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Abstract

The key issues for register file design in high-perfor-
mance processors are access time and energy. While previ-
ous work has focused on reducing the number of registers,
we propose to reduce the number of register ports through
two proposals, one for reads and the other for writes. For
reads, we propose bypass hint to reduce register port
requirements by avoiding unnecessary register file reads for
cases where values are bypassed. Current processors are
unable to avoid these unnecessary reads due to timing con-
straints. For writes, we use register file banking. Current
banking schemes assign different banks to instructions that
are renamed together, which does not necessarily avoid con-
flicts among instructions that writeback together. We use
decoupled rename, a technique which separates dependence
and physical tagging of register operands. Decoupled
rename allows us to perform physical register allocation
just before writeback, avoiding bank conflicts. Our results
show that combining bypass hint and write banking, our 1-
cycle register file with 6 read ports, and two 4-write-ported
banks achieves a 9% processor energy-delay savings over a
system using a perfectly-pipelined, 2-cycle register file with
16 read ports and 8 write ports.

1  Introduction

In high-performance, wide-issue processors, the register
file is in the critical path for clock speed and accounts for a
significant fraction of overall processor energy. Register
files are large and multiported to keep multiple instructions
in flight and to enable wide issue. Because of cycle time
impact, Alpha 21264 split the register file and pipeline back-
end into two parts [9]. Both large size and high numbers of
ports result in slow access and high energy dissipation.

The key difference between previous work and ours is
that previous research on register files focuses on reducing
the number of registers(either via 2-level register files [12,
1] or via caching [3]), and we focus on reducing thenumber
of ports. Previous research on reducing the number of regis-
ters has required substantial changes to the pipeline such as
searching the active list every cycle[1], or storing register
values in the issue queue and handling coherence in register
caches [3]. These changes create significant complications,
which we discuss in the next section. In contrast, reducing
the number of ports is a simpler solution. We reduce register

file port requirements through two proposals, one for re
ports and the other for write ports.

For the first proposal, we observe that modern pipelin
anticipatorially read the register file to obtain instructions
source operands,beforeascertaining that the source registe
value comes from the register file and not bypass pat
About 50-70% of register operands come from bypa
paths, and the corresponding anticipatorially read values
discarded, wasting substantial bandwidth and energy. Pre
ous research[1] has assumed that bypass operands can
determined prior to reading the register file. However, pr
cessors such as the Pentium 4 [6] and Alpha 21264 [1
determine bypass condition during the register read sta
while anticipatorially reading the register file.

There are two options for reducing anticipatory regist
reads and consequently reducing demand for read ports.
first option is straightforward and identifies bypass operan
in an extra pipeline stage inserted between out-of-ord
issue and register read. For the second option we propos
novel technique,bypass hint,based on the observation tha
when a consumer’s source operand is woken up in the is
queue by the producer’s result broadcast, the consum
often issuesbeforethe producer writes back. Consequentl
the consumer obtains the operand via bypass except for
cases in which it is delayed due to structural hazards
unavailability of another operand. By leveraging off wake
up logic, bypass hint isolates operands that are woken up
in-flight producers from the operands whose producers ha
written back. Because the exceptional cases are rare, byp
hint is quite accurate. With virtually no extra hardware o
extra stage delay, bypass hint avoids anticipatory rea
enabling a faster, lower-energy register file. Thus, while pr
vious techniques [1, 12, 3] use banking and caching
increase bandwidth supply, we opt to reduce demand.

Reducing the number of read ports introduces the pro
lem of mapping instructions to ports. Conventional pipe
lines, however, do not have this mapping problem becau
they provide enough register ports for a one-to-one ha
wired mapping between register file ports and function
units. Because bypass hint is available at the same time
wakeupbefore select occurs, select can be augmented
map instructions to functional units and ports,in parallel.
Unlike complications caused by previous techniques, bypa
hint’s timing makes our solution simpler to implement.

While read bandwidth demand can be reduced, we fou
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that write bandwidth demand cannot be easily reduced and
optimizing writes requires more changes. We propose to
supply high write bandwidth at low cost via banking. While
banking is a well-known bandwidth technique, the novelty
is in our second proposal for reducing the inevitable bank
conflicts. Conventional banking performs round-robin allo-
cation among the instructions in rename, hoping to evenly
distribute bank assignments to avoid conflicts at read and
writeback. This strategy is ineffective: instructions that
rename in the same cycle are often different from instruc-
tions that read or write back in the same cycle due to the
dynamic nature of out-of-order execution and variable-
latency instructions. Our solution is that while conventional
rename uses the same mapping for dependence tags and
physical registers, wedecouplethe two. We assign depen-
dence tags as usual in rename, but assign physical registers
in a round-robin fashion (perhaps different than depen-
dence tags) in the ample time between issue and writeback,
avoiding conflicts among writes. [8] proposes such decou-
pling to reduce the number of registers but not bank con-
flicts.

[1, 12] use banking for both reads and writes. Because
bypass hint sufficiently reduces read bandwidth demand,
we use banking for writes but not for reads; for reads, we
use true ports and bypass hint to reduce the demand for
those ports.

The main results of this paper are:

• On average, the SPEC2K benchmarks obtain about
66% of source operands from bypasses; bypass hint
correctly predicts 98.5% of the bypassed operands.
Using only 6 read ports, bypass hint reduces read
energy-delay by 66% with 1.8% performance degrada-
tion compared to an unrealizable, 16 read-port, 1-cycle
register file.

• Using 2 banks for write banking (4 write-ports per
bank) results in little performance degradation. While
increasing the number of banks reduces energy under
the constraint of maintaining the same number of total
ports, the constraint forces fewer ports per bank causing
more bank conflicts. Decoupled rename effectively alle-
viates this conflict problem. 4 banks (2 write-ports per
bank) with decoupled rename has energy-delay savings
of 65% compared to 56% for two banks. Using 4 banks
without decoupled rename degrades performance by
7%; with decoupled rename degradation is only 3%.

• The previously-proposed 2-level register file has a per-
formance degradation of 3.1% assuming 1-cycle
searches of the active list, butincreasesenergy-delay by
115%. In contrast, bypass hint has a performance degra-
dation of 1.8% with a register file energy-delay savings
of 61%

• Combining bypass hint and write banking, our 1-cycle
register file with 6 read ports, and two 4-write-ported

banks achieves a 9% processor energy-delay savi
over a system using a perfectly-pipelined, 2-cycle reg
ter file with 16 read ports and 8 write ports.

In the next section, we contrast our techniques from p
vious proposals. In Section 3, we describe techniques
reducing register read port demand, and increasing w
supply. In Section 4 we discuss access time and ene
impact of our techniques. Section 5 covers experimen
methodology and Section 6 contains experimental resu
We conclude in Section 7.

2  Related work

2.1 Complications with previous proposals

Reducing the number of registers decreases register
access time by reducing bitline delay but introduces su
stantial complications to the pipeline. While [12] propose
the possibilities for reducing the number of registers in th
abstract, [1] discusses the implementations detail
Because it is difficult to compare performance and ener
in the abstract, we contrast our ideas against[1]. The 2-
level register file proposed in[1] places the registers tha
will not be reused, except in the event of misspeculation,
the second level. Upon misspeculation, this techniq
requires searching for and replacing moved registers.

In order to identify which register operands will not b
reused, the technique requires that during register renam
the entire active list be searched to match use of physi
registers in L1 (tracked in the usage list) with existin
active instructions. Searching the active list every cyc
adds significant complication to the out-of-order pipelin
The reason for separating yet-to-issue instructions in t
small issue queue and all in-flight instructions in the larg
active list is to avoid searching the active list. As such, co
ventional active lists are non-searchable structures, wh
facilitates high clock speeds and avoids wiring complexit
The 2-level register file also uses a copy list that maintai
information needed to restore entries from L2 to L1 aft
misspeculation. While misspeculation rollback is already
complex aspect of conventional pipelines, the addition
restoration of register state required by the 2-level regis
file requires more resources, and will both increase ene
and time for the recovery.

Register caching, as proposed in [3], maintains sm
register caches close to the functional units and reads re
ter operands from one of four sources: 1) pre-read befo
the issue queue, 2) extended forwarding (bypass) logic,
register caches, and 4) the register file after a register ca
miss. Because operands may be read before the issue s
their technique requires storing operands in the iss
queue. Storing register values in the issue queue increa
the size of issue queue entries as register values are s
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stantially larger than the dependence tags stored in conven-
tional issue queues. The additional area and wiring required
for such an issue queue are primary reasons why modern
issue queues do not store register values.

If the operand is not pre-read into the issue queue, [3]
next tries to obtain it from bypass logic or the register
cache. The operand may not be present (i.e. a register
cache miss), or it may be invalid (i.e. a coherence miss). In
either case, the valid operand is not available in the register
cache. The instruction issues and produces an invalid
result. The correct register value must be brought to the
register cache, and the instruction must be reissued. It takes
several cycles to identify register cache misses, and stalling
issue for these many cycles to ensure a valid operand would
degrade performance. Therefore, the authors assume the
capability to reissue selectively only the instructions depen-
dent on the unavailable operand. Supporting selective reis-
sue would add substantial complexity to the issue queue.
Many conventional pipelines do not implement selective
reissue for similar circumstances. For example upon a load
miss many conventional designs simply squash and reissue
all instructions between issue and cache stages.

Another register file technique is banking, which is an
inexpensive means of supplying high bandwidth. [1, 12]
use banking for both reads and writes. For register reads,
reducing the demand for ports is more desirable than sup-
plying bandwidth through banking. Register read bank con-
flicts must be resolvedbefore reads are initiated. Bank
conflict detection must occur in an additional pipeline stage
inserted between issue and register read. However, the
additional stage can onlydetectbank conflicts and stall
offending instructions; it cannotpreventconflicts because
the instructions have already been issued. Prevention of
read bank conflicts would require augmenting the select
logic in the issue stage to map instructions to specific
banks, in addition to mapping instructions to functional
units. For example, if there were four banks with two read
ports each, an individual register would be accessible from
only two ports. The select logic would be required to select
and map up to eight instructions with sixteen source regis-
ters to the correct banks to avoid conflicts. Conceptually,
the select logic would need to treat each bank as a func-
tional unit and ensure that the number of instructions read-
ing a bank does not exceed the number of read ports per
bank, much as the select logic ensures that no more than 4

add instructions are selected if there are only 4 ALUs. O
course, this change implies that the select logic is mo
complex and may impact the clock speed [13].

2.2 Our proposals

Unlike previous schemes, our proposals do not intr
duce complications like searching the active list, storin
operands in the issue queue, and selective reissue. Tab
summarizes previous proposals and our techniques. M
like read banking needs to map instructions to bank
reducing read ports introduces the problem of mappi
instructions to ports. Bypass hint’s timing helps us solv
the mapping problem without adding complications to th
pipeline, as we explain in Section 3.2. Apart from the ma
ping problem, there are two special cases in our propos
bypass hint misprediction and write bank conflicts i
decoupled renaming. For these special cases, we advo
simple stalls of the relevant back-end stages. Because th
special cases are infrequent and resolving them takes on
cycle, stalling incurs little performance loss. For simplicity
we stall entire stages and not specific instructions. Beca
we advocate completely stalling the issue stage (and la
stages, if need be), there are no complications with the o
of-order scheduler, as we explain in Section 3.2 a
Section 3.3.

It is worth noting that proposals such as the 2-level re
ister file and register caching for reducing the number
registers may be implemented orthogonally to our propo
als for reducing the number of ports. However, because o
proposals adequately reduce the register file size with
the pipeline complications discussed above, combining
techniques may be unnecessary.

2.3 Other related work

Decoupled rename was proposed in [8] to reduce t
number of registers but not bank conflicts. Other regis
file proposals include compiler-controlled two-level regis
ter files for VLIW processors [17]. Several non-hierarch
cal, partitioned register files have been proposed to supp
clusters of functional units [5,7]. There are a few circui
level techniques for low-energy register files. For ultra lo
energy dissipation, the NRERL register file is an adiaba
register file clocked at less than 1 MHz [11]. In [16], th

Table 1: Register file technique pipline interaction summary: previous proposals (left) and ours (right).
2-level:

Rename: Search active list to update usage
Rollback: Search copy list to restore L2 entries to L1

Register Caching:
Issue: Pre-read operands and store in issue queue.
Selectively reissue instructions that miss and successors

Read/Write banking:
Reg read: added stage maps ports, ids conflicts, stalls

Bypass hint:
Issue: Bypass bit matches bypass operands. Map re
Register read: stall if inadequate b/w

Extra bypass-check stage:
Extra stage: identify bypass, map ports, stall if needed

Write banking via Decoupled Renaming:
Added stage: non-bypass operands map to physical t
Mem: Non-conflicting assignment of physical tags
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authors present several circuit-level techniques to reduce
energy dissipation. The paper avoids register reads for
bypassed values by determining the bypass conditions and
then accessing the register file for non-bypassed values,
within the same stage. The paper considers only a simple
in-order-issue, five-stage pipeline, and cannot be applied to
wide-issue, out-of-order pipeline where determining
bypass may require an additional stage due to high clock
speeds.

3  Reduce read demand; increase write supply

In the register read stage, the conventional pipeline
knowswhat instructions are issued but does not know from
wherethey will obtain the source operands. Bypass condi-
tions are determined using destination register information
from in-flight instructions, and at the same time the poten-
tial (non-bypass) operands are anticipatorially read from
the register file. Note that we show bypasses from the end
of writeback because the register file in wide-issue pipe-
lines is too big to be written in the first half cycle and read
in the next half cycle, as suggested by DLX [10].

3.1 Extra stage for bypass determination

One solution to avoid anticipatory reads is to separate
bypass checking and register read, as shown in Figure 1(a).
Bypass conditions are determined in an extra stage, called
bypass-check (BC) stage, between issue and read. Only
non-bypass operands are read from the registers in the read
stage. Thereby, (1) the bandwidth demand on the register
file reduces, enabling faster register with significantly
fewer ports, and (2) no energy is wasted on unnecessary
anticipatory reads.

BC has obvious performance concerns. Separating
bypass check and register read into two stages increases the

branch misprediction penalty. Similarly, the squash pena
incurred during a load miss increases [3]. The performan
penalties of BC are similar to those of a perfectly pipeline
register file. However, a pipelined register file extend
writeback into multiple stages and introduces the substa
tial additional complexity of requiring additional bypas
paths.

Apart from the performance concerns, BC interacts wi
the pipeline in other ways. In conventional pipeline
because there are as many ports as the issue width, the
a one-to-one hardwired mapping between read ports a
functional units, as shown in Figure 2(a). The select log
maps selected instructions to functional unitswithout
regard for availability of read ports. Because of the har
wiring, the read ports are guaranteed to be available.

Reducing the number of ports violates this one-to-o
mapping and raises four issues. The first issue is that
issued instructions have to be steered to the read ports
muxes. Because bypass conditions are determined in
BC stageafter select, select is unaware of the bypass co
ditions and cannot map the instructions to the ports. Up
issue, any of the instructions may need to access the po
and the mapping of instructions to ports can be determin
only after the bypass conditions are known in the BC stag
Therefore, the muxes may have to be n-to-1 muxes for
issue width of n. It is likely that the substantial reduction i
the number of register file ports makes up for the space a
time overhead of these muxes.

The second issue is that select cannot avoid issu
instructions requiring more read ports than are availab
There are two options to deal with the excess instruction
One is to stall both the excess instructions and the iss
stage, and use the extra muxes to map the excess inst
tions to read ports in the next cycle when no more instru
tions are coming from issue. The other is to squash t

FIGURE 1: Out-of-order pipelines: (a) extra stage to determine bypass, (b) bypass hint, and (c)
decoupled rename to resolve bank conflicts.

(b) Bypass hint:

Register
read

Fetch Decode MemExe WBRename Issue

BypassesBranch misprediction penalty
Bypass Bypass

check hint

Load miss penalty

(c) Decoupled rename to resolve bank conflict:

Register
read

Fetch Decode MemExe WBRename Issue

Bypasses
Branch misprediction penalty

Read
physical

Load miss penalty

for virtual
tagging tag table

Physical
tagging

(a) Extra bypass-check (BC) stage to determine bypass:

Register
read

Fetch Decode MemExe WBRename Issue

Bypasses
Branch misprediction penalty

Bypass
check

Load miss penalty
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excess instructions and reissue, similar to load miss squash
and reissue in modern pipelines. For the first option to be
viable, the bypass conditions have to be determined well
before the next clock edge so that issue can be stalled from
pushing more instructions into register read in the next
cycle. This timing requirement is likely to be easily met
because bypass condition determination entails equality-
checks of physical register tags and can be done fast. When
stalling issue, the structure monitoring functional unit
schedules must also be stalled to maintain correct state
regarding functional unit availability. The second option
may not be desirable because instead of stalling the excess
instructions for just a cycle, several cycles (e.g., 5 cycles
between issue and writeback) are lost in squash.

The third issue is that even if the number of read ports
are adequate for a set of instructions issued, some control
logic has to map the instructions to the read ports. Only
those instructions that obtain their operands from the regis-
ter file, and not from bypass, need to be steered to the ports.
The other instructions need not. Again, because the bypass
conditions are determined later in the BC stage, this map-
ping cannot be done in select. Instead, control logic for this
mapping has to be built into the read stage.

The fourth issue is that the output of each read port has
to be fanned-out to multiple functional units (in reality, to
muxes choosing between bypass inputs and register inputs
in front of the functional units) to accommodate the excess
instructions. This requirement adds wires, but not muxes.

3.2 Bypass hint

The lack of knowledge of the bypass conditions in select
is a major drawback of BC. This drawback is overcome by
bypass hint, which is an alternative means of eliminating
anticipatory register reads. Bypass hint is based on the fun-
damental observation that when a consumer’s source oper-
and is woken up in the issue queue by the producer’s result
broadcast, the consumer often issuesbefore the producer
writes back. Bypass hint avoids BC’s performance penal-
ties.

We use one extra bit, called thebypass bit, per source
operand in the issue queue slot. At the time of instruction
issue, the bypass bit indicates whether an operand had been
woken up while the instruction was waiting in the issue
queue or whether the operand was ready even before the
instruction entered the issue queue. If an operand is ready
at the time the instruction enters the issue queue, its bypass
bit is clear. At the time an operand is woken up, the bypass
bit is set in parallel with the setting of the conventional
operand-ready bit. Thus, there is no extra delay associated
with setting of the bypass bit, as indicated by bypass hint
being in parallel with issue in Figure 1(b).

The select logic sees the bypass bits and selects instruc-
tions so that the number of read ports needed do not exceed

the number of ports available. Essentially, some of the co
trol logic that maps instructions to ports (described
Section 3.1) is absorbed into select. This mapping is a lit
simpler than that of read banking (end of Section 2.1
Because bypass hint employs ports instead of banks, se
logic has to merely restrict the total number of source ope
ands to less than the total read ports. Hence, select can t
all of the register file as one type of functional unit, a
opposed to treating each bank as one type of functio
unit. This difference is a minor advantage for bypass h
over read banking if the number of banks is large.

Even if bypass hint were perfectly accurate, the selec
instructions have to be steered to the ports via mux
exactly as in BC. The only difference is that becau
bypass hint is known earlier than in BC, select can separ
instructions into “no or partially bypassed” and “fully
bypassed” categories. This separation helps in reducing
size of the muxes. For example, in Figure 2(b), we sho
mapping 4 instructions into 3 ports. Assuming bypass h
is perfect and these 4 instructions do not need more tha
ports, the combinations in which 3 ports would be need
by 4 instructions are: (a) 1 instruction needs 2 por
another needs 1, and the rest need no ports. (b) 3 or fe
instructions need 1 port each, and the rest need no ports
either case, at least one instruction needs no ports, so se
can separate out that instruction under “fully bypassed”,
shown in the far right in Figure 2(b). Similarly the rest o
the instructions can be separated as shown in the figu
The solid lines in the figure show the muxing for the abov
combinations. Thus, if bypass hint were perfect, only 2-t
1 muxes are needed in our example.

In Section 6, we show that 6 ports are sufficient for 8
way issue. In that case, the design would include 2 replic
of our example, and 2-to-1 muxes would still suffice. I
reality, however, we need 3-to-1 muxes to handle bypa
hint mispredictions, but still the mux overhead is reaso
ably low.

Upon issue, instructions read the register file for on
those operands that have their bypass bit clear. As in c
ventional pipelines, the bypass control logic determines t
real bypass conditions for the operands, in parallel with t
register reads. The control logic detects mispredictions c
responding to the rare exceptional cases when a sou
operand is not bypassed but the bypass bit is set. Th
cases occur under two possibilities: (1) The other sour
operand(s) of the instruction became ready much later,
which time the previously-woken-up operand has alrea
been written back to the register file (i.e., the operand w
not be bypassed). (2) Although all source operands ha
been previously woken up, the instruction is not issued d
to structural hazards. For both possibilities, although t
previously-woken-up operands have their bypass bits s
the operand values should be read from the register fi
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Fortunately, as the real bypass conditions are determined in
parallel with register read, such mispredictions can be
detected in the register read stage, as shown by bypass
check being in parallel with register read in Figure 1(b).

Bypass hint mispredictions correspond to excess
instructions in BC. Unlike BC’s excess instructions, bypass
hint mispredictions are infrequent. Also, the mispredictions
are detected early in register read. Hence, simply stalling
issue, like BC, works without much performance loss here
as well. As before, when stalling issue, the structure moni-
toring functional unit schedules must also be stalled to
maintain correct state regarding functional unit availability.
Much like the excess instructions, the mispredicted instruc-
tions are steered through the muxes in the next cycle. It is
this steering that requires the muxes to be 3-to-1.
Figure 2(b) shows this steering in broken lines. Note that
the instructions to functional unit mapping done by select
remains the same for mispredicted instructions.

It is also possible that a source operand is bypassed but
the bypass bit is clear. This possibility occurs due to the
operands whose producer has already done wake-up before
the consumer enters the issue queue, but the producer has
not written back by the time the consumer is issued. Such
operands enter the issue queue with their operand-ready bit
set, and are not woken up while in the issue queue. Conse-
quently, such an operand has its bypass bit clear, even
though the operand is bypassed. However, as in a conven-
tional pipeline, the bypass control logic determines that the
operand should come from bypass and discards the register
value. This lost opportunity is insignificant in practice.

3.3 Decoupled rename for write banking

Reducing write demand is difficult. It may seem that
register value death may be exploited for this purpose.
Many values are dead even before the instruction producing
them reaches writeback (i.e., the values are consumed via
bypasses and are not read from the register file). It may
seem that such dead values need not be written back, allow-
ing energy savings.

Unfortunately, register value death determination
speculative because of branch mispredictions. A regis
getting overwritten does not guarantee death because
overwriting instruction may be the result of a mispredic
tion. Consequently, registers cannot be deemed to be d
until all previous speculations are validated. Deeming
register dead before such validation will require resurre
ing the dead value, incurring complications. It is such re
urrection that forces [1] to search the active list. Therefor
we do not pursue this idea.

Instead, we utilize banking to supply write bandwidt
for the register file. Conventional banking performs roun
robin allocation among the instructions in rename. Instru
tions that rename in the same cycle are often different fro
instructions that read or write back in the same cycle, re
dering this strategy ineffective. We usedecoupled rename
for write banking to reduce bank conflicts. [8] propose
such decoupling to reduce the number of registers but
bank conflicts.

Conventional rename combines the dependence tag
physical register number to be the same. Decoupled rena
separates the dependence tagging of operands performe
the rename stage from the physical register assignm
which determines banks. By delaying physical regist
assignment until just before writeback, it is possible
make non-conflicting assignments for registers that wr
back at the same time. We identify the dependence tag
thevirtual tag and the physical register (and bank) assig
ment as thephysical tag; the number of virtual and physical
tags, and physical registers areall equal. In [8], the physi-
cal registers are fewer than the virtual tags, causing de
lock problems. But we do not have that problem.

The virtual tag is assigned in rename, stored in t
rename table, and used for wakeup and bypass condit
similar to dependence tags in conventional rename.
shown in Figure 1(c), decoupled rename assigns the ph
cal tag in the mem stage, just before writeback. Instructio
in writeback update thephysical tag tablewith their physi-
cal tag, so that later consumer instructions know whi
physical register holds their value. The physical tag table

FIGURE 2:  Wiring for read ports: (a) conventional register file. (b) bypass hint register file.

Func.
Unit

Register File

. . .

bypass
inputs

(a) Conventional register file:
Each read port wired to 1 func. unit.

(b) Bypass hint register file:

muxmux

Func.
Unit

muxmux

bypass
inputs

Instr. Instr.. . .

Func.
Unit

Smaller Register Filebypass
inputs

muxmux

Func.
Unit

muxmux

Instr.

Func.
Unit

muxmux

Func.
Unit

muxmux

bypass
inputs

mux mux

Instr. Instr.

mux

Instr.

Extra
Mux

Partially-bypassed or No-bypassed Fully-bypassed
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read for all source register operands in an additional stage
before register read, as shown in Figure 1(c). Because of
the additional pipeline stage, decoupled rename introduces
additional branch misprediction and load-miss penalty sim-
ilar to BC.

For instructions exiting the issue queue, two cases are
possible for each operand. The first is that operands, whose
producers have written back, obtain their physical tag from
the physical tag table and then read the register file. The
second is that operands, whose producers have not yet
reached writeback, willnothave a physical tag in the phys-
ical tag table. However, these operands areguaranteedto
get their values from bypass via virtual tag match, making a
physical tag unnecessary. In the event of a load miss,
branch misprediction, or exception, the physical tag table is
repaired in the same way as the rename table.

Unavoidable conflicts simply stall the pipeline back-end
from issue till writeback. Because we do not use read bank-
ing, decoupled renaming presents no additional complica-
tions in issue and register read. Both virtual and physical
tags are freed when the next instruction writing the same
logical register commits, just like conventional renaming.

The physical tag table may be optimized by utilizing
bypass hint for energy-optimizeddecoupled rename.
Because the physical tag table need only be read for oper-
ands coming from the register file, the bypass bit may be
used to reduce the number of physical tag table read ports
in the same way it is used to reduce register read ports. This
optimization is substantial from an energy standpoint;
avoiding reading the physical tag table for the high number
of bypass operands substantially reduces the porting and
energy overhead of the physical tag table.

A real implementation of our register file techniques
would combine write banking with one of the read tech-
niques. It would seem that combining decoupled rename

with bypass hint would annul bypass hint’s advantage
avoiding the extra BC stage, and that combining decoup
renaming with BC (and doing the physical renaming in th
BC stage) would work as well as combining decouple
renaming with bypass hint. In reality, the lack of knowl
edge of bypass conditions during select is a major dra
back of BC. Therefore, combining decoupled rename w
bypass hint is more advantageous than combining dec
pled rename with BC.

4  Access time and energy impact

Typical register file implementations employ multiple
copies so that each copy provides a reasonable numbe
true ports, and together the copies provide a large num
of ports [15]. True multiporting (i.e., multiple bitlines per
cell) makes register file cells slow beyond a certain numb
of bitlines per cell. The optimum number of copies for
given system is specific to technology and access-tim
requirements; in general having more copies (hence few
bitlines per copy) improves access speed unless
increased wire lengths due to more copies offsets t
advantage of fewer bitlines. For example, to get 8 read a
4 write ports, implementations may use 2 copies whe
each copy provides 4 read ports and 4 write ports. Beca
there are fewer read ports using our techniques, the num
of copies needed is also reduced. Fewer copies lead t
smaller and faster register file.

The effect of banking on access time is similar to that
reducing the number of registers or using subarra
because banks shrink the size of the bitlines and reduce
number of bitlines per cell. Because our designs use o
write banking due to timing concerns with read bankin
(Section 2.1) and the fact that we reduce read bitlines
reducing demand for read ports, our banks only reduce
number of write-port bitlines per cell. However, both rea
and write access time (and energy) benefit because the
of the bitlines is reduced.

4.1  Reducing energy
Bypass hint reduces read energy by avoiding most of t

unnecessary anticipatory reads. Because the register fil
read less often, read energy reduces significantly. Few
read ports reduceswrite energy due to the way copies in
multiported register files are updated. To keep the regis
file copies coherent, writes to a register are done to all t
copies at once. Consequently, each write consumes sign
cant energy because it must update multiple copies.

Energy overhead of the additional structures needed
register file techniques must also be taken into consid
ation. Bypass hint, BC, and banking require addition
wires outside the register file to map ports to function
units (discussed in Section 3 and Figure 2), but these wi
do not add substantial energy as they carry the same op

Table 2: System parameters.
Issue width 8

RUU 128 entries

Int. reg. and ports 180 regs. 16 rd and 8 write

FP reg. and ports 180 regs. 16 rd and 8 write

L1 i-cache 64K 2-way, 2-cycle

L1 d-cache 64K 2-way, 2-cycle, 2-port

L2 cache 2M 8-way, 12-cycle

Memory latency 80 cycles

Branch predictor 2-level hybrid. 8K entry L2

Mispredict penalty 6 cycles

Table 3: Register relative energy and overhead.
Energy components for one 64
bit register file copy

Relative Energy

Read to 1 of 4 ports 1.00
Write to 1 of 8 ports 0.32
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ands as in a conventional system. Bypass hint maintains the
bypass bit for each entry in the issue queue and extra
muxes to map instructions to register read ports. The
energy overhead of the extra bit in the issue queue entries is
negligible compared to the energy of the register file, and
the energy overhead of the muxes is negligible because
they only carry register numbers (8 bits), not data (64 bits),
and the muxes are only one extra pass gate.

In contrast, the 2-level register file in[1] has substantial
energy overhead. The authors state that the total overhead
of the usage table and the copy table accesses (not to men-
tion the active list search) is likely to counter any potential
energy savings from the 2-level register file.

5  Methodology

We modify Wattch [4] to replace the architectural regis-
ter file with a physical register file of the simulated size,
architecture, latency, and number of ports. Wattch associ-
ates physical register energy with the Register Update Unit
(i.e., instruction window) and Load/Store queue. We
removed Wattch’s physical register components from both
the Register Update Unit and Load/Store queue in the total
energy. Instead, we added our physical register file to the
total energy. For register file energy dissipation, we assume
that, similar to unused banks in energy-efficient caches [2],
unused register ports do not consume energy from bitline
swing. An example register file energy calculation, based
on values reported by our modified Wattch, is shown in
Table 3. We retain Wattch’s energy models for the remain-
ing components.

Table 2 shows the base configuration for the simulated
systems. We assume 180 integer and floating-point regis-
ters in the baseline architecture because it is a reasonable
value based on today’s processors and does not inflate the
energy impact of the register file. The 2-level register file
[1] in our study uses 100 registersfor L1 and 80 regis-
ters for L2. We assume 16 read ports and 8 write ports to
support our 8-issue processor which can issue any combi-

nation of eight instructions every cycle, constrained by t
two-ported L1 d-cache. For each SPEC2K application, w
use ref inputs, fastforward 2 billion instructions, and ru
for 500 million instructions. In the interest of space, w
show results for a subset of the SPEC2K applicatio
which are representative of our results over the ent
SPEC2K suite. We simulated the entire suite and carefu
chose this subset ensuring that the average behavior of
subset closely matched that of the suite.

6  Results

In each subsection, we show performance and ener
delay relative to a processor using an idealized 1-cycle,
read-port, 8 write-port register file. It is important to not
that this base case is intended to be an unrealizable up
bound for performance; therefore all of our results sho
performancedegradationrelative to this ideal. The ideal-
ized base case provides a reasonable comparison aga
our techniques which facilitate an achievable 1-cycle reg
ter file. We report energy-delay, a widely used metric
low power research because it considers both the ene
and performance impact of a technique. If energyalone
were used as a metric, results would be biased toward te
niques with large energy savings at the cost of large perf
mance degradations.

Section 6.1 through Section 6.3 show energy delay c
culated only from register file energy and overhead fro
our techniques while Section 6.4 shows processor ener
delay. In Section 6.1 we show that bypass hint and BC a
effective techniques for reducing read ports and reduci
register read energy. Section 6.2 shows the effect of red
ing read ports on write energy and the effectiveness
write banking. Section 6.2 also shows that decoupl
rename effectively reduces the performance degradat
caused by each bank having fewer ports when there ar
large number of banks. In Section 6.3 we compare the p
formance of bypass hint to the 2-level technique propos
in [1]. Finally, in Section 6.4 we combine our read an
write techniques to evaluate our proposals in terms of ov
all processor energy-delay.

6.1 Register Read Techniques

In this section, we evaluate the effectiveness of usi
BC and bypass hint to reduce register read ports by avo
ing anticipatory reads. Table 5 presents the percent of op

Table 4: Register file copies and write energy.

Ports and copies
(all 8 write ports)

readports/
copy

bitlines/
cell

Relative
write e-delay

16 read, 4 copies 4 12 1.0 (base)

6 read, 3 copies 2 10 0.76

6 read, 2 copies 3 11 0.51

Table 5: Statistics for bypass hint with 8 and 16 stage pipelines.

Benchmarks crafty eon equake fma3d gcc gzip lucas mesa mgrid twolf vortex wupwise Average

% from bypass 8 stage 63 70 76 78 61 68 57 66 51 69 70 67 66

% misprediction 8 stage 0.5 1.0 1.1 0.9 0.1 0.2 6.2 2.6 2.2 1.2 0.4 1.8 1.5

% from bypass 16 stage 68 77 85 85 64 73 66 74 60 72 78 75 72

% misprediction 16 stage 0.1 0.2 0.1 0.2 0.1 0.1 1.0 0.5 0.2 0.6 0.1 0.2 0.2
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4.
ands from bypass, and bypass hint accuracy for both 8 and
16 stage pipelines. For the 8-stage pipeline, between 51 and
78 percent of operands come from bypass, with an average
of 66%. Bypass hint has a low average misprediction rate
of 0.9%. As pipeline depths increase, more stages of bypass
are needed, increasing the opportunity for bypass operands.
For the 16- stage pipeline the average percent of operands
from bypass is 72%. The increased opportunity for bypass
operands reduces the misprediction rate to 0.2%. The only
application with an unusually high misprediction rate for
either pipeline islucas, which has few bypass operands
because its d-cache miss rate is over 18%. From this point,
all results use the 8-stage pipeline.

Figure 3 shows results for register reads. From left to
right, the bars represent a 1-cycle register file with only 6
read ports, aperfectly-pipelined 2-cycle register file with
16 read ports, a 1-cycle register file with 6 read ports using
BC to eliminate anticipatory reads, and a 1-cycle register
file with 6 read ports using bypass. All register files in this
section have 8 write ports. The results are relative to our
ideal, but unachievable 16 read port, 1-cycle register file.
The black sub-bars (right scale) represent performance
degradation relative to the base case. The full-height bars
(left scale) represent relative register read energy delay (i.e.
taking into account only register read energy). We show the
2-cycle pipelined register file, which may be difficult to
implement due to complications with pipelining SRAMS,
for comparison.

Using BC and bypass hint to eliminate anticipatory
reads effectively reduces the number of required register
read ports. A conventional processor using only 6 read
ports without avoidinganticipatory reads incurs a perfor-
mance degradation of 12%, as shown in the leftmost bars.
In contrast, BC and bypass hint incur average performance
degradations of 4% and 2% respectively despite only hav-
ing 6 read ports for an 8-issue processor. The pipelined 2-
cycle register file has degradation of 3%.

Though BC and bypass hint perform similarly, recall
BC’s complications (Section 3.2). Also, BC incurs the larg-
est absolute degradations because of branch misprediction
and load miss penalties as well as the inability of the sched-
uler to avoid conflicts.Crafty, gzip,and twolf all exceed

7%. The maximum performance degradation with bypa
hint is less than 5%.

BC and bypass hint perform comparably in energ
delay, achieving average savings of 65% and 67% resp
tively. Although BC is deterministic, bypass hint’s predic
tive nature is acceptable because of its high accura
Bypass hint also avoids the extra penalties associated w
BC. In contrast to bypass hint and BC, the 2-cycle, pip
lined register file experiences an average energy delay s
ings of minus 3% (this is anincrease in energy-delay)
because it does not avoid anticipatory reads and incurs p
formance degradation over the 1-cycle register file.

Unlike pipelined, banked, or 2-level register files tha
attempt to satisfy ever-increasing demand for read po
bypass hint eliminates much of the demand, resulting
substantial energy savings with minimal performance de
radation. In contrast to register reads, register writes can
be eliminated, as we said in Section 3.3. We address re
ter writes in the next subsection.

6.2 Register Write Techniques

6.2.1 Effect of bypass hint and write-banking
In this section, we evaluate techniques for meeting re

ister write demand and reducing write energy. We expe
the use of bypass hint for register reads to substantia
reduce write energy by mitigating the need for register fi
copies (Section 4.1). We also apply banking to register fil
to reduce energy. We expect decoupled rename to mitig
the performance degradation from write banking by avoi
ing write bank conflicts.

Bypass hint alone substantially reduces write energ
Each register write must occur to every copy of the regis
file. Because bypass hint reduces the number of neces
read ports, the number of copies are reduced. As discus
in Section 4, the number of copies is technology depend
and based on the number of bitlines (i.e. ports) per ce
Reducing copies decreases access time and saves w
energy because each write occurs to fewer locations.
assume that our base register file with 16 read and 8 w
ports, will require 4 copies. We compare our base to bypa
hint configurations using either 2 or 3 copies in Table

FIGURE 3: Read energy delay and performance.
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c: BC with 6 ports
b: Pipelined 2 cycle with 16 ports
a: 1 cycle with 6 ports i: 4 banks + decoupled rename

h: 4 banks with round-robin
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k: 4 banks + energy optimized decoupled rename
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(The relative energy delay is computed for the same group
of benchmarks as in the previous section.) These configura-
tions have comparable numbers of bitlines per cell, but
those with fewer copies will have faster access time due to
wire delay. The write energy-delay savings are proportional
to the number of copies eliminated. We use 2 copies for
further experiments.

We also apply write banking as discussed in Section 3.3
to satisfy write bandwidth requirements and reduce energy.
Figure 4 depicts performance degradation and relative
write energy-delay for 4 configurations: using 2 and 4
banks with conventional round-robin bank allocation, using
4 banks with decoupled rename, and using 4 banks with
energy-optimized decoupled rename. Applications with
performance degradations of at least 5% have their degra-
dations noted above the bars. Note that the scale for the
performance degradation bars is different from Figure 3.
(The scale change is needed to avoid the black bars over-
lapping the white bars.) These results use 16 read ports and
includeonly write banking.

Dividing the register file into two banks (4 write-ports
per bank) causes minimal performance degradation. While
increasing the number of banks reduces energy under the
constraint of maintaining the same number of total ports,
the constraint forces fewer ports per bank causing more
bank conflicts. The average performance degradation with
2 banks is 1%, compared to 7% with 4 banks. However,
from 2 to 4 banks, the average energy-delay savings
increases from 56% to 79%. In addition to the energy bene-
fits associated with physically smaller banks, using 4 banks
may be preferable to using 2 banks due to access time con-
siderations if the performance degradation due to conflicts
can be reduced.

We use decoupled rename, as discussed in Section 3.3,
to prevent write bank conflicts when using 4 banks. As
shown by the third set of bars in Figure 4, decoupled
rename reduces the average performance degradation with
4 banks from 7% to less than 3% even though the technique
adds an additional pipeline stage to read the physical tag
table before register read. Unfortunately, the large number
of accesses to the physical tag table adds substantial energy
overhead, as shown by the reduced energy delay savings.

The worst case isgcc,with an energy-delay over 75%.Gcc
experiences many squashed instructions and an unusu
high register read to write ratio of about 6 to 1. Due to th
large number of reads requiring physical tags, the ene
overhead of the physical tag table dominates the regis
write energy.

We use bypass hint to reduce the overhead of decoup
rename’s physical tag table. As mentioned in Section 3
our optimization uses information from bypass hint t
reduce accesses to the physical tag table; bypassed o
ands do not need to look up the table. The results show t
energy-optimized decoupled rename increases ener
delay savings from 44% to 65%. However, the optimizatio
also increases average performance degradation to 4%
to bypass mispredictions.

6.2.2 Register read and write techniques combined
In this section, we combine bypass hint with decouple

rename. We do not combine BC with decoupled renam
because of the arguments discussed at the end
Section 3.3. When bypass hint and decoupled rename
combined, register file energy delay is reduced by ov
75%. The register file with 2 banks achieves substant
energy savings, while additional savings may be extrac
using more banks and decoupled renaming. Figure 5 co
bines read and write techniques and depicts register
energy-delay (i.e. read energy, write energy, and overhea
The performance degradation values of the first three b
are also shown in Figure 7 using a larger scale. The 2-cy
pipelined register file has an energy delay savings ofminus
3% (this is anincreasein energy-delay) with a 2.8% per-
formance degradation. The 2-banked register file has
energy delay savings of 77% with a performance degrad
tion of 2.9%. The 4-banked register file with decouple
rename has an energy delay savings of 79% with a perf
mace degradation of 4.2%. Energy-optimizing the physic
tag table increases energy delay savings to 82% wh
increasing performance degradation to 6.3%.

6.3 Comparison with 2-level

In this section, we compare bypass hint to the 2-lev
register file proposed in[1]. We expect the 2-level register

FIGURE 5: Overall regfile energy delay and performance. FIGURE 6: 2-level Regfile. vs. bypass hint.
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file to suffer more performance degradation than bypass
hint because of the additional misspeculation penalty
caused by moving values from the L2 to the L1 and register
shortages in the L1. As mentioned in Section 4.1, we
expect the 2-level register file to incur substantial energy
overhead from its usage table, copy list, and active list
searches.

In our comparisons against the 2-level register file, our
technique only uses bypass hint with no banking. In[1], the
authors state that banking would provide little benefit to the
2-level register file (because their L1 and L2 are already
fairly small), but banking provides substantial benefits for
bypass hint. To be fair, our comparison does not include
write banking, but our energy-delay numbers do include
both register read and write energy as well as overhead
from the techniques. We also assume that the 2-level regis-
ter file can search the active list every cycle to update the
usage table.

Figure 6 shows the 2-level register file with a 100 entry
L1 and 80 entry L2, compared to our idealized 1-cycle 16
read-ported 180 entry register file. The figure also shows
our bypass hint technique. The black sub-bars represent
performance degradation (scale on right; different from
scale in previous graphs). The full bars represent register
file energy-delay (scale on left; different from scale in pre-
vious graphs). For the 2-level register file, the top of the
gray bars represents relative energy-delaywithout the
energy overhead of searching the active list. The top of the
full bars represents relative energy-delay including the
active list search overhead.

The 2-level register file experiences greater performance
degradation than bypass hint. We idealistically assume the
active list can be searched each cycle, and we assume that 8
usage table entries may be checked each cycle during mis-
speculation recovery. The average performance degrada-
tion for 2-level is 3.1% compared to 1.8% for bypass hint.
Low IPC applications such aslucas,which use few regis-
ters, suffer the least with 2-level. However, searching the
active list every cycle is not realistic. Less frequent
searches of the active list mean fewer chances to move reg-
isters to L2. If the active list can be searched only every
three cycles, average performance degradation increases to
5.4% (not shown in figure).

The 2-level register file has large energy overhea
Without considering the overhead of searching the act
list, our estimates of the energy overhead of the 2-level re
ister file are actually slightly lower than those in[1]. Com-
pared to bypass hint reducing energy delay by 61%, the
level register file reduces energy-delay byminus1% (this is
an increasein energy-delay). When the overhead of search
ing the active list is included, the energy-delay increases
215% that of the base case.

6.4 Processor Energy-Delay

In this section we evaluate the effects of bypass hint a
write banking on overall processor energy. Because mod
register files represent about 10% to 15% of process
energy, we expect to see processorenergy-delaysavings of
less than 10% when accounting for performance loss.

Figure 7 depicts overall processor energy-delay and p
formance degradation for register files using bypass h
and using write banking with either 2 banks or 4 banks pl
decoupled rename. Results are relative to the idealized
cycle register file. The perfectly-pipelined, 2-cycle regist
file with 16 read ports, is also shown. Note that both th
energy and performance degradation scales are differ
from previous graphs.

The 2-bank register file performs slightly better than th
4-bank register file. Processor energy-delay savings is
for the 2-bank register file and 3% for the 4-bank regist
file with decoupled rename. The energy-saving potential
bypass hint is evident in a comparison against the pipelin
2-cycle register file, which is a more realistic design poi
than the 16 port, 1 cycle register file. Compared to usi
the 2-cycle register file, bypass hint and 2 write ban
achieves a processor energy-delay savings of 9% with v
tually no performance loss (0.1%).

Performance degradations are 2.9% and 4.2% resp
tively for 2 banks with RR and 4 banks with decouple
rename when compared to the 1-cycle, 16 read-port regis
file. Two problem cases when using 4-banks aretwolf and
gzip. For twolf, the energy overhead of the physical ta
table eliminates energy-delay savings with 4-bank
Though it’s energy-delay and performance are slight
worse, the 4-bank register file, however, might be necess
in some designs for faster access time.

Energy savings from bypass hint and write bankin
increase with the number of physical registers. If w
increase the number of registers from 180 to 256, t
energy-delay savings of bypass hint with 2 write ban
over the 1-cycle, 16-read-port register file is 8% with n
change in performance loss (not shown in figures).

7  Conclusions

We proposed to reduce the number of register po

FIGURE 7: Overall processor energy delay.
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through two proposals, one for reads and the other for
writes. For reads, we proposed bypass hint to reduce regis-
ter port requirements by avoiding unnecessary register file
reads for cases where values are bypassed. Current proces-
sors are unable to avoid these unnecessary reads due to tim-
ing constraints. For writes, we used register file banking.
Current banking schemes assign different banks to instruc-
tions that are renamed together, which does not necessarily
avoid conflicts among instructions that writeback together.
We used decoupled rename, which separates dependence
and physical tagging of register operands. Decoupled
rename allows us to perform physical register allocation
just before writeback, avoiding bank conflicts.

Unlike previous register file techniques, our proposals
do not require complications such as searching the active
list, storing register operands in the issue queue, maintain-
ing coherence among register caches, and selective reissue
upon a register cache miss. Bypass hint requires that we
map instructions to a limited number of read ports, but
bypass information is available early enough to perform
this mapping in parallel with issue. While read bandwidth
demand can be easily reduced via bypass hint, we found
that write bandwidth demand cannot be easily reduced.
Optimizing writes required banking, but mitigating bank
conflicts required introducing decoupled rename.

On average, the SPEC2K benchmarks obtain about 66%
of source operands from bypasses; bypass hint correctly
predicts 98.5% of the bypassed operands. Using only 6
read ports, bypass hint reduces read energy-delay by 66%
with 1.8% performance degradation compared to an unreal-
izable, 16 read-port, 1-cycle register file. While using 2
write banks (4 write-ports per bank) results in little perfor-
mance degradation, 4 banks (2 write-ports per bank) with
decoupled rename has energy-delay savings of 65% com-
pared to 56% for two banks. Using 4 banks without decou-
pled rename degrades performance by 7%; with decoupled
rename degradation is only 3%. The 2-level register file has
a performance degradation of 3.1% assuming 1-cycle
searches of the active list, butincreasesenergy-delay by
115%. In contrast, bypass hint has a performance degrada-
tion of 1.8% with a register file energy-delay savings of
61%. Combining bypass hint and write banking, our 1-
cycle register file with 6 read ports, and two 4-write-ported
banks achieves a 9% processor energy-delay savings over a
system using a perfectly-pipelined, 2-cycle register file
with 16 read ports and 8 write ports.
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