We retain Wattch’s energy models for the remain- delay. In Section 6.1 we show that bypass hint and BC are
ing components. effective techniques for reducing read ports and reducing
Table 2 shows the base configuration for the simulatedregister read energy. Section 6.2 shows the effect of reduc-

systems. We assume 180 integer and floating-point regising read ports on write energy and the effectiveness of
ters in the baseline architecture because it is a reasonablerite banking. Section 6.2 also shows that decoupled
value based on today’s processors and does not inflate theename effectively reduces the performance degradation
energy impact of the register file. The 2-level register file caused by each bank having fewer ports when there are a
[1] in our study uses 100 registefts L1 and 80 regis-  large number of banks. In Section 6.3 we compare the per-
ters for L2. We assume 16 read ports and 8 write ports toformance of bypass hint to the 2-level technique proposed
support our 8-issue processor which can issue any combidin [1]. Finally, in Section 6.4 we combine our read and

write techniques to evaluate our proposals in terms of over-

Table 4: Register file copies and write energy. all processor energy-delay.

Ports and copies readports/ bitlines/ Relative . .

(all 8 write ports) copy cell write e-delay 6.1 Register Read Techniques
16 read, 4 copies 4 12 1.0 (base)

. In this section, we evaluate the effectiveness of using
6 read, 3 copies 2 10 0.76 BC and bypass hint to reduce register read ports by avoid-
6 read, 2 copies 3 11 0.51 ing anticipatory reads. Table 5 presents the percent of oper-




a: 1 cycle with 6 ports ¢: BC with 6 ports e: 2 banks with round-robin  i: 4 banks + decoupled rename
b: Pipelined 2 cycle with 16 ports  d: Bypass hint with 6 ports h: 4 banks with round-robin  k: 4 banks + energy optimized decoupled rename
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FIGURE 3: Read energy delay and performance. FIGURE 4: Write energy delay and performance

ands from bypass, and bypass hint accuracy for both 8 and7%. The maximum performance degradation with bypass
16 stage pipelines. For the 8-stage pipeline, between 51 andhint is less than 5%.
78 percent of operands come from bypass, with an average BC and bypass hint perform comparably in energy
of 66%. Bypass hint has a low average misprediction ratedelay, achieving average savings of 65% and 67% respec-
of 0.9%. As pipeline depths increase, more stages of bypassively. Although BC is deterministic, bypass hint’'s predic-
are needed, increasing the opportunity for bypass operanddive nature is acceptable because of its high accuracy.
For the 16- stage pipeline the average percent of operand8ypass hint also avoids the extra penalties associated with
from bypass is 72%. The increased opportunity for bypassBC. In contrast to bypass hint and BC, the 2-cycle, pipe-
operands reduces the misprediction rate to 0.2%. The onlylined register file experiences an average energy delay sav-
application with an unusually high misprediction rate for ings of minus 3% (this is anincreasein energy-delay
either pipeline islucas, which has few bypass operands because it does not avoid anticipatory reads and incurs per-
because its d-cache miss rate is over 18%. From this pointformance degradation over the 1-cycle register file.
all results use the 8-stage pipeline. Unlike pipelined, banked, or 2-level register files that
Figure 3 shows results for register reads. From left to attempt to satisfy ever-increasing demand for read ports,
right, the bars represent a 1-cycle register file with only 6 bypass hint eliminates much of the demand, resulting in
read ports, gerfectlypipelined 2-cycle register file with  substantial energy savings with minimal performance deg-
16 read ports, a 1-cycle register file with 6 read ports using radation. In contrast to register reads, register writes cannot
BC to eliminate anticipatory reads, and a 1-cycle register be eliminated, as we said in Section 3.3. We address regis-
file with 6 read ports using bypass. All register files in this ter writes in the next subsection.
section have 8 write ports. The results are relative to our
ideal, but unachievable 16 read port, 1-cycle register file. 6.2 Register Write Techniques
The black sub-bars (right scale) represent performance
degradation relative to the base case. The full-height bars6.2.1 Effect of bypass hint and write-banking
(left scale) represent relative register read energy delay (i.e. In this section, we evaluate techniques for meeting reg-
taking into account only register read energy). We show theister write demand and reducing write energy. We expect
2-cycle pipelined register file, which may be difficult to the use of bypass hint for register reads to substantially
implement due to complications with pipelining SRAMS, reduce write energy by mitigating the need for register file
for comparison. copies (Section 4.1). We also apply banking to register files
Using BC and bypass hint to eliminate anticipatory to reduce energy. We expect decoupled rename to mitigate
reads effectively reduces the number of required registerthe performance degradation from write banking by avoid-
read ports. A conventional processor using only 6 reading write bank conflicts.
ports without avoidinganticipatory reads incurs a perfor- Bypass hint alone substantially reduces write energy.
mance degradation of 12%, as shown in the leftmost bars.Each register write must occur to every copy of the register
In contrast, BC and bypass hint incur average performancefile. Because bypass hint reduces the number of necessary
degradations of 4% and 2% respectively despite only hav-read ports, the number of copies are reduced. As discussed
ing 6 read ports for an 8-issue processor. The pipelined 2-in Section 4, the number of copies is technology dependent
cycle register file has degradation of 3%. and based on the number of bitlines (i.e. ports) per cell.
Though BC and bypass hint perform similarly, recall Reducing copies decreases access time and saves write
BC'’s complications (Section 3.2). Also, BC incurs the larg- energy because each write occurs to fewer locations. We
est absolute degradations because of branch mispredictio@ssume that our base register file with 16 read and 8 write
and load miss penalties as well as the inability of the sched-ports, will require 4 copies. We compare our base to bypass
uler to avoid conflictsCrafty, gzip,and twolf all exceed hint configurations using either 2 or 3 copies in Table 4.
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FIGURE 5: Overall regfile energy delay and performance. FIGURE 6: 2-level Redfile. vs. bypass hint.

(The relative energy delay is computed for the same groupThe worst case igcc,with an energy-delay over 75%cc
of benchmarks as in the previous section.) These configura-experiences many squashed instructions and an unusually
tions have comparable numbers of bitlines per cell, but high register read to write ratio of about 6 to 1. Due to the
those with fewer copies will have faster access time due tolarge number of reads requiring physical tags, the energy
wire delay. The write energy-delay savings are proportional overhead of the physical tag table dominates the register
to the number of copies eliminated. We use 2 copies for write energy
further experiments. We use bypass hint to reduce the overhead of decoupled
We also apply write banking as discussed in Section 3.3rename’s physical tag table. As mentioned in Section 3.3,
to satisfy write bandwidth requirements and reduce energy.our optimization uses information from bypass hint to
Figure 4 depicts performance degradation and relativereduce accesses to the physical tag table; bypassed oper-
write energy-delay for 4 configurations: using 2 and 4 ands do not need to look up the table. The results show that
banks with conventional round-robin bank allocation, using energy-optimized decoupled rename increases energy-
4 banks with decoupled rename, and using 4 banks withdelay savings from 44% to 65%. However, the optimization
energy-optimized decoupled rename. Applications with also increases average performance degradation to 4% due
performance degradations of at least 5% have their degrato bypass mispredictions.
dations noted above the bars. Note that the scale for the
performance degradation bars is different from Figure 3. 6.2.2 Register read and write techniques combined
(The scale change is needed to avoid the black bars over- In this section, we combine bypass hint with decoupled
lapping the white bars.) These results use 16 read ports andename. We do not combine BC with decoupled rename
includeonly write banking. because of the arguments discussed at the end of
Dividing the register file into two banks (4 write-ports Section 3.3. When bypass hint and decoupled rename are
per bank) causes minimal performance degradation. Whilecombined, register file energy delay is reduced by over
increasing the number of banks reduces energy under th&5%. The register file with 2 banks achieves substantial
constraint of maintaining the same number of total ports, energy savings, while additional savings may be extracted
the constraint forces fewer ports per bank causing moreusing more banks and decoupled renaming. Figure 5 com-
bank conflicts. The average performance degradation withbines read and write techniques and depicts register file
2 banks is 1%, compared to 7% with 4 banks. However, energy-delay (i.e. read energy, write energy, and overhead).
from 2 to 4 banks, the average energy-delay savingsThe performance degradation values of the first three bars
increases from 56% to 79%. In addition to the energy bene-are also shown in Figure 7 using a larger scale. The 2-cycle
fits associated with physically smaller banks, using 4 bankspipelined register file has an energy delay savingsiofus
may be preferable to using 2 banks due to access time con3% (this is anincreasein energy-delaywith a 2.8% per-
siderations if the performance degradation due to conflictsformance degradation. The 2-banked register file has an
can be reduced. energy delay savings of 77% with a performance degrada-
We use decoupled rename, as discussed in Section 3.3jon of 2.9%. The 4-banked register file with decoupled
to prevent write bank conflicts when using 4 banks. As rename has an energy delay savings of 79% with a perfor-
shown by the third set of bars in Figure 4, decoupled mace degradation of 4.2%. Energy-optimizing the physical
rename reduces the average performance degradation withkag table increases energy delay savings to 82% while
4 banks from 7% to less than 3% even though the techniquencreasing performance degradation to 6.3%.
adds an additional pipeline stage to read the physical tag
table before register read. Unfortunately, the large number6.3 Comparison with 2-level
of accesses to the physical tag table adds substantial energy

; In this section, we compare bypass hint to the 2-level
overhead, as shown by the reduced energy delay savings. . ) . .
v wn by . 9y y saving register file proposed ifil]. We expect the 2-level register
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_ _ 6.4 Processor Energy-Delay
file to suffer more performance degradation than bypass

hint because of the additional misspeculation penalty In this section we evaluate the effects of bypass hint and
caused by moving values from the L2 to the L1 and register write banking on overall processor energy. Because modern
shortages in the L1. As mentioned in Section 4.1, we register files represent about 10% to 15% of processor
expect the 2-level register file to incur substantial energy energy we expect to see processarergy-delayavings of
overhead from its usage table, copy list, and active list less than 10% when accounting for performance loss.
searches. Figure 7 depicts overall processor energy-delay and per-
In our comparisons against the 2-level register file, our formance degradation for register files using bypass hint
technigue only uses bypass hint with no bankind iy the and using write banking with either 2 banks or 4 banks plus
authors state that banking would provide little benefit to the decoupled rename. Results are relative to the idealized 1-
2-level register file (because their L1 and L2 are already cycle register file. The perfectly-pipelined, 2-cycle register
fairly small), but banking provides substantial benefits for file with 16 read ports, is also shown. Note that both the
bypass hint. To be fair, our comparison does not include energy and performance degradation scales are different
write banking, but our energy-delay numbers do include from previous graphs.
both register read and write energy as well as overhead The 2-bank register file performs slightly better than the
from the techniques. We also assume that the 2-level regis4-bank register file. Processor energy-delay savings is 5%
ter file can search the active list every cycle to update thefor the 2-bank register file and 3% for the 4-bank register
usage table. file with decoupled rename. The energy-saving potential of
Figure 6 shows the 2-level register file with a 100 entry bypass hint is evident in a comparison against the pipelined
L1 and 80 entry L2, compared to our idealized 1-cycle 16 2-cycle register file, which is a more realistic design point
read-ported 180 entry register file. The figure also showsthan the 16 port, 1 cycle register file. Compared to using
our bypass hint technique. The black sub-bars representhe 2-cycle register file, bypass hint and 2 write banks
performance degradation (scale on right; different from achieves a processor energy-delay savings of 9% with vir-
scale in previous graphs). The full bars represent registertually no performance loss (0.1%).
file energy-delay (scale on left; different from scale in pre-  Performance degradations are 2.9% and 4.2% respec-
vious graphs). For the 2-level register file, the top of the tively for 2 banks with RR and 4 banks with decoupled
gray bars represents relative energy-delaithout the rename when compared to the 1-cycle, 16 read-port register
energy overhead of searching the active list. The top of thefile. Two problem cases when using 4-banks tavelf and
full bars represents relative energy-delay including the gzip. For twolf, the energy overhead of the physical tag
active list search overhead. table eliminates energy-delay savings with 4-banks.
The 2-level register file experiences greater performanceThough it's energy-delay and performance are slightly
degradation than bypass hint. We idealistically assume theworse, the 4-bank register file, however, might be necessary
active list can be searched each cycle, and we assume that ® some designs for faster access time.
usage table entries may be checked each cycle during mis- Energy savings from bypass hint and write banking
speculation recovery. The average performance degradaicrease with the number of physical registers. If we
tion for 2-level is 3.1% compared to 1.8% for bypass hint. increase the number of registers from 180 to 256, the
Low IPC applications such dacas,which use few regis-  energy-delay savings of bypass hint with 2 write banks
ters, suffer the least with 2-level. However, searching the over the 1-cycle, 16-read-port register file is 8% with no
active list every cycle is not realistic. Less frequent change in performance loss (not shown in figures).
searches of the active list mean fewer chances to move reg-
isters to L2. If the active list can be searched only every 7/ Conclusions
three cycles, average performance degradation increases to

5.4% (not shown in figure). We proposed to reduce the number of register ports
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