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Abstract

We proposeSimultaneously and Redundantly Threaded processors with Recovery (SRTR)that enhances a pre-
viously proposed scheme for transient error detection, called Simultaneously and Redundantly Threade
processors, to include transient fault recovery. SRT replicates an application into two communicating th
one executing ahead of the other. The leading thread communicates the values it produces to the trailing
which repeats the computation and compares the values produced by the two threads. SRT’s leading
tions may commitbeforechecking for errors, relying on the trailing thread to detect errors. SRTR, on the o
hand, mustnot allow any leading instruction to commit before checking, since a faulty instruction canno
undone once the instruction commits. To avoid leading instructions stalling at commit while waiting for
trailing counterparts, SRTR exploits the time between completion and commit of a leading instruction.
compares the leading and trailing values as soon as the trailing instruction completes, typically before th
ing instruction reaches the commit point. To avoid increasing the bandwidth demand on the register
checking register values, SRTR uses theregister value queue (RVQ)to hold register values for checking. To
reduce the bandwidth pressure on the RVQ itself, SRTR employsdependence-based checking elision (DBCE
By reasoning that faults propagate through dependent instructions, DBCE exploits register (true) depe
chains so thatonly the last instruction in a chain uses the RVQ to check leading and trailing values. The pe
mance of SRTR is within 1% and 7% of the SRT performance for SPEC95 integer and floating-point prog
respectively. While SRTR without DBCE incurs about 18% performance loss when the number of RVQ
is reduced from four (which is equivalent to an unlimited number) to two ports, with DBCE, a two-ported
performs within 2% of a four-ported RVQ.

1  Introduction

The downscaling of feature sizes in CMOS technologies is resulting in faster transistors and lower supp

ages. While this trend contributes to improving the overall performance and reducing per-transistor po

also implies that microprocessors are increasingly more susceptible to transient errors of various typ

instance, cosmic alpha particles may charge or discharge internal nodes of logic or SRAM cells; and low

ply voltages result in reduced noise margins allowing high-frequency crosstalk to flip bit values. The re

degraded reliability even in commodity microprocessors for which reliability has not been a concern

recently.

To address reliability issues, Simultaneously and Redundantly Threaded (SRT) processors are propos

based on the Simultaneous Multithreaded architecture (SMT) [14]. SRT detects transient errors by rep

an application into two communicating threads, one (called the leading thread) executing ahead of th

(called the trailing thread). Conceptually, the leading thread communicates the results of its computation

trailing thread, which repeats the computations and compares the values produced by the two threads.

Although SRT does not support recovery from errors, the following features introduced by SRT for error d

tion [8] are important for recovery as well: (1) Replicating cached loads is problematic because memory
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tions may be modified by an external agent (e.g., another processor during multiprocessor synchron

between the time the leading thread loads a value and the time the trailing thread tries to load the sam

The two threads may diverge if the loads return different data. SRT allows only the leading thread to acc

cache, and uses the Load Value Queue (LVQ) to hold the leading load values. The trailing thread load

the LVQ instead of repeating the load from the cache. (2) The leading thread runs ahead of the trailing

by a longslack(e.g., 256 instructions), and provides the leading branch outcomes to the trailing thread th

the Branch Outcome Queue (BOQ). The slack and the use of branch outcomes hide the leading thread

ory latencies and branch mispredictions from the trailing thread, since by the time the trailing thread n

load value or a branch outcome, the leading thread has already produced it. (3) By replicating register

but not memory values, SRT comparesonly stores and uncached loads, and not register values, of the

threads. Because an incorrect value caused by an error propagates through computations and is eventu

sumed by a store, checkingonly stores suffices.

A recent paper [7] proposes hardware recovery using superscalar hardware without any SMT support.

cates the natural way to achieve recovery by using superscalar’s rollback ability. It does not use the LV

does not address the issues related to cached loads. It also claims that there is no need for any slack

scalar. However, for an SRT using the LVQ for cached loads, we confirm SRT’s results that zero slack

trailing thread stalls and performance loss due to unavailable leading load values. Our results show t

unavailability is due largely to on-chip cache hit latencies, and that slack would have been needed in [

had addressed cached loads.

We proposeSimultaneously and Redundantly Threaded processors with Recovery (SRTR)to extend SRT to

include recovery. Although systems using software recovery often employ hardware detection [3,11], so

checkpointing incurs considerable performance cost even when there are no faults. Therefore, hardwar

ery at a modest performance cost over detection is an attractive option, especially because hardware r

permits the use of stock software. We identify the following key issues not addressed in [7]:

• Problem: A fundamental implication of the SRT detection scheme is that leading non-store instruc

may commitbeforechecking for errors, relying on the trailing thread to detect errors when the trailing st

complete. SRTR, on the other hand, mustnot allow any leading instruction to commit before checking since

faulty instruction cannot be undone once the instruction commits. Unless care is taken, leading instru

will stall at commit waiting for their trailing counterparts to complete and check. This will create pressu

the instruction window and physical registers, and degrade performance.Solution: To avoid leading instruc-

tions stalling at the commit point, SRTR exploits the time between completion and commit of a lea

instruction. SRTR checks the results of a leading and the corresponding trailing instruction as soon as th

ing instruction completes, well before the leading instruction reaches the commit point. For the SP

benchmarks, the complete to commit time averages at 29 cycles. This provides sufficient time for a t

instruction to complete before the leading instruction reaches the commit point. To exploit the compl
2



time, a

ad val-

e trail-

ons are

n-chip

n

en the

riment,

writ-

file

-

g of

i-

g that

hat

ctions

bserv-

owever,

in the

ear-by

only a

ons is

commit

BCE

f SRT

about

nlim-

register

tion.

tion 5,

e exe-

eme to

ation is
commit time, the slack between the leading and trailing threads in SRTR must be short. At the same

slack that is too short would cause the trailing thread to stall due to unavailable branch outcomes and lo

ues from the leading thread. To support an appropriately short slack, SRTR’s leading thread provides th

ing thread with branch predictions instead of outcomes. Because the leading thread’s branch predicti

available much earlier than the branch outcomes, and because a short slack is sufficient for hiding o

cache hit latencies, SRTR avoids trailing thread stallsevenwith a short slack. We show that high predictio

accuracies and low off-chip miss rates in the base SMT enable SRTR to perform within 5% of SRT wh

recovery mechanisms of SRTR are disabled so that both schemes target only detection. In this expe

SRTR uses a slack of 32, and SRT uses a slack of 256 as in [8].

• Problem: By the time a leading instruction reaches the commit point, its register value often has been

ten back to the physical register file. Becauseall instructions are checked in recovery, accessing the register

in order to perform the check will add substantial bandwidth pressure.Solution: SRTR uses a separate struc

ture, theregister value queue (RVQ),to store register values and other information necessary for checkin

instructions, avoiding bandwidth pressure on the register file.

• Problem: There is bandwidth pressure on the RVQ.Solution: We proposedependence-based checking el

sion (DBCE)to reduce the number of checks, and thereby, the RVQ bandwidth demand. By reasonin

faults propagate through dependent instructions, DBCE exploits register (true) dependence chains so tonly

the last instruction in a chain uses the RVQ to check leading and trailing values. The chain’s earlier instru

in both threads completely elide the RVQ. SRT can be viewed as taking such elision to the extreme by o

ing that stores are the last instructions in any register dependence chain, and checking only stores. H

SRT’s chains are too long for SRTR because the leading thread cannot commit until the last instruction

long chain checks. DBCE forms short chains by exploiting the abundant register dependencies in n

instructions. Because of the short slack and short chains, the trailing chain’s last instruction completes

few cycles behind the leading chain’s earlier instructions. Consequently, checking of the last instructi

usually done between the time the earliest leading instruction completes and the time it reaches the

point. DBCE redundantly builds chains in both threads and checks its own functionality for faults. D

elides 35% of checks for the benchmarks we consider. The performance of SRTR is within 1% and 7% o

performance for SPEC95 integer and floating-point programs, respectively. SRTR without DBCE incurs

18% performance loss when the number of RVQ ports is reduced from four (which is equivalent to an u

ited number) to two ports. With DBCE, a 2-ported RVQ performs within 2% of a 4-ported RVQ.

SRTR is guaranteed to provide recovery from single transient errors except for the errors that affect the

file and the errors that fail to propagate through dependence chains, in which case it guarantees detec

We review SRT in Section 2. We describe the SRTR scheme in Section 3 and DBCE in Section 4. In Sec

we present experimental results. In Section 6, we discuss related work, and conclude in Section 7.

2  Transient Fault Detection: Background

SRT uses SMT’s multithreaded execution to replicate an application into two communicating threads, on

cuting ahead of the other. Comparing the results of two redundant executions is the basic underlying sch

detect transient faults in SRT. Because detection is based on replication, the extent to which the applic
3
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replicated is important. SRT formalizes this notion by defining thesphere of replication (SoR)[8], pointing out

that (1) all computation and data within this sphere are replicated such that each thread uses its own c

data entering the SoR is independently read by the two threads usinginput replication, (3) data exiting the SoR

from the two threads are compared usingoutput comparison, and only one copy of the checked data exit

Because data outside the SoR is not replicated, other forms of protection such as ECC are needed ou

SoR.

Two possible SoRs defined in [8] are: processor and registers inside the SoR, with the cache hierarchy

and only the processor inside the SoR, with the registers and cache hierarchy outside. In the first SoR,

and trailing thread values need to be compared only for stores and uncached loads, while other instructi

commit without comparing values. SRT uses a store buffer (StB) in which the leading thread places its

mitted store values and addresses. The trailing thread compares the StB entries against its own store va

addresses to determine whether an error has occurred. In the second SoR, all register values ne

checked. Checking registers requires large buffers with high bandwidth to avoid performance degradat

As explained in Section 1, to handle cached loads, SRT uses the ECC-protected Load Value Queue (L

which the leading thread deposits its committed load values and addresses. The trailing thread mat

addresses to those in the LVQ, and obtains the load value from the LVQ instead of repeating the load fr

memory hierarchy. The Active Load Address Buffer proposed in [8] is an alternative for the LVQ that

addresses this problem. We use the LVQ because it is simpler.

A key optimization in SRT is that the leading thread runs ahead of the trailing thread by an amount call

slack(e.g., the slack may be 256 instructions). In addition, the leading thread provides its branch outcom

the branch outcome queue (BOQ) to the trailing thread. The slack and the communication of branch ou

hide the leading thread’s memory latencies and avoids branch mispredictions from the trailing thread.

the slack, by the time the trailing thread needs a load value or branch outcome, the leading thread has

produced it.

SRT assumes that uncached accesses are performed non-speculatively. SRT synchronizes uncached

from the leading and trailing threads, compares the addresses and replicates the load data. For replic

instructions, SRT assumes that code does not modify itself, but points out that self-modifying code in r

SMTs already requires thread synchronization and cache coherence which can be extended to provide

tency between the leading and trailing threads. For input replication of external interrupts, SRT sugges

ing the threads to the same execution point and then delivering the interrupt synchronously to both thre

3  Transient Fault Recovery

We proposeSimultaneously and Redundantly Threaded processors with Recovery (SRTR)that enhances SRT
4
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to include transient fault recovery. A natural way to extend SRT to achieve recovery is to use the rollbac

ity of modern pipelines, which is provided to support precise interrupts and speculative execution [7]. Be

transient faults do not persist, rolling back up to and including the offending instruction and re-executing

antees forward progress.

In SRT, however, leading non-store instructions may commitbeforechecking for faults, relying on the trailing

instruction to check either store values in the first SoR or register values in the second SoR. SRTR, on th

hand, mustnot allow any instruction to commit before it is checked for faults. As much as possible, trai

instructions must complete and results must be compared before the leading instructions reach the

point so that leading instructions do not stall at commit. Therefore, the slack between the threads can

long. At the same time, a near-zero slack would cause the trailing thread to stall due to unavailable bran

comes and load values from the leading thread. To support a short slack, SRTR’s leading thread provi

trailing thread with branch predictions instead of outcomes, as done by SRT. Accordingly, SRTR counts

in terms of fetched speculative instructions, while SRT counts slack in terms of committed instructions.

SRT uses committed values for branch outcomes, load addresses and values, and store addresses a

Consequently, the StB, LVQ, and BOQ are simple queues that are not affected by mispredictions. B

SRTR compares speculative values of the leading and trailing threads, it needs to handle the effects of

dictions on these structures.

SRTR uses the SoR that includes the register file. Like SRT, we assume an out-of-order, SMT pipelin

The pipeline places instructions from all threads in a singleissue queue.Instructions wait in this queue until

source operands become available, enabling out-of-order issue. Apart from the issue queue, each

instructions are also held in the thread’s privateactive list (AL). When an instruction is issued and remove

from the issue queue, the instruction stays in its AL. Instructions commit from the AL in program o

enabling precise interrupts.We illustrate SRTR’s SoR and SRTR’s additions to SMT in Figure 1.

3.1  Keeping speculative leading and trailing instructions synchronized

For every branch prediction, the leading thread places the predicted PC value in theprediction queue (predQ).

This queue is similar to the BOQ except that it holds predictions instead of outcomes. The predQ is emp

queue-order by the trailing thread. Using the predQ, the two threads fetch essentially the same instr

without diverging.

Because the ALs hold the instructions in predicted program order and because the two threads comm

via the predQ, corresponding leading and trailing instructions occupy the same positions in their resp

ALs. Thus, they can be easily located for checking. Note that corresponding leading and trailing instru

may enter their ALs at different times, and become ready to commit at different times. However, we w
5
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able to use the fact that the instructions occupy the same position in their ALs to keep the implementatio

ple.

Due to the slack, the leading and trailing threads resolve their branches at different times. Upon dete

misprediction in the leading thread, the leading thread cleans up the predQ, preventing the trailing threa

using mispredicted entries placed earlier in the predQ. There are two possibilities for the timing of e

related to a misprediction: (1) The leading branch resolves after the trailing thread has already used th

sponding predQ entry, or (2) the leading branch resolves before the entry is used by the trailing thread

Possibility 1 implies that the trailing AL position corresponding to the leading branch’s AL pointer is valid

contains the trailing branch. There are mispredicted trailing instructions in the trailing AL. The leading th

then squashes the mispredicted instructions in the trailing AL, and the existing predQ entries which c

fetch PCs from the incorrect path. Because the leading and trailing ALs are identical, the leading bran

use its own AL pointer to squash the trailing AL. Possibility 2 implies that the trailing AL position correspo

ing to the leading branch’s AL pointer is beyond the tail of the trailing thread AL. In this case, the lea

branch squashes all predQ entries later than its own predQ entry and places the branch outcome in the

be used by the trailing thread later. To prevent errors from causing incorrect squashing, AL pointers a

tected by ECC.

Although the leading thread rolls back the predQ and the ALs of both threads upon a misprediction, the t

thread still checks the leading branch’s outcome against the trailing branch’s outcome. The rollback is a

mistic action to reduce the number of mispredicted trailing instructions, assuming that the leading thr

fault-free. If the leading thread’s misprediction is incorrectly flagged due to a fault, the trailing branch’s c

triggers a rollback. We discuss the details of checking in Section 3.3.

FIGURE 1: (a) SRTR’s Sphere of Replication. (b) SRTR’s additions to SMT.
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3.2  Modifying the LVQ

SRT uses a strict queue-ordering for the LVQ, i.e., the leading thread inserts committed load value

addresses at the tail, and the trailing thread empties the load values and addresses from the head of th

SRTR modifies SRT’s LVQ to operate on speculative cached loads, and therefore, cannot maintain th

queue order of SRT. To keep the LVQ as compact as possible, we use a table, called theshadow active list

(SAL), to hold pointers to LVQ entries. The SAL mirrors the AL in length but is much narrower than the L

and instructions can use the AL pointer to access their information in the SAL. The SAL is also help

checking register values as explained later.

A leading load allocates an LVQ entry when the load enters the AL, and places a pointer to the entry

SAL. Because loads enter the AL in (speculative) program order, LVQ entries are allocated in the same

simplifying misprediction handling as explained at the end of the section. Upon issue, the leading load o

its LVQ pointer from the SAL and places its load value and address in the LVQ. The trailing load, when

issued, also obtains the LVQ pointer from the SAL, and it compares its address with the leading load a

stored in the LVQ, as done in SRT. On a match, the trailing load obtains the leading load value from the

A mismatch of the addresses flags a rollback (as explained in Section 3.3) with three possibilities: (

address register value produced by a previous instruction is faulty and the faulty instruction will cause ro

to be initiated upon being checked; (2) the address computation of the load is faulty and the load instr

will cause rollback to be initiated; (3) the previous instruction was checked and committed and the addre

ister has been corrupted since. Because the register file is inside the SoR, SRTR flags an error but

recover in this case without protecting the register file with ECC.

Even though leading instructions are fetched and placed ahead of the corresponding trailing instruction

issue queue, it is possible that a trailing load is issued before the leading load. A possible solution is to

the premature trailing load’s address in the empty LVQ entry. Upon arriving at the LVQ, the leading load

pares the addresses and satisfies the pending trailing load. This solution naturally extends to the case

trailing load issues after the leading load, but finds the LVQ entry empty due to the leading load missing

cache. Note that the LVQ is ECC-protected and so values stored in it are not vulnerable to faults.

An LVQ entry is relinquished in queue order after the trailing instruction reads the entry. Rollback of the

upon a leading branch misprediction is done in parallel with the clean-up of the AL. To facilitate the roll

of the LVQ, branches place the LVQ tail pointer in the SAL at the time they enter the AL. Because the LV

in (speculative) program order, the LVQ tail pointer points to the LVQ entry to which the LVQ needs t

rolled back, if the branch mispredicts. A mispredicted branch’s AL pointer locates the LVQ tail pointer in

SAL, and the LVQ is rolled back to the pointer. Like the predQ’s rollback, the LVQ’s rollback is also an o

mistic action and the leading branch is checked to confirm the misprediction.
7
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3.3  Checking leading and trailing instructions

SRTR checks the leading and trailing instructions as soon as the trailing instruction completes. Register

often have been written back to the physical register file by the time the check is performed. To addre

issue, SRTR uses a separate structure, theregister value queue (RVQ)to store register values for checking

avoiding bandwidth pressure on the register file (Figure 1(b)). In this section, we assume that all the in

tions including branches but excluding loads and stores use the RVQ to check. We assume that the R

provide the required bandwidth. We address the bandwidth pressure on the RVQ in Section 4.

Because the trailing instructions need to locate the leading counterpart’s value in the RVQ, the leading i

tion allocates an RVQ entry at the time of entering the AL, and places a pointer to the entry in the SAL f

trailing instruction. After the leading instruction writes its result back, it enters thefault-checkstage. In the

fault-check stage, the leading instruction puts its value (for branches, the next PC, the prediction and t

come are all part of the value) in the RVQ using the pointer it obtains from the SAL. The instruction then

in the AL to commit or squash due to faults or mispredictions. Because the fault check stage isafterwriteback,

the fault check stage does not affect branch misprediction penalty, or the number of bypass paths. F

illustrates this point.

The trailing instructions also use the SAL to obtain their RVQ pointers and find their leading counterparts

ues. While it is likely that the leading instruction reaches the fault check stage before the trailing instru

out-of-order pipelines may reverse the order. To handle such reversals, if the trailing instruction finds the

entry of its leading counterpart to be empty, it places its own value. When the leading instruction reach

fault-check stage, it finds the value and performs the check. A full/empty bit in the RVQ is used to ind

whether or not the RVQ entry contains leading or trailing values. The full/empty bits need to be ECC-pro

to prevent corrupted full/empty bits from causing leading and trailing instruction pairs to wait forever. An

entry is relinquished in queue order after the checking is done. Branch misprediction clean-up of the RV

the SAL in the same way as for LVQ clean-up.

SRTR places completed leading store values and addresses in the StB. Completed trailing stores check

ues and addresses. Address mismatches in the StB are handled similar to those in the LVQ.

Leading and trailing values are compared either in the RVQ or in the StB, and if the check succeeds thecommit

vector (CV)entries corresponding to the leading and trailing instructions are set to thechecked-okstate.
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kFIGURE 2: SRTR pipeline

with fault-check stage.
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Indexed by AL pointers, the CVs are parallel to the ALs (Figure 1(b)). As instructions are placed in the

their CV entries are set to thenot-checked-yetstate. Due to the slack, leading instructions commit ahead

their trailing counterparts from their respective ALs. If the state is not-checked-yet, the instruction is sta

commit until it is checked. If a check fails, the CV entries of the leading and trailing instructions are set

failed-check state.

A leading instruction commits only if its CV entry and the CV entry of its trailing counterpart are in

checked-ok state. When a failed-check entry reaches the head of the leading AL, all later instructio

squashed. The leading thread waits until the trailing thread’s corresponding entry reaches the head of t

ing AL before restarting both threads at the offending instruction. Because there is a time gap between

ting and the reading of the CV and between the committing of leading and trailing counterparts, the

protected by ECC to prevent faults from corrupting it in the time gap.

There are faults from which SRTR cannot recover: After a register value is written back and the instru

producing the value has committed, if a fault corrupts the register, then the fact that leading and t

instructions use different physical registers will allow us to detect the error on the next use of the register

However, SRTR cannot recover from this error. To avoid this loss of recovery, one solution is to provide

on the register file.

4  Reducing Bandwidth demand on the Register Value Queue

The RVQ needs to allow as many writes or reads of register values per cycle as the number of leading an

ing instructions completing in one cycle. Because the RVQ has as many entries as in-flight leading instru

(around 120 64-bit values, totaling to 1KB), providing multiple ports to support high bandwidth (e.g., fou

bit values per cycle) may be unacceptable.

We proposedependence-based checking elision (DBCE)to reduce the number of instructions accessing t

RVQ. To keep the implementation simple, we use only simple dependence chains such that each instru

a chain has at most one parent and one child (instead of maintaining the full dependence graph). By re

that faults propagate through dependent instructions, DBCE exploits register (true) dependence chains

only the last instruction in a chain uses the RVQ to check leading and trailing values, as shown in Figur

The chain’s earlier instructions inboth threads completely elide the RVQ. If the last instruction check s

ceeds, it signals the previous instructions in the chain that they may commit; if the check fails, all the in

tions in the chain are marked as having failed and the earliest instruction in the chain triggers a rollback.

feature of DBCE is that both leading and trailing instructions redundantly go through the same depen

chain formation and checking-elision decisions, allowing DBCE to check its own functionality for faults.
9
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If the last instruction of a chain is further in the instruction stream and completes much later than the

instructions, the chain’s earlier instructions will stall at commit. To avoid this situation, DBCE forms s

dependence chains (e.g., 3-4 instructions) by exploiting the abundant register dependencies in near-by

tions. If DBCE’s chains arem instructions long, DBCE checks only one out ofm instructions, reducing the

bandwidth by a factor ofm. Because of short slack and short chains, the trailing chain’s last instruction c

pletes just a few cycles behind the leading chain’s earlier instructions. Consequently, checking of th

instructions is usually done between the time the earliest leading instruction completes and the time it r

the commit point.

Because leading loads deposit their values in the LVQ for the trailing loads, there is no notion of elidi

checking for load values, and hence loads are not included in the chains. Stores are checked in the StB

not use the RVQ. Therefore, stores are not included in the chains as well. Because branches do not

register values, branches cannot be in the middle of a chain. Branches may be at the end of chains an

case they themselves cannot elide checking but they help elide checking for the instructions preceding

chain. If chains are allowed to cross branches, mispredictions will require clean-up of the chains to de

chains whose later instructions have been squashed due to an intervening branch misprediction. To av

clean-ups, DBCE disallows chains from crossing branches.

Exploiting dependence chains consists of (1) identifying dependence chains in the leading thread and

responding chains in the trailing thread, and tagging each chain with a unique tag, (2) identifying the in

tions in the leading and trailing threads performing the check, (3) preventing the rest of the instru

(leading and trailing) in the chain from performing the check, and (4) notifying the non-checking instruc

in the chain after the check is performed.

4.1  Forming dependence chains

To identify dependence chains, DBCE uses the dependence chain queue (DCQ), which holds infor

about renamed instructions that were fetched in the last few cycles (e.g., 1-2 cycles). The instructions a

FIGURE 3: (a) DBCE concept. (b) DCQ chain formation.
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true register dependence independent
instruction
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if equal, commit
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order
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in the instruction fetch order. Each entry in the queue holds the destination physical register and the AL p

of an instruction, a tag which identifies the chain to which the instruction belongs, and a flag to indicate

instruction already has a dependent instruction in its dependence chain. The AL pointer of the first instr

in a chain is used as the chain’s tag.

Upon entering the DCQ, an instruction associatively searches the DCQ using its source physical registe

bers, matching them against destination physical register numbers of instructions in the DCQ. If there

match on any source register, or if all the matching instructions already have their flags set indicating tha

instructions already have children, there is no live chain to which the current instruction can belong; th

instruction uses its own AL pointer as its tag, and it clears its flag to start a new chain. Branches cannot

chain, and they are removed from the DCQ if they cannot join a live chain. If there is a matching entry w

clear flag, the current instruction adds itself to the matching entry’s chain by setting the matching entry

and obtaining the matching entry’s AL pointer and tag. It clears its flag to allow additional instructions to

the chain. If two sources of an instruction match entries with clear flags, the current instruction adds it

one of the two chains (the one corresponding to the first source).

The leading and trailing instructions form chains independently. Because there are no dependencies b

the two threads, the DCQ can hold the two threads simultaneously. However, because fetching of lead

trailing instructions is interleaved, care must be taken to ensure that the DCQ will form identical depen

chains in the leading and trailing threads. The chains formed may be different if fetch brings a number o

ing instructions, switches and brings a smaller number of trailing instructions before switching back

leading thread. The larger number of leading instructions may cause longer chains to be formed than th

trailing instructions.

A simple solution is to have the leading and trailing threads each occupy half the DCQ, as sho

Figure 3(b). Every cycle either leading or trailing thread instructions reach the DCQ. The DCQ evicts th

est entries of the same thread to make room for the new instructions. Before evicting the oldest entri

DCQ terminates the chains originating at the entries, ensuring that the chains stay short and span at

many cycles as the DCQ depth. The instructions in the terminated chains are recorded in thecheck tablefor

later use. The AL pointer of each of the oldest entries is used to search the DCQ tags, and the matching

are all the instructions in the chain originating at the oldest entry. Although the number of oldest entries m

as large as the fetch width, requiring as many parallel searches of the DCQ, the DCQ’s small size kee

parallel search manageable (e.g., 8-way search of 16 entries).

The matching DCQ entry that has a clear flag is the last instruction in the oldest entry’s chain. The chain

last instructions use their AL pointers to index into the check table. There, they set thenot-checkbits to indi-

cate that they elide checking, and they update theirlast-instructionfields with the last instruction’s AL pointer.
11
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The chain’s last instruction keeps its not-check bit clear and updates its last-instruction field with its ow

pointer. Thus, the check table records the chain, identifying the chain’s last instruction as needing to che

the rest of the instructions as eliding checking. The check table also associates the eliding instructions w

last instruction whose check covers them.

Operating on renamed instructions guarantees that matching source registers with previous destinatio

out checking for multiple matches in the DCQ is correct. Also, the DCQ implements a subset of the fun

ality of renaming and bypass. While it may be possible to use the existing renaming and bypass log

describe the DCQ separately for clarity and to avoid assuming details of rename and bypass.

4.2  Using the dependence chains

When a leading or trailing instruction reaches writeback, the instruction uses its AL pointer to index int

check table and obtain the AL pointer of the last instruction in its chain. The instruction compares the le

and trailing not-check bits in the check table entry. If the bits do not match (indicating a mismatch betwe

leading and trailing chains caused by an error), the CV entries of the last instructions in both chains are

failed-check. Otherwise, if the not-check bit is set, the instruction elides checking and waits in the AL to

mit, holding its last instruction AL pointer. If the not-check bit is clear, the leading instruction places its v

in the RVQ for the trailing instruction. Note that the AL pointers carried by the instructions are ECC prote

This allows the leading and trailing instructions to access the check table independently without che

against each other’s AL pointers.

Later, the trailing instruction indexes into the check table and compares the not-check bits as above. If b

leading and trailing not-check bits are clear, the trailing instruction obtains the leading instruction’s value

the RVQ, and it compares the value against its own. If the check succeeds, the trailing AL pointer is u

mark the CV entries of both leading and trailing instructions as checked-ok. If the check fails, the CV e

are marked as failed-check. In a chain, only the last-instruction’s CV entries are marked, and the rest

instructions’ CV entries remain in the not-checked-yet state. If the trailing instructions reach the RVQ

then the role of the leading and trailing instructions reverse in the above.

When a leading instruction reaches the head of the AL, it compares its last-instruction’s AL pointer to t

its trailing counterpart. On a match, the leading instruction uses its last-instruction’s AL pointer to prob

leading and trailing CV entries. Depending on the CV entries, the instruction waits (if the CV entries are

checked-yet), commits (if the CV entries are checked-ok), or squashes (if the CV entries are failed-c

squashing also occurs on a mismatch. When a trailing instruction reaches the head of its AL, if the le

thread has already committed, the CV entry of the trailing thread is guaranteed to be checked-ok and th

ing instruction will commit.
12
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Upon instruction commit, the check table entry corresponding to the committing instruction’s AL pointe

cleared. On an instruction squash, the check table entries corresponding to the squashed AL pointers a

idated. Because the DCQ holds later instructions down the stream from the squashing instruction, all th

entries from the squashing thread are discarded on a squash.

The DCQ has to support high bandwidth of instructions every cycle. Because the DCQ holds a small n

of instructions, it can be implemented to support high bandwidth (e.g., 8-16 instructions each requiring

bit destination register number, three 8-bit AL pointers, and a few bits for a flag, totalling to about 80 b

Providing high bandwidth to the RVQ which is kilobytes in size is harder, for the same reason that re

tables are widely multiported but D-caches are only dual-ported. The check table is a high bandwidth st

because every leading and trailing instruction accesses it. Because the check table holds only two AL p

and a flag per entry, multi-porting it is easier than multi-porting the much-larger RVQ.

5  Experimental Results

We modified the Simplescalar out-of-order simulator [2] to model SMT and SRT. Table 1 shows the bas

tem configuration parameters used throughout the experiments. The front-end of our base pipeline is

account for SMT and deep pipelines corresponding to high clock speeds. Like SRT, we approximate a

bandwidth trace cache by fetching past three branches, and at most eight instructions, per cycle. Tabl

sents the SPEC95 benchmarks and their inputs used in this study. In the interest of space, we show re

the subset of the SPEC95 applications, which are representative of our results over the entire SPEC9

We run the benchmarks to completion, or stop at 1 billion instructions1 in the interest of simulation time.

We present results in the absence of faults in order to study the performance cost of SRTR over SRT

presence of faults, SRTR can recover but SRT will stop as soon as it detects a fault. Therefore, a compa

performance is not possible when faults occur. In addition, faults are expected to be rare such that the

performance will be determined by fault-free behavior.

1.  For these cases, the cumulative IPC (instructions per cycle) stopped changing over the last 800 million instructions.

Component Description

Processor 8-way out-of-order issue,128-entry issue queue

Branch
prediction

hybrid 8K-entry bimodal, 8K-entry gshare, 8K2-bit selector
16-entry RAS, 4-way1K BTB (10-cycle misprediction penalty)

L1 I- and D-cache 64KB, 32-byte blocks, 4-way, 2-cycle hit, lock-up free

L2 unified cache 1 Mbyte,64-byte blocks, 4-way, 12-cycle hit, pipelined

Main memory Infinite capacity, 100 cycle latency

Table 1: Hardware parameters for base system.
13
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Because the basic scheme used in SRTR for detection is different from that used in SRT, we start by com

the SRTR detection scheme (without recovery) against SRT. We refer to the detection scheme impleme

SRTR asSRTRd. SRTRd uses a short slack and it communicates branch predictions between the leadi

trailing threads, while SRT uses a long slack and communicates branch outcomes. In the same experim

also show the performance impact of near-zero slack. Then, we report the average time gap between c

to commit, and average memory latencies in the base SMT. These parameters determine the constr

SRTR’s slack which needs to be shorter than the average complete to commit gap to avoid leading threa

at commit, but long enough to avoid trailing thread stalls due to empty LVQ. We then compare SRTR (p

ing recovery) using a high-bandwidth RVQ, to SRTRd and SRT. This comparison gives the performanc

of recovery over detection. We show the impact of the RVQ size on SRTR’s performance. Finally, we sho

bandwidth reduction achieved by DBCE while maintaining the same performance as the high-bandwidth

5.1  SRT vs. SRTRd

In Figure 4, we compare SRTRd and SRT. We show the performance normalized to the base SMT ex

only the standard program. We use a slack of 256 and a 256-entry BOQ, 256-entry LVQ and 256-entry S

SRT, exceeding the sizes for the best performance reported by the SRT paper [8]. For SRTRd, we use

LVQ/StB sizes of 128/128/128 for a slack of 128, 80/96/80 for a slack of 64, 48/96/48 for a slack of 32, an

96/18 for a slack of 2. The purpose of this experiment is to demonstrate the effect of using a short sla

communicating branch predictions between the leading and trailing threads, versus using a long sla

communicating branch outcomes. We do not want the queues filling up to interfere with this compa

Therefore, we keep the sizes of SRTRd’s queues appropriately large for each slack value. It is important

that SRTR needs a short slack to avoid leading instructions stalling at commit while waiting for tra

instructions to complete and check. This effect does not exist in SRTRd, which performs well with highe

ues of slack.

From Figure 4, the performance of SRT across integer and floating point (FP) programs is between 2%

worse than the base SMT. These numbers are in line with the SRT paper [8]. On average, SRT is 21%

Benchmark Input #instrs x 106 base IPC Benchmark Input #instrs x 106 base IPC

go train 600 1.17 compress train 40 2.16

lisp test 1000 1.63 swim test 780 2.53

gcc test 1000 1.28 applu train 680 2.93

perl jumble 1000 1.90 fpppp train 510 0.59

ijpeg vigo 1000 2.58 su2cor test 1000 2.18

vortex train 1000 2.12 hydro2d test 1000 1.94

m88ksim test 500 2.89 tomcatv test 1000 2.69

Table 2: Benchmarks and inputs.
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than SMT for the integer programs, and 27% worse than SMT for the FP programs. In general, pro

which exhibit enough ILP to saturate the processor resources in the base SMT incur higher performan

due to replication in SRT (and SRTRd).

It can be seen that while a short slack of 64 or 32 performs close to a slack of 256, a near-zero slack of 2

considerable performance loss for many programs. For the integer programs, SRTRd performs, on ave

well as SRT for slacks of 128 and 64, and within 1% of SRT for a slack of 32, showing that communic

branch predictions works as well as outcomes. For a slack of 2, STRTd performs about 5%, on average

than SRT, withlisp incurring a 10% performance loss. This loss is mainly due to unavailable load values i

LVQ (explained in Section 5.2). For the FP programs, SRTRd performs as well as SRT for a slack of 12

within 3% and 5% of SRT for a slack of 64 and 32, respectively. For a slack of 2, SRTRd performs abou

on average, worse than SRT, withhydro2d incurring a 26% performance loss.

5.2  Constraints on SRTR’s Slack

While SRTRd performs well with a large slack, recovery will require a shorter slack as discussed earlier.

section, we explain why a short slack suffices, and how short the slack may be and still not impact p

mance. For SRT, SRTRd, and SRTR (providing recovery), the slack needs to be long enough to hide th

ing thread’s average memory latency from the trailing thread. However, SRTR’s slack needs to be short e

so that trailing instructions can complete and check before the leading counterparts reach the commi

Hence, SRTR’s slack needs to be longer than the memory latency but shorter than the complete to

time.

In Table 3, we tabulate the average number of cycles between complete and commit and the average

latency for the base SMT. We compute the average memory latency as L1 hit time + L1 miss rate * L1

FIGURE 4: SRT vs. SRTR detection.

go lisp gcc perl
ijpeg

vortex
m88ksim

compress
swim applu

fpppp
su2cor

hydro2d
tomcatv

0.0

0.2

0.3

0.5

0.7

0.8

1.0
P

er
fo

rm
an

ce
 r

el
at

iv
e 

to
 1

-t
hr

ea
d 

S
M

T a: SRT 256 b:  SRTRd 128 c:  SRTRd 64 d:  SRTRd 32 e: SRTRd 2

 abcde
15



n the

We see

that the

emory

-

tency is

plete to

marks,

nstruc-

se fetch

elect an

truc-

y,

cause

form

ns.

TR as

d in this

vary

e use

f 32,

cuting
penalty + L2 miss rate * L2 miss penalty. This latency is the impact of the leading thread’s load latency o

trailing thread assuming the worst case where the latency is completely exposed in the trailing thread.

that due to good cache performance, the average memory latency is close to the hit time suggesting

slack primarily needs to hide on-chip cache hit latencies. In general, the FP programs have a higher m

latency explaining their worse performance with shorter slacks. For instance,hydro2dhas a long average mem

ory latency, and performs poorly with a slack of 2.

For all the programs, the gap between the average complete to commit time and the average memory la

large enough to allow a slack longer than the average memory latency but shorter than the average com

commit time. Even for memory-intensive applications which may have higher miss rates than our bench

the gap is likely to be large enough to allow a reasonable slack. Note that slack is counted in number of i

tions by which the leading thread is ahead, and the numbers in Table 3 are numbers of cycles. Becau

can obtain up to 8 instructions per cycle, a slack of 32 is equivalent to 4 cycles.

5.3  SRTR recovery

The average complete to commit times in Table 3 suggest a range for appropriate slack values. To s

acceptable value for the slack, it is important to note that the complete to commit time of individual ins

tions vary quite widely. For instance,lisp, compressand tomcatvhave 40%, 50%, and 40%, respectivel

instructions whose complete to commit times are fewer than 10 cycles. Therefore, a long slack may

many leading instructions to stall at commit waiting for their trailing counterparts to complete and per

checking. It is thus important to select a slack value which accommodates the majority of the instructio

In Figure 5, we compare SRT using a slack of 256 to SRTR (providing recovery) varying the slack for SR

80, 64, 32, and 2. Because SRTRd using a slack of 128 performs as well as SRT, we do not show SRTR

graph. To isolate the effect of the slack, we use a bandwidth-unlimited (i.e., 8 ports), 128-entry RVQ (we

the RVQ size later). We use a 256-entry BOQ, 256-entry LVQ and 256-entry StB for SRT. For SRTR, w

predQ/LVQ/StB sizes of 128/128/128 for a slack of 80, 80/96/80 for a slack of 64, 48/96/48 for a slack o

and 18/96/18 for a slack of 2. As in Section 5.1, we show performance normalized to the base SMT exe

Benchmark Av. memory
latency

#Av. complete
to commit time

Benchmark Av.memory
latency

Av. complete to
commit time

go 2.02 15.5 compress 2.89 26.5

lisp 2.0 22.8 swim 3.36 39.5

gcc 2.15 20.5 applu 3.64 34.3

perl 2.22 27.3 fpppp 2.0 20.6

ijpeg 2.15 27.4 su2cor 3.83 40.1

vortex 2.15 39.4 hydro2d 5.80 45.4

m88ksim 2.01 25.4 tomcatv 2.01 31.3

Table 3: Slack constraints.
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It can be seen that SRTR’s average performance peaks at a slack of 32. For the integer programs, SRT

a slack of 64 and 32 performs, on average, 3% and 1% worse than SRT. For the FP programs, SRTR pe

on average, 7% worse than SRT for both a slack of 64 and 32. As expected, decreasing the slack to 2

performance degradation. Increasing the slack to 80 also causes performance degradation. SRTR usin

of 80 performs 5% and 9%, on average, worse than SRT for the integer and FP programs, respective

main reason is that a slack of 80 makes the leading thread stall at commit, putting pressure on the ins

window. Thus, using a slack of 32 seems to be the best choice for these benchmarks.

5.4  RVQ size

In the experiment reported next, we measure the impact of varying the RVQ size on the performance of

RVQ entries are allocated as leading instructions enter the AL and freed in queue-order as the trailing c

part obtains the RVQ value. Hence, the RVQ size depends on the issue queue size and the slack. In F

we compare SRT using a slack of 256 to SRTR using a slack of 32 (which was identified as the best v

the last section) and predQ/LVQ/StB sizes of 48/96/48, but varying the RVQ size as 128, 96, 80, a

entries. As before, we show performance normalized to the base SMT executing only the standard pro

It can be seen that an RVQ size of 80 entries works as well as 128 entries for all the programs. With 64 e

while most programs experience no degradation, a few programs likegcc, compressandsu2corincur a small

performance loss whileijpeg, applu, hydr2dandtomcatvslow down considerably. For these benchmarks,

RVQ size of 80 entries seems appropriate and achieves the same performance as a 128-entry RVQ.

5.5  DBCE

In this section, we show the effectiveness of DBCE in reducing the bandwidth demand on the RVQ. We

FIGURE 5: SRTR recovery.
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sure the impact of RVQ bandwidth on SRTR without and with DBCE. Loads and stores do not use the

and hence the RVQ bandwidth demand comes solely from the ALU/FPU and branch instructions. Bot

and without DBCE, SRTR uses a slack of 32, predQ/LVQ/StB sizes of 48/96/48 entries, and an 80-entr

(which was identified as the best size in the last section). We use a DCQ size of 16 (8 for each thread). W

ied the DCQ size and did not find much difference mainly because the chains are broken at branch

branch frequency impacts the chain length more than the DCQ size. Because four RVQ ports are as

five or more for SRTR without DBCE, we vary the number of RVQ ports as 2, 3, and 4. We use SRT w

slack of 256 as the reference, and show performance normalized to the base SMT executing only the s

program. We show the results in Figure 7.

In Table 4, we show the number of RVQ accesses elided by DBCE as a percentage of all RVQ accesse

without DBCE. On average, DBCE elides 35.3% of all RVQ accesses in both leading and trailing thread

most programs, the percentage of elided instructions is high using a DCQ of just 16 entries because t

grams have an abundance of register dependences in nearby instructions. The exceptions arevortexandfpppp;

both programs have a high fraction (52.8% and 53.2%, respectively) of memory instructions. Because

and stores are not included in the DBCE chains, the programs cannot elide as many instructions as th

FIGURE 6: Impact of RVQ size.
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Benchmark Percent
elided

Benchmark Percent
elided

Benchmark Percent
elided

go 53.1 vortex 15.7 fpppp 18.4

lisp 24.7 m88ksim 38.4 su2cor 40.8

gcc 41.3 compress 38.5 hydro2d 39.5

perl 33.5 swim 43.7 tomcatv 35.1

ijpeg 49.4 applu 50.1 AVERAGE 35.3

Table 4: Percent RVQ accesses elided.
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Let us first analyze SRTR performance without DBCE. From Figure 7, we see that for all the programs

ported RVQ (third bar) performs as well as an 8-ported RVQ (second bar). As the number of RVQ

decreases from 4 to 3 and 2, most programs incur significant performance loss. For the integer program

formance drops by 2% and 18%, on average, with 3 and 2 RVQ ports, respectively, compared to 4 RVQ

For the FP programs, performance degrades by 1% and 20%, on average, with 3 and 2 RVQ ports, resp

vortexandfppppare the two exceptions that perform as well with 2 RVQ ports as with 4 RVQ, because

than half of the instructions are loads and stores, and do not access the RVQ.

On the other hand, SRTR with DBCE incurs little performance loss even with two RVQ ports. Comparing

ports to two ports, performance degrades by 1% and 2% for the integer and FP programs, respectively

point to note is that in the case of 4 ports where DBCE is not needed, using DBCE does not degrade

mance. This point implies that by exploiting complete to commit time, DBCE avoids stalling the early ins

tions in the chains waiting for the last instruction in the chain to complete. Looking at SRTR using 2

FIGURE 7: Effectiveness of DBCE in reducing RVQ bandwidth demand.
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ports with and without DBCE, DBCE boosts SRTR’s performance by 17% and 18% for the integer and F

grams, respectively.

6  Related work

Watchdog processors are the key concept behind many fault tolerance schemes [5]. The AR-SMT proc

the first to use SMT to execute two copies of the same program [10]. AR-SMT also proposes using spec

techniques to allow communication of data values and branch outcomes between the leading and

threads to accelerate execution. A later paper applies the concepts from AR-SMT to CMPs [13]. SRT im

on AR-SMT via the two optimization techniques of slack fetch and checking only stores for an SoR

includes the register file [8]. SRT does not handle recovery. DIVA is another fault-tolerant superscalar p

sor that uses a simple, in-order checker processor to check the execution of the complex out-of-order pr

[1]. DIVA can recover from permanent faults and design errors in the aggressive processor but assumes

transient faults occur in the checker processor itself. Other work focuses on functional unit fault toleran

6, 4, 12].

The Compaq NonStop Himalaya [3] and IBM z900 (formerly S/390) [11] employ space-redundancy har

to achieve fault tolerance. The z900 uses the G5 microprocessor which includes replicated, lock-steppe

lines. The NonStop Himalaya uses off-the-shelf, lock-stepped microprocessors and compares the exter

on every cycle. In both systems, when the lock-stepped components disagree, the components are st

prevent propagation of errors. The z900 uses special microcode to restore program state from a ha

checkpoint module. The NonStop Himalaya does not provide hardware support for recovery. SRT show

avoiding lock-stepping achieves better performance for fault detection.

7  Conclusions

We proposedSimultaneously and Redundantly Threaded processors with Recovery (SRTR)that enhances SRT

to include transient fault recovery. SRT’s leading instructions may commitbeforechecking for errors, relying

on the trailing thread to detect errors. SRTR, on the other hand, mustnotallow any leading instruction to com-

mit before checking, since a faulty instruction cannot be undone once the instruction commits. To avoid

ing instructions stalling at commit for their trailing counterparts, SRTR exploits the time between comp

and commit of a leading instruction. SRTR checks as soon as the trailing instruction completes, well bef

leading instruction reaches commit. To avoid increasing the bandwidth demand on the register file, SRT

the register value queue (RVQ)to hold register values for checking. To reduce the bandwidth pressure on

RVQ itself, SRTR employsdependence-based checking elision (DBCE).By reasoning that faults propagat

through dependent instructions, DBCE exploits register (true) dependence chains so thatonly the last instruc-

tion in a chain uses the RVQ to check leading and trailing values. DBCE redundantly builds chains in bo

leading and trailing threads and checks its own functionality for faults.
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We evaluated SRTR using the SPEC95 benchmarks. SRTR is within 1% and 7% of SRT performance fo

ger and floating-point programs, respectively. We showed that high prediction accuracies and low off-chi

rates in the base SMT enable SRTR detection using predictions with a slack of 32 to perform within 5

SRT using outcomes with a slack of 256. For our benchmarks, the gap between the average complete

mit time and average memory latency is large enough to allow a slack longer than the average memory

but shorter than the average complete to commit time. DBCE elides about 35% of RVQ accesses. SRT

out DBCE incurs about 18% performance loss on reducing from four (which is equivalent to an unlim

number) to two RVQ ports. With DBCE, a two-ported RVQ performs within 2% of a four-ported RVQ.
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