To appear in the Proceedings of the Seventh International Symposium on High-Performance Computer Architecture (HPCA), 2001.

An Integrated Circuit/Architecture Approach to Reducing Leakage in
Deep-Submicron High-Performance I-Caches

Se-Hyun Yang!, Michael D. Powelf, Babak Falsaft, Kaushik Roy, and T. N. Vijaykumaf

LElectrical and Computer Engineering Department YSchool of Electrical and Computer Engineering
Carnegie Mellon University Purdue University
{sehyun,babak}@ece.cmu.edu {mdpowell,kaushik,vijay}@ecn.purdue.edu
Abstract dissipation due to a much larger number of on-chip transistors.

Deep-submicron CMOS designs maintain high transistor switch- Malntalnlng high transistor svyltchlng speed_s, however,
requires a commensurate down-scaling of the transistor threshold

ing speeds by scaling down the supply voltage and proportionately voltage along with the supply voltage [20]. The International Tech-

reducing the transistor threshold voltage. Lowering the threshold | Road for Semiconduct 2y dict tead I
voltage increases leakage energy dissipation due to subthreshold! 209 Foadmap for semiconauctors [22] predicts a steady sca

leakage current even when the transistor is not switching. Esti- ing of supply voltage with a corresponding decrease in transistor

L o .
mates suggest a five-fold increase in leakage energy in every futurethreshOIOI voltage to maintain a 30% improvement in performance

generation. In modern microarchitectures, much of the leakage every _g_eneratlon. Transistor thresholc_i sc_allr_lg, In turn, gives rise to
L . . - a significant amount deakage energgissipation due to an expo-
energy is dissipated in large on-chip cache memory structures with A :
. . .) I nential increase in subthreshold leakage current even when the
high transistor densities. While cache utilization varies both within

and across applications, modern cache designs are fixed in sizeg%nisr'fgga':en;t iﬁighlggcﬁéz]ﬁti%rga; &?Jeefg:y?;i?egggﬁ?rt;;
resulting in transistor leakage inefficiencies. ' 9

leakage energy dissipation in every chip generation.
This paper explores an integrated architectural and circuit-level

approach to reducing leakage energy in instruction caches (i-
caches). At the architectural level, we propose Bynamically
Reslzable i-cache (DRI i-cachep novel i-cache design that
dynamically resizes and adapts to an application’s required size.
At the circuit-level, we use gated;y a mechanism that effectively
turns off the supply voltage to, and eliminates leakage in, the
SRAM cells in a DRI i-cache’s unused sections. Architectural and
circuit-level simulation results indicate that a DRI i-cache success-
fully and robustly exploits the cache size variability both within
and across applications. Compared to a conventional i-cache
using an aggressively-scaled threshold voltage a 64K DRI i-cache
reduces on average both the leakage energy-delay product and
cache size by 62%, with less than 4% impact on execution time.

State-of-the-art microprocessor designs devote a large frac-
tion of the chip area to memory structures — e.g., multiple levels
of instruction caches and data caches, translation lookaside buff-
ers, and prediction tables. For instance, 30% of Alpha 21264 and
60% of StrongARM are devoted to cache and memory structures
[14]. Unlike dynamic energy which depends on the number of
actively switching transistors, leakage energy is a function of the
number of on-chip transistors, independent of their switching
activity. As such, caches account for a large (if not dominant) com-
ponent of leakage energy dissipation in recent designs, and will
continue to do so in the future. Recent energy estimates fop0.13
processes indicate that leakage energy accounts for 30% of L1
cache energy and as much as 80% of L2 cache energy [8]. Unfor-
tunately, current proposals for energy-efficient cache architectures
1 Introduction [12,2,1] only target reducing dynamic energy and do not impact

. . . o leakage energy.
The ever-increasing levels of on-chip integration in the recent

decade have enabled phenomenal increases in computer system 11eré are a myriad of circuit techniques to reduce leakage

performance. Unfortunately, the performance improvement has energy dissipation in' transistors/circuits (e.g., .multi-thresholld
been accompanied by an increase in chips' energy dissipation.[30:25,17,28] or multi-supply [27] voltage designs, dynamic

Higher energy dissipation requires more expensive packaging andthreshold [29] or dynamic supply [5] voltage designs, and transis-
cooling technology, increases cost, and decreases reliability of ©" stacking [32]). These techniques, however, typically impact cir-
products in all segments of computing market from portable sys- cuit performance ar_u_j are only applicable t_o circuit sections that are
tems to high-end servers [23]. Moreover, higher energy dissipation not performance-critical [10]. Second, unlike embedded processor

significantly reduces battery life and diminishes the utility of por- 9€Signs [15,9], techniques relying only on multiple threshold volt-
table systems. ages may not be as effective in high-performance microprocessor

A] designs, where the range of offered supply voltages is limited due
Historically, the primary source of energy dissipation in o gate-oxide wear-out and reliability considerations [10]. Third,
CMOS transistor devices has been tiignamic energydue to techniques such as dynamic supply- and threshold-voltage designs
charging/discharging load capacitances when a device switches,ay require a sophisticated fabrication process and increase cost.
Chip designers have relied on scaling down the transistor supply Finally, the circuit techniques apply low-level leakage energy
voltage in subsequent generations to reduce this dynamic energyeqyction atall timeswithout taking into account the application

behavior and the dynamic utilization of the circuits.

L This work was performed when Se-Hyun Yang and Babak Falsafi were at the
School of Electrical and Computer Engineering at Purdue University. Current high-performance microprocessor designs incorpo-

rate multi-level cache hierarchies on chip to reduce the off-chip ically. In Section 3, we describe the gategg\¥ircuit-level mech-
access frequency and improve performance. Modern cache hieranism to reduce leakage in SRAM cells. In Section 4, we describe
archies are designed to satisfy the demands of the most memoryeur experimental methodology. In Section 5, we present experi-
intensive applications or application phases. The actual cachemental results, and in Section 6 we discuss related work. Finally,
hierarchy utilization, however, varies widely bothithin and in Section 7 we conclude the paper.

acrossapplications. Recent studies on block frame utilization in . . L

caches [18], for instance, show that at any given instance in an2 DRI i-cache:Reducing leakage in i-caches

application’s e?(ecution, on average over half of the block frames This paper describes tiynamically Reslzable instruction
are “dead” — i.e., they miss upon a subsequent reference. Thesg,che (DRI i-cache)The key observation behind a DRI i-cache is
“dead” block frames continue dissipating leakage energy while that there is a large variability in i-cache utilization batdthin
not holding useful data. andacrossprograms leading to large energy inefficiency for con-
This paper presents the first integrated architectural and cir- ventional caches in deep-submicron designs; while the memory
cuit-level approach to reducing leakage energy dissipation in cells in a cache’s unused sections are not actively referenced, they
deep-submicron cache memories. We propose a novel instructiorleak current and dissipate energy. A DRI i-cache’s novelty is that
cache design, thBynamically Reslzable instruction cache (DRI it dynamically estimates and adapts to the required i-cache size,
i-cache),which dynamically resizes itself to the size required at and uses a novel circuit-level technique, gatggd-M 9], to turn
any point during application execution and virtually turns off the off the supply voltage to the cache’s unused SRAM cells. In this
supply voltage to the cache’s unused sections to eliminate leak-section, we describe the anatomy of a DRI i-cache. In the next
age. At the architectural level, a DRI i-cache relies on simple section, we present the circuit technique to gate a memory cell’'s
techniques to exploit variability in i-cache usage and reduce the i- supply voltage.
_cache _size dyr_wamically to capture the application’s primary The large variability in i-cache utilization is inherent to an
instruction working set. application’s execution. Application programs often break the
At the circuit level, a DRI i-cache uses a mechanism we computation into distinct phases. In each phase, an application
recently proposedgated-\jy [19], which reduces leakage by typically iterates and computes over a set of data. The code size
effectively turning off the supply voltage to the SRAM cells of executed in each phase dictates the required i-cache size for that
the cache’s unused block frames. Gategray be implemented ~ phase. Our ultimate goal is to exploit the variability in the code
using NMOS or PMOS transistors, presenting a trade-off among size and the required i-cache size across application phases to
area overhead, leakage reduction, and impact on performance. Bygave energy. The key to our leakage energy saving technique is to
curbing leakage, gatedgy enables high performance through have a minimal impact on performance and a minimal increase in
aggressive threshold-voltage-scaling, which has been consideredlynamic energy dissipation.

difficult due to inordinate increase in leakage. To exploit the variability in i-cache utilization, hardware (or

We use cycle-accurate architectural simulation and circuit software) must provide accurate mechanisms to determine a tran-
tools for energy estimation, and compare a DRI i-cache to a con-sition among two application phases and estimate the required
ventional i-cache using an aggressively-scaled threshold voltagenew i-cache size. Inaccurate cache resizing may significantly
to show that: increase the access frequency to lower cache levels, increase the
dynamic energy dissipated, and degrade performance, offsetting
the gains from leakage energy savings. A mechanism is also
required to determine how long an application phase executes so
as to select phases that have long enough execution times to
amortize the resizing overhead.

®* There is a large variability in L1 i-cache utilization both
within andacrossapplications. Using a simple adaptive hard-
ware scheme, a DRI i-cache effectively exploits this variabil-
ity and significantly reduces the average size.

* A DRI i-cache effectively integrates architectural and the]) o
gated-\jy4 circuit techniques to reduce leakage in an L1 i- In this paper, we use a simple and intuitive all-hardware
cache. A DRI i-cache reduces the leakage energy-delay prod-design to resize an i-cache dynamically. Our approach to cache
uct by 62% with performance degradation within 4%, and by resizing increases or decreases the number of active cache sets.

67% with higher performance degradation. Alternatively, we could increase/decrease associativity, as is pro-

® Our adaptive scheme gives a DRI i-cache tight control over posed for reducing dynamic energy in_ [1]. _This alternative, how-
the miss rate to keep it close to a preset value, enabling the®Ver, has several key s_hqrtcomlngs. Flrgt, it assumes that we start
DRI i-cache to contain both the performance degradation and with a base set-associative c.ache and is not app!lcable to direct-
the increase in lower cache levels’ energy dissipation. More- Mapped caches, which are widely used due to their access latency
over, the scheme is robust and performs predictably without @dvantages. Second, reducing associativity may increase both

drastic reactions to varying the adaptivity parameters. capacity and conflict miss rates in the cache. Hence, such an

. . ._approach may increase the cache resizing overhead, significantl
® Because higher set-associativities encourage more downsiz- pp y 9 9 y

. reducing the opportunity for energy reduction.

ing, and larger sizes imply larger relative size reduction, DRI

i-caches achieve even better energy-delay products with While many of the ideas in this paper apply to both i-caches
higher set-associativity and larger size. and data caches (d-caches), we focus on i-cache designs. Because
2, of complications involving dirty cache blocks, studying d-cache

The rest of the paper is organized as follows. In Section) : !
designs is beyond the scope of this paper.

we describe the architectural techniques to resize i-caches dynam

In the rest of this section, we first describe the basic DRI i-

! ! i i b o offset

cache design and the adaptive mechanisms to detect the required ag index | |

i-cache size. Next, we discuss the block lookup implications of a address @ o DRI I-CACHE
DRI i-cache. Finally, we present the impact of our design on . ——

4 ’ P J resizing range ,

energy dissipation and performance.

2.1 Basic DRI i-cache design size mask:

Much like conventional adaptive computing frameworks, our
cache uses a set of parameters to monitor, react, and adapt to

siz
masked indexl

v| tag data block

phange§ in applicat!on behavior and systeml requirements dyna}m- miss count > | miss count < 3

ically. Figure 1 depicts the anatomy of a direct-mapped DRI i- |iss-bound?| miss-bound? a

cache (the same design applies to set-associative caches). To ') _§

monitor cache performance, a DRI i-cache divides an applica- UPSize 4=|—» downsize _
tion’s execution time into fixed-length intervals, teense-inter- l miss

vals, measured in the number of dynamic instructions (e.g., one compare miss -
million instructions). We use miss rate as the primary metric for (?ount

monitoring cache performance. A miss counter counts the num- 7'y yes

ber of cache misses in each sense-interval. At the end of each __ end of interval?

sense-interval, the cache upsizes/downsizes, depending on @ .
whether the miss counter is lower/higher than a preset value, the FIGURE 1. Anatomy of a DRI i-cache.
miss-bounde.g., ten thousand misses). The factor by which the throttling mechanism works well in practice, at least for the
cache changes size is called thieisibility. A divisibility of two, benchmarks studied in this paper.

for instance, changes the cache size upon upsizing/downsizing by
a factor of two. To prevent the cache from thrashing and downsiz-
ing to prohibitively small sizes (e.qg., 1K), tis&ze-boundpecifies

the minimum size the i-cache can assume.

Resizing the cache requires that we dynamically change the
cache block lookup and placement function. Conventional
(direct-mapped or set-associative) i-caches use a fixed set of
index bits from a memory reference to locate the set to which a
All the cache parameters can be set either dynamically or block maps. Resizing the cache either reduces or increases the
statically. Because this paper is a first step towards understandingotal number of cache sets thereby requiring a larger or smaller
a dynamically resizable cache design, we focus on designs thainumber of index bits to look up a set. Our design uses a mask to
statically set the values for the parameters prior to the start of pro-find the right number of index bits used for a given cache size
gram execution. (Figure 1). Every time the cache downsizes, the mask shifts to the
Among these parameters, the key parameters that control thdight to use a smaller number of index bits and vice versa. There-
i-cache’s size and performance are the miss-bound and Size_fore, downsizing removes the highest-numbered sets in the cache
bound. The combination of these two key parameters provides!n 9roups of powers of two.
accurate and tight control over the cache’s performance. Miss- Because smaller caches use a small number of index bits,
bound allows the cache to react and adapt to an application’sthey require a larger number of tag bits to distinguish data in
instruction working set by “bounding” the cache’s miss rate in block frames. Because a DRI i-cache dynamically changes its
each monitoring interval. Thus, the miss-bound provides a “fine- size, it requires a different number of tag bits for each of the dif-
grain” resizing control between any two intervals independent of ferent sizes. To satisfy this requirement, our design maintains as
the cache size. Applications typically require a specific minimum many tag bits as required by the smallest size to which the cache
cache capacity beyond which they incur a large number of capac-may downsize itself. Thus, we maintain more tag bits than con-
ity misses and thrash. Size-bound provides a “coarse-grain” resiz-ventional caches of equal size. We define the extra tag bits to be
ing control by preventing the cache from thrashing by downsizing theresizing tag bitsThe size-bound dictates the smallest allowed
past a minimum size. size and, hence, the corresponding number of resizing bits. For
The other two parameters, the sense-interval length andinStance, for a 64K DRI i-cache with a size-bound of 1K, the tag
divisibility, are less-critical to a DRI i-cache’s performance. Intu- &7Tay uses 16 (regular) tag bits and 6 resizing tag bits for a total of
itively, the sense-interval length allows selecting a length that best22 &g bits to support downsizing to 1K.
matches an application’s phase transition times, and the divisibil-

ity determines the rate at which the i-cache is resized. 2.2 Implications on cache lookups

While the ab ¢ trol th he' . Using the resizing tag bits, we ensure that the cache func-
vhiie the above parameters control the Cache's aggressive~;, correctly at every individual size. However, resizing from
ness in resizing, the adaptive mechanism may need throttling to

.2 "“one size to another may still cause problems in cache lookup.
prevent repeated resizing between twc_) sizes if the d_eswed size Ile%ecause resizing modifies the set-mapping function for blocks
getween the t\(/;/o SIZ€s. t\)Ne use a S|m(§)_le satur_atlngucount:r to(by changing the index bits), it may result in an incorrect lookup
_etect repeate resizing etween twq a jacenF sizes. pon _etecl-f the cache contents are not moved to the appropriate places or
tion, our mechanism prevents downsizing (while allowing upsiz-

. f fixed b f ve int ls. This simpl flushed before resizing. For instance, a 64K cache maintains only
ing) for a fixed number of successive intervals. This simple 16 tag bits whereas a 1K cache maintains 22 tag bits. As such,

even though downsizing the cache from 64K to 1K allows the (3) Conventional 6-T cell (b) NMOS gated-V 44 cell
cache to maintain the upper 1K contents, the tags are not compa- Vg - Y
rable. While a simple solution, flushing the cache or moving bitline bitline bifline 4 bitline
block frames to the appropriate places may incur prohibitively [lj_lj [r‘Llj

large overhead. Our design does not resort to this solution rd h H
because we already maintain all the tag bits necessary for the - L
smallest cache size at all times (i.e., a 64K cache maintains the s T

same 22 tag bits from the block address that a 1K cache would). L 1 = il

rd

wordline 4 H 4 H wordline
Moreover, upsizing the cache may complicate lookup
because blocks map to different sets in different cache sizes when
upsizing the cache. Such a scenario creates two problems. A Gnd gated-V,g
lookup for a block after upsizing fails to find it, and therefore control | Gnd
fetches and places the block into a new set. While the overhead of £|GURE 2. 6-T SRAM cell schematics:
such (compu_lsory) misses after upsizing may be negligible and () conventional, (b) with NMOS gated-Vg.
can be amortized over the sense-interval length, such an approach) o)
will result in multiple aliasesof the block in the cache. Unlike d- experlmental results that indicate that the extra L1 misses are usu-
caches, however, in the common case a processor only reads anglly smallin number.
fetches instructions from an i-cache and does not modify a In addition to potentially increasing the L2 dynamic energy,
block’s contents. Therefore, allowing multiple aliases does not a DRI i-cache may dissipate more dynamic energy due to the
interfere with processor lookups and instruction fetch in i-caches. resizing tag bits, as compared to a conventional design. We

There are scenarios, however, which require invalidating all Présent energy calculations in Section 5.2.1 and experimental
aliases of a block. Unmapping an instruction page (when Swap_re_Sl_JIts in Section 5.3 that. indicate that the resizing tag bits have
ping the page to the disk) requires invalidating all of the page’s Minimal impact on a DRI i-cache’s energy.
blocks in the i-cache. Similarly, dynamic libraries require call Finally, the resizing circuitry may increase energy dissipa-
sites which are typically placed in the heap and require coherencetion offsetting the gains from cache resizing. The counters
between the i-cache and the d-cache. Fortunately, conventionakequired to implement resizing have a small number of bits com-
systems often resort to flushing the i-cache in these cases becaugsared to the cache, making their leakage negligible. Using the
such scenarios are infrequent. Moreover, these operations typi-argument that thd bit in a counter switches once only everjy 2
cally involve OS intervention and incur high overheads, amortiz- increments, we can show that the average number of bits switch-
ing the cache flush overhead. ing on a counter increment is less than two. Thus the dynamic

Compared to a conventional cache, the DRI i-cache has one®Nergy of the counters is also small. The energy dissipated to
extra gate delay in the index path due to the size mask (Figure 1)’dr|ve thg resizing control lines can be negle_ct_ed _becaus_e resizing
which may impact the cache lookup time. Because the size maskoccurs infrequently (e.g., once every one million instructions).
is modified at most only once every sense-interval, which is usu-
ally of the order of a million cycles, implementation of the extra
gate level can be optimized to minimize delay. For instance, the

virtual Gnd

2.3.1 Controlling extra misses

Because a DRI i-cache’s miss rate impacts both energy and
size mask inputs to the extra gate level can be set up well ahead Operformancg, thg cache uses its key parameters t.o ach|evg tight
s . control over its miss rate. There are two sources of increase in the
the address, minimizing the index path delay. Furthermore, the ~". -
miss rate when resizing. First, resizing may require remapping of

extra gate level can also be folded into the address decode tree o

the cache’s tag and data arrays. Hence, in the remainder of thdlata into the cache and incur a large number of (compulsory)

paper we assume that the extra gate delay does not significantlymlsses atthe beginning of a_st_ense-lnterval. The resizing ov_erhead
: - Is dependent on both the resizing frequency and the sense-interval
impact the cache lookup time. L

length. Fortunately, applications tend to have at most a small
2.3 Impact on energy and performance number of well-defined phase boundaries at which the i-cache
size requirements drastically change due to a change in the
) ,) .2 Zinstruction working set size. Furthermore, the throttling mecha-
DRI i-cache to turn off the cache’s unused sections. Resizing, nism helps reduce unnecessary resizing, virtually eliminating fre-

howe"ef' may adversely impact the miss rate (as compared to e}quent resizing between two adjacent sizes, in practice. Our results
conventional i-cache) and the access frequency to the lower-level.

L2 he. Th lting i L2 X t|ndicate that optimal interval lengths to match application phase
(L2) cac €. 1he resulling Increase n accesses may Impact, ., \qition times are long enough to amortize the overhead of mov-
both execution time and the dynamic energy dissipated in L2.

. . Y ~ . —"ing blocks around at the beginning of an interval (Section 5.3).
While the impact on execution time depends on an application’s
sensitivity to i-cache performance, the higher miss rate may sig- Second, downsizing may be suboptimal and result in a sig-
nificantly impact the dynamic energy dissipated due to the grow- hificant increase in miss rate when the required cache size is
ing size of on-chip L2 caches [1]. We present energy calculations Slightly below a given size. The impact on the miss rate is highest
in Section 5.2.1 to show that for a DRI i-cache to cause signifi- at small cache sizes when the cache begins to thrash. A DRI i-
cant increase in the L2 dynamic energy, the extra L1 misses havecaches uses the size-bound to guarantee a minimum size prevent-
to be considerably large in number. In Section 5.3, we presenting the cache from thrashing.

Cache resizing helps reduce leakage energy by allowing a

Miss-bound and size-bound control a DRI i-cache’s aggres- (a)) each have a Y4 to Gnd leakage path going through an
siveness in reducing the cache size and leakage energy. In alNMOS or a PMOS transistor connected in series. Depending on
aggressive DRI i-cache configuration with a large miss-bound andthe bit value (0 or 1) held in the cell, the PMOS transistor of one
a small size-bound, the cache is allowed to resize more often andand the corresponding NMOS transistor of the other inverter are
to small cache sizes, thereby aggressively reducing leakage at théoff”. Figure 2 (b) shows a DRI i-cache SRAM cell using an
cost of high performance degradation. A conservative DRI i- NMOS gated-\j4 transistor. When the gateday transistor is
cache configuration maintains a miss rate which is close to the“off”, it is in series with the “off” transistors of the inverters, pro-
miss rate of a conventional i-cache of the same base size, andlucing the stacking effect. The DRI i-cache resizing circuitry
bounds the downsizing to larger sizes to prevent thrashing andkeeps the gated)j transistors of the used sections turned on and
significantly increasing the miss rate. Such a configuration the unused sections turned off.

reduces leakage with minimal impact on execution time and As in conventional gating techniques, the gategWansis-
dynamic energy.Sense-interval length and divisibility may also tor can be shared among multiple SRAM cells of one or more

affect a DRI I-cache’s ability to adapt to the required i-cache size ;5.6 piocks to amortize the area overhead of the extra transistor
accurately and timely. While larger divisibility favors applications [19]. Moreover, gated-¥; can be implemented using either an

with drastic changes in i-cache requirements, it makes size transi-N,vIOS transistor connected between the SRAM cell and Gnd or a
tions_ more coarse _reducing _the opportunity tq adapt closer to thePMOS transistor connected betweepg\and the cell [19]. In
requ_lred size. Slmllarly, while Iong_er sense-lnte_rvals may span 4 qgition, gated-y, can be coupled with dual\fo achieve even
multlple_ application phases_ rec_iucmg opportunity for reS|z!ng_, larger reductions in leakage. With duaj;¥he SRAM cell transis-
shorter |nteryals may resulf[|_n_h_|gher overhead.”Our results |_nd|- tors use low \/to maintain a high speed while the gategg¥an-
cate sense-interval and divisibility are less critical than miss- sistors use high Mo achieve additional leakage reduction [19].
bound and size-bound to controlling extra misses (Section 5.6).

. 4 Methodology
3 Gated-Vjq4: supply-voltage gatin
dd PRy ge g g We use SimpleScalar-2.0 [6] to simulate an L1 DRI i-cache

Current technology scaling trends [3] require aggressively j, he context of an out-of-order microprocessor. Table 1 shows
scaling down the threshold voltage J\Vo maintain transistor o page configuration for the simulated system. We simulate a

switching Spe‘?ds- Ur_lfortunatelgubthreshc_nld Ieak_ageurrent . 1Ghz processor. We run all of SPEC95 with the exception of two
through transistors increases exponentially with decreas'ngﬂoating-point benchmarks and one integer benchmark (in the

threshold voltage, resulting in a significant amountledkage interest of reducing simulation turnaround time).

energydissipation at a low threshold voltage.])
To determine the energy usage of a DRI i-cache, we use

T_O pr_event the Ie_akage energy dissipation_ in a DRI i-cache geometry and layout information from CACTI [31]. Using Spice
from limiting aggressive threshold-voltage scaling, we use a Cir- ;¢ ovion from CACTI to model the 0.18SRAM cells and
cuit-level mechanism callegated-\yq [19]. Gated-\ggenables a 5164 capacitances, we determine the leakage energy of a single

DRI .i-cache to effectivgly turn off the supply voltage and virtually SRAM cell and the dynamic energy of read and write operations
eliminate the leakage in the cache’s unused sections. The key ideg, single rows and columns. We use this information to determine

is to introduce an extra transistor in the leakage path from the sup-energy dissipation for appropriate cache configurations.

ply voltage to the ground of the cache’'s SRAM cells; the extra)))

transistor is turned on in the used and turned off in the unused ~ We use a Mentor Graphics IC-Station layout of a single

sections, essentially “gating” the cell's supply voltage. Gatgg-v ~ cache line to estimate area. To minimize the area overhead and

maintains the performance advantages of lower supply and©Ptimize layout, we implemented the gategda¥ransistor as rows

threshold voltages while reducing the leakage. of parallel transistors placed along the length of the SRAM cells
where each row is as long as the height of the cells. We obtain the

The fundamental reason why gateggvachieves signifi- desired gated-Y transistor width by varying the number of rows

cantly lower leakage is that two off transistors connected in series

reduce the leakage current by orders of magnitude due to the self TaAg|E 1. System configuration parameters.
reverse-biasing of stacked transistors. This effect is called the

stacking effecf32]. The gated-\jq transistor connected in series | Instruction issue & | 8 issues per cycle
with the SRAM cell transistors produces the stacking effect when | decode bandwidth
the gated-Yq transistor is turned off, resulting in a high reduction L1 i-cache/ 64K, direct-mapped, 1 cycle latenqgy
in leakage. When the gatedsytransistor is turned on, the cell is L1 DRI i-cache
saiq to be in “active” mode and when turned off, the cell is said to L1 d-cache 64K, 2-way (LRU), 1 cycle latency
be in “standby” mode. .

)]) L2 cache 1M, 4-way, unified, 12 cycle latency

Figure 2 (a) depicts the anatomy of a conventional 6-T Memory access 80 cveles + dcveles per 8 bytes

SRAM cell with dual-bitline architecture. On a cache access, the Iatencyy y Y P v

corresponding wordline is activated by the address decode logic,
causing the cells to read their values out to the precharged bitlines| Reorder buffer size | 128
or to write the values from the bitlines into the cells through the | LSQ size 128
“pass” transistors. The two inverter “cell” transistors (Figure 2

Branch predictor 2-level hybrid

of transistors used, and estimate the area overhead accordingly. extra L1 misses. We compute the energy savings using a DRI i-
All simulations use an aggressively-scaled supply voltage of cache compared to a conventional i-cache using an aggressively-

1.0V. We estimate cell read time and energy dissipation using
Hspice transient analysis. We ensure that the SRAM cells are all
initialized to a stable state prior to taking measurements. We com-
pute active and standby mode energy dissipation after the cells
reach steady state with the gategq\¥fansistor in the appropriate
mode. We assume the read time to be the time to lower the bitline
to 75% of \jjq after the wordline is asserted.

5 Results

In this section, we present experimental results on the energy
and performance trade-off of a DRI i-cache as compared to a con-
ventional i-cache. First, we present circuit results corroborating
the impact of technology scaling trends on an SRAM cell’'s per-

scaled threshold voltage. Therefore,

energy savings = conventional i-cache leakage energy
effective L1 DRI i-cache leakage energy

effective L1 DRIi-cache leakage energy =L 1 leakage energy +
extra L1 dynamic energy + extra L2 dynamic energy

L1 leakage energy = active portion leakage energy +
standby portion leakage energy

active portion leakage energy = active fraction
conventional i-cache leakage energy

standby portion leakage energyd

extra L1 dynamic energy = resizing bis
dynamic energy of 1 bitline per L1 accessl accesses

extra L2 dynamic energy = dynamic energy per L2 acgess
extra L2 accesses

formance and leakage, and evaluate various gaigdrvplemen- The effective L1 leakage energy is the leakage energy dissi-
tations. Second, we present our energy calculations and discusated by the DRI i-cache during the course of the application exe-
the leakage and dynamic energy trade-off of a DRI i-cache. ¢ytion. This energy consists of three components. The first
Finally, we present energy savings achieved for the benchmarkscomponem, the L1 leakage energy, is the leakage energy dissi-
demonstrating a DRI i-cache’s effectiveness in reducing averagepated in the active and standby portions of the DRI i-cache. We
cache size and energy dissipation, and the impact of a DRI i- compute the active portion’s leakage energy as the leakage energy
cache’s parameters on energy and performance. dissipated by a conventional i-cache in one cycle times a DRI i-
cache active portion size (as a fraction of the total size) times the
number of cycles. We obtain the average active portion size and
In our previous work [19], we evaluated various gategfV the number of cycles from Simplescalar simulations. Using the
schemes and showed that a wide NMOS gatggwith dual-V; low-V active cell leakage energy numbers in Table 2, we com-
and a charge pump [20] offers the best gating configuration, andpyte the leakage energy for a conventional i-cache per cycle to be
virtually eliminates the leakage with minimal impact on read time .91 nJ. Because the standby mode energy is a factor of 30
and area overhead. In this SeCtion, we summarize our CirCUitsma||er than the active mode energy in Table 2, we approximate

results. Table 2 depicts the leakage energy per cycle (1ns), relathe standby mode term as zero. Therefore,
tive read time, and the area overhead associated with gajgd-V

The leakage energy is measured at a 110C operating temperature. L1 leakage energy = actlve. fraction0.91x cycles . o
For reference purposes, we also present base SRAM cell results The second component 'S_ the e>_<tra L1 dyna_mlc_ energy d|_55|-
(without gated-Vg) with both low and high Y/ pated due to the_ resizing tag bits during the appllcathr_] execuﬂo_n.
) We compute this component as the number of resizing tag bits
The Active Leakage Energy and Standby Leakage Energy yseq by the program times the dynamic energy dissipated in one
rows indicate leakage energy dissipated per cycle when the cell isaccess of one resizing tag bitline in the L1 cache times the num-
in active and standby mode, respectively. From the first two col- per of L1 accesses made in the program. Using CACTI's Spice

umns, we see that lowering the cache filom 0.4V to 0.2V fies we estimate the dynamic energy per resizing bitline to be
reduces the read time by over half but increases the leakagey 0o22 nJ. Therefore,

energy by more than a factor of 30. From the third column we see
that using gated-yy, the leakage energy can be reduced by 97%
in standby mode, confining the leakage to highl&tels while

maintaining low-\{ speeds. This large reduction in leakage is key

5.1 Circuit results

TABLE 2. Energy, speed, and area trade-off of
varying threshold voltage and gated-Vg.

t ing that d secti f th he dissipat -
0 ensuring that unused sections of the cache dissipate exponen Implementation base base NMOS
tially lower leakage energy. . -
Technique high-V; low-V; gated-Vyq
To minimize the area overhead, we share a gatgglthan-
sistor among the SRAM cells in a cache line [19]. By construct- Gated-Vgq Vi (V) N/A NIA 0.40
ing the gated-\{, transistor such that the transistor width expands | SRAM V¢ (V) 0.40 0.20 0.20
along the length of the cache line, only the data array width — Relative Read Time 2.22 1.00 1.08
and not the he_ight — increases. The _total _increase ion array area | active Leakage 50 1740 1740
due to the addition of the gatedpMransistor is about 5%. Energy (x10° nJ)
. . Energy (x109nJ)
A DRI i-cache decreases leakage energy by gatipg to i
cache sections in standby mode but increases both L1 dynamic | Energy Savings (%) N/A N/A 97
energy due to the resizing tag bits and L2 dynamic energy due to Area Increase (%) N/A N/A 5

extra L1 dynamic energy = resizing bit€.0022x 5.3 Overall energy savings and performance

L1 acCesses . . .
) .) o In this section, we present the overall energy savings
The third component is the extra L2 dynamic energy dissi- 5cnieved by a DRI i-cache. Unless stated otherwise, all the mea-
pated in accessing the L2 cache due to the extra L1 misses during,, .o ments i this section use a sense-interval of one million

the appllcatlon e>_<ec_ut|on. _We compute this component_as theinstructions and a divisibility of two. To prevent repeated resizing
dynamic energy dissipated in one access of the L2 cache times th%etween two adjacent sizes (Section 2.1), we use a 3-bit saturat-

number of extrq L2 accesses. _We use the caICl_JIatlons for cachqng counter to trigger throttling and prevent downsizing for a
access energy in [11] and estimate the dynamic energy per szeriod of ten sense-intervals

access to be 3.6 nJ. Therefore,) o)
Because a DRI i-cache’s energy dissipation mainly depends

) i on the miss-bound and size-bound, we show the best-case energy
Using these expressions for L1 leakage energy, extra L1 sayings achieved under various combinations of these parameters.
dynamic energy, and extra L2 dynamic energy, we compute the\ye determine the best case via simulation by empirically search-
effective L1 leakage energy and the overall energy savings of ajng the combination space. Each benchmark’s level of sensitivity
DRI i-cache. to parameter values is different, requiring different settings to
determine the best-case energy-delay. Most benchmarks, how-
. ever, exhibit low miss rates in the conventional i-cache, and there-
. .If the extra L1 and L2 dynamic energy componenfs do not fore tolerate miss-bounds that are one to two orders of magnitude
significantly add to L1 leakage energy, a DRI i-cache’s energy

savings will not be outweighed by the extra (L1+L2) dynamic higher than the conventional i-cache miss rates.

energy, as forecasted in Section 2.3. To demonstrate that the com- ~ We present the energy-delay product because it ensures that
ponents do not significantly add to L1 leakage energy, we com- both reduction in energy and the accompanying degradation in
pare each of the components to the L1 leakage energy and showperformance are taken into consideration together, and not sepa-
that the components are much smaller than the leakage energy. rately. We present results on two design points. Our “perfor-

extra L1 dynamic energy / L1 leakage enevgy me_lr_lce-constralned” mea;ureme_nts f_ocus on a DRI i-cache’s

(resizing bitsx 0.0022) / (active fraction 0.91)= ability to save energy with minimal impact on performance.

0.024 (if resizing bits = 5 and active fraction = 0.50) Therefore, these measurements search for the best-case energy-

We compare the extra L1 dynamic energy against the L1 delay while limiting the .performance degradation to ungler 4% as

leakage energy by computing their ratio. We simplify the ratio by compared to a conventional i-cache using an aggressnvely-scaled
approximating the number of L1 accesses to be equal to the numinreshold voltage. The “performance-unconstrained” measure-
ber of cycles (i.e., an L1 access is made every cycle), and cancelMeNts simply search for the best?case energy-delay without limit-
ling the two in the ratio. If the number of resizing tag bits is 5 N9 the performance degradation. We include performance-
(i.e., the size-bound is a factor of 32 smaller than the original Unconstrained measurements to show the best possible energy-
size), and the active portion is as small as half the original size, délay. although the performance-unconstrained case sometimes
the ratio reduces to 0.024, implying that the extra L1 dynamic &mounts to prohibitively high performapcg degradatlon.. We com-
energy is about 3% of the L1 leakage energy, under these extremd@Ute the energy-delay product by multiplying the effective DRI i-
assumptions. This assertion implies that if a DRI i-cache achievesCache leakage energy numbers from Section 5.2 with the execu-
sizable savings in leakage, the extra L1 dynamic energy will not tion time.

extra L2 dynamic energy = 3X6extra L2 accesses

5.2.1 Leakage and dynamic energy trade-off

outweigh the savings. Figure 3 shows our base energy-delay product and average
extra L2 dynamic energy / L1 leakage energy = cache size measurements normalized with respect to the conven-
(3.6 x extra L2 accesses) / (active fractie®.91x cyclesy tional i-cache. The figure depicts measurements for both perfor-
(3.95 / active fractionk extra L1 miss rate mance-constrained (left bars) and performance-unconstrained

0.08 (if active fraction = 0.50 and extra L1 miss rate = 0.01) (right bars) cases. The left graph depicts the normalized energy-
Now we compare the extra L2 dynamic energy against the delay products. The graph shows the percentage increase in exe-

L1 leakage energy by computing their ratio. As, before, we sim- cution time relative to a conventional i-cache above the bars

plify this ratio by approximating the number of cycles to be equal whenever performance degradation is more than 4% for the per-
to the total number of L1 accesses, which allows us to express theformance-unconstrained measurements. In the graph, the stacked
ratio as a function of thebsoluteincrease in the L1 miss rate pars show the breakdown between the leakage and the dynamic

(i.e., number of extra L1 misses divided by the total number of L1 component due to the extra dynamic energy. The right graph
accesses). If the active portion is as small as half the original SiZe,ShOWS the DRI i-cache size averaged over the benchmark execu-

and the absolute increase in L1 miss rate is as high as 1% (e.g., Lkion time, as a fraction of the conventional i-cache size. We show
miss rate increases from 5% to 6%), the ratio reduces to 0.08,the miss rates under the performance-unconstrained case above

implying that the extra L2 dynamic energy is about 8% of the L1 the bars whenever the miss rates are higher than 1%.
leakage energy, under these extreme assumptions. This assertion

implies that if a DRI i-cache achieves sizable savings in leakage,
the extra L2 dynamic energy will not outweigh the savings.

From the left graph, we see that a DRI i-cache achieves large
reductions in the energy-delay product as performance degrada-
tion is constrained, demonstrating the effectiveness of our adap-
tive resizing scheme. The reduction ranges from as much as 80%
for apply, compressijpeg, andmgrid, to 60% forapsi, hydro2d

[L1 Leakage [J Extra L1 + L2 Dynamic

L 110 L _
DRI i-cache miss rate
L 408 L _
% Slowdown 06 L

04 L
02|
0.0

Relative Energy-Delay
Average Cache Size

S LV P LI LSS ETS S P ENLEI LRSS PSS
SF 5L TSI E SE L ESELFE
S Q N 3 QO N S S S $

NG /\ T ¢ /\ T
Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

FIGURE 3. Base energy-delay and average cache size measurements.

li, andswim 40% for m88ksim perl, andsu2cor and 10% for compress, li, mgricandswimfall in this class, and primarily stay
gcg go, andtomcatv In fppppthe 64K i-cache is fully-utilized at the minimum size allowed by the size-bound. The dynamic
preventing the cache from resizing and reducing the energy-delay.component is a large fraction of the DRI i-cache energy in these
The energy-delay products’ dynamic component is small for all benchmarks because much of the L1 leakage energy is eliminated
the benchmarks, indicating that both the extra L1 dynamic energythrough size reduction and a large number of resizing tag bits are
due to resizing bits is small and the extra L2 accesses are few, asised to allow a small size-bound.

discussed in Section 2.3. The second class consists of the benchmarks that primarily

There are only a few benchmarkgc¢ go, m88ksim and require a large i-cache throughout their execution and do not ben-
tomcaty which exhibit a significantly lower energy-delay under efit much from downsizingApsi fpppp, go, m88ksinand perl
the performance-unconstrained scenario. For all these benchfall under this class, anfppppis an extreme example of this
marks, performance of the performance-unconstrained case islass. If these benchmarks are encouraged to downsize via high
considerably worse than that of the conventional i-cache @cg., miss-bounds, they incur a large number of extra L1 misses, result-
by 27%,go by 30%,tomcatvby 21%), indicating that the lower ing in a significant performance loss. Consequently, the perfor-
energy-delay product is achieved at the cost of lower perfor- mance-constrained case uses a small number of resizing tag bits,
mance. forcing the size-bound to be reasonably lafgeppprequires the
full-sized i-cache, so reducing the size dramatically increases the
miss rate, canceling out any leakage energy savings for this
benchmark. Therefore, we disallow the cache from downsizing
for fpppp by setting the size-bound to 64K. In the rest of the
benchmarks, when performance is constrained, the dynamic
energy overhead is much less than the leakage energy savings,
allowing the cache to benefit from downsizing.

From the right graph, we see that the average DRI i-cache
size is significantly smaller than the conventional i-cache and the
i-cache requirements largely vary across benchmarks. The aver
age cache size reduction ranges from as much as 80%pfiu,
compressijpeg, li, and mgrid, to 60% for m88ksim perl, and
su2cor and 20% fogcc go, andtomcatv

The conventional i-cache miss rate (not shown) is less than
1% for all the benchmarks (highest being 0.7%gerl). The DRI
i-cache miss rates are also all below 1%, excepptat at 1.1%,

The last class of benchmarks exhibit distinct phases with
diverse i-cache size requirementcc, hydro2d, ijpeg, su2cor
for the performance-constrained case. It follows that the absolute@dtomcatvbelong to this class of benchmarks. A DRI i-cache’s
difference between DRI and conventional i-cache miss rates is€ffectiveness to adapt to the required i-cache size is dependent on
less than 1%, well within the bounds necessary to keep the extraltS @Pility to detect the program phase transitions and resize
dynamic component low (computed in Section 5.2). apprc_npnatelyHydroZ_dg_nqupe_g both have rel_a_tlvely clear phase
))) transitions After the initialization phase requiring the full size of

A DRI i-cache’s simple adaptive scheme enables the cachej_cache, these benchmarks consists mainly of small loops requir-
to downsize while keeping a tight control over the miss rate and ing only 2K of i-cache. Therefore, a DRI i-cache adapts to the
the extra L2 dynamic energy. Our miss rate measurements (n°tphases ohydro2dandijpeg well, achieving small average sizes
shown) for the performance-constrained experiments, where missyjity Jittle performance loss. The phase transitiongae, su2cor
rate control is key, indicate that the largest absolute difference gjndqtomcatvare not as clearly defined, resulting in a DRI i-cache
between the effective DRI i-cache miss rate and the miss-bound iyt adapting as well as it did fdrydro2dor ijpeg. Consequently,
0.004 forgcc these benchmarks’ average sizes under both the performance-

To understand the average i-cache size requirements bettergonstrained and performance-unconstrained cases are relatively
we categorize the benchmarks into three classes. Benchmarks ifarge.
the first class primarily require a small i-cache throughout their . .
execution. They mostly execute tight loops allowing a DRI i- 2.4 Effect of miss-bound and size-bound
cache to stay at the size-bound, causing the performance-con- In this section, we present the effect of varying the miss-
strained and performance-unconstrained cases to mapgiu, bound and size-bound on the energy-delay product. The miss-

—: 0.5 x base miss-bound b: base miss-bound +: 2 x base miss-bound reduction in the average cache size, but the effect on the energy-
- BN Lileakage [ExtrallDynamic WM Extra L2 Dynamic delay varies depending on the benchmark class. The first class of
< 1.0r b benchmarks incur little performance degradation with the base
size-bound because the benchmarks’ i-cache requirements are
small. Throughout the benchmarks’ execution, a DRI i-cache
stays at the minimum size allowed by the size-bound. Therefore,
doubling the size-bound simply increases the energy-delay and
halving it increases the extra L2 dynamic energy, which worsens
the energy-delay.

7 % Slowdown

Decreasing the size-bound for the second class encourages
downsizing at the cost of a lower performance due the bench-
marks’ large i-cache requirements. For the third class of bench-
marks, the extra L1 dynamic energy incurred by decreasing the
size-bound outstrips the leakage energy savings, resulting in an
FIGURE 4. Impact of varying the miss-bound. increase in energy-delapppgs results for a 32K size-bound

bound and size-bound are key parameters which determine the Léndicate _th_at a poor choice_ of parameters may result in unneces-
and extra L1 dynamic energy, respectively. From this section sary resizing and actually increase the energy-delay beyond that

onwards, we focus on the performance-constrained measurement8f & conventional i-cache.
and pre_sent only the relative energy-delay an(_j not the a_/erageg.S Effect of conventional cache parameters

cache size graphs. However, average cache size can be inferre])) i))

from the leakage component of the relative energy-delay because N this section, we investigate the impact of conventional
leakage energy is proportional to average cache size and the&ache parameters, size and associativity, on a DRI i-cache.

increase in delay is limited to 4% by the constraint. Figure 6 displays the results for a 64K 4-way associative DRI i-
cache, a 64K direct-mapped DRI i-cache (as in Section 5.3), and a
5.4.1 Impact of varying miss-bound 128K direct-mapped DRI i-cache, shown from left to right. The

Figure 4 shows the results for varying the miss-bound to half miss-bound and size-bound are set to those for the base perfor-
and double the miss-bound for the base performance-constrainednance-constrained measurements for a 64K direct-mapped
measurements, while keeping the size-bound the same. The graphache. The 128K direct-mapped cache uses one more resizing tag
shows the effective energy-delay product normalized to the con-bit so that its size-bound is the same as that of the 64K direct-
ventional i-cache leakage energy-delay, together with the percent-mapped cache. Energy-delay and performance degradation shown
age performance degradation for those cases which are highein the figure are all relative to a conventional i-cache of equivalent
than 4%. size and associativity.

The energy-delay graph shows that despite varying the miss- ~ Applu, apsi compress fpppp ijpeg, li, and mgrid have
bound over a factor of four range (i.e., from 0.5x to 2x), most of instruction footprints that are capacity-bound and do not benefit
the energy-delay products do not change significantly. Even whenfrom added associativity. Therefore, the direct-mapped DRI i-
the miss-bound is doubled, the L1 miss rates stay within 1% andcache achieves the same average size as the 4-way associative
the extra L2 dynamic energy-delay does not increase much forDRI i-cache, resulting in identical energy-delay produsg
most of the benchmarks. Therefore, our adaptive scheme is fairlygo, hydro2d su2cor swimandtomcaty exhibit conflict misses in
robust with respect to a reasonable range of miss-bounds. Thghe direct-mapped DRI i-cache, allowing the 4-way cache an
exceptions areycc go, perl, andtomcaty which need large i- opportunity to absorb some of the conflict misses and achieve a
caches but allow for more downsizing under higher miss-bounds. smaller average size and lower energy-delay. Using the same
The DRI i-cache does not readily identify phase transitions in miss-bound for the 4-way cache as the base direct-mapped cache
these benchmarks. These benchmarks achieve average i-cach@ncourages extra misses in the 4-way DRI i-cache as compared to
sizes smaller than those of the base case, but incur between 5% conventional 4-way conventional i-cache. Consequently, for
8% performance degradation compared to the conventional i-gcG hydro2d andtomcaty the smaller average size comes at the
cache. cost of performance degradation beyond 4%.

Increasing the base cache size gives higher savings in
energy-delay, because a larger fraction of the cache is in standby
c{node. In all cases, except féppppandgcc the 128K cache is

5.4.2 Impact of varying size-bound
Figure 5 shows the results for varying the size-bound to dou-

ble and half the SIZt_a-bound_ for the b(_:lse performance-cons’tralne downsized to the same absolute magnitude as the 64K cache. The
measurements, while keeping the miss-bound the skpppp’s

base size-bound is 64K, and therefore there is no measuremen?_;}nagnitUde expressed as a fraction of the base 128K cache, how-
corresponding to double the size-bound foppp The graph ver, is half that for a base 64K caclg@ppds andgcc’sworking

. . set sizes are larger than 64K and so the 128K cache does not
shows the effective energy-delay product normalized to the con- 'z 9

) . always downsize to 64K in those applications, preventing the
ventional I-cache leakage energy-delay and also the percentagelZSK cache’s average cache size as a fraction from reducing to
slowdown for the cases which are higher than 4%.

half of that for the 64K cache. The base 64K cache miss-bound is
The graph shows that a smaller size-bound results in a largertoo high for a 128K cache iperl, gcg andhydro2d resulting in

+: 2 x base size-bound b: base size-hound —: 0.5 x base size-bound A: 64K 4-way B: 64K direct-mapped C: 128K direct-mapped

- [L1leakage [ExtrallDynamic M Extra L2 Dynamic I Llleakage [ExtrallDynamic HE Extra L2 Dynamic -
Sr 1101 % Slowdown 3
T 08 5 12
3 % Slowdown ' 5 =
@ 0.6 4@
& 9 D
2 04 - ons 12
= 5
2 02 18

Class 1 Class 2 Class 3

FIGURE 5. Impact of varying the size-bound. FIGURE 6. Varying conventional cache parameters.

relatively more L1 misses and the corresponding higher extra L2 dissipation in caches. Rather than resizing the cache, many of
dynamic energy and performance degradation in the 128K cachethese techniques propose using energy-efficient structures to cap-
ture small program working sets and filter references to caches.
5.6 Varying sense-interval length and divisibility , .
: i) ' There are two previous proposals for cache resizing by vary-

In this section, we discuss our measurements varying thejng set-associativity. One proposes resizing to reduce switching
sense-interval length and divisibility. Ideally, we want the sense- energy [1] and the other uses resizing to store instruction reuse
interval length to correspond to program phases, allowing the jhformation to improve performance [21]. Both proposals use
cache to resize before entering a new phase. Our experimentg;atic rather than dynamic resizing and fix the cache size once
show that a DRI i-cache is highly robust to the interval length for prior to application execution. DRI i-cache proposes varying the
the benchmarks we studied. When varying the interval length nymper of cache sets and resizes dynamically both within and
from 250K to 4M i-cache accesses, the energy-delay product var-5crqgs application execution.
ies by less than 1% in all but one benchmark, and less than 5% in
godue to its irregular phase transitions. 7 Conclusions

A large divisibility reduces the switching overhead in appli- This paper explored an integrated architectural and circuit-
cations with frequent SWitChing between two extreme i-cache level approach to reducing |eakage energy dissipation in deep_
sizes. Our experiments indicate that for all the benchmarks, asuybmicron cache memories while maintaining high performance.
divisibility of four or eight (i.e., a factor of four or eight change in The key observation in this paper is that the demand on cache
size) prohibitively increases the resizing granularity preventing memory capacity varies both within and across applications.
the cache from assuming a size close to the required size, offset\iodern caches, however, are designed to meet the worst-case

ting the gains from reduced switching overhead. application demand, resulting in poor utilization and conse-
quently high energy inefficiency in on-chip caches. We intro-
6 Related work duced a novel cache called the Dynamically Resizable i-cache

There are a number of previous studies that have focused on(DRI i-cache) that dynamically reacts to application demand and
circuit-level only techniques to reduce leakage power. Techniquesadapts to the required cache size during an application’s execu-
such as multi-threshold [30,25,17] or multi-supply [27] voltage tion. At the circuit-level, the DRI i-cache employs gated-Vdd to
designs, dynamic-threshold [29] or dynamic-supply [5] voltage Virtually eliminate leakage in the cache’s unused sections.
designs, and transistor stacking [32], have been used to reduce \\e evaluated the energy savings and the energy performance
leakage energy dissipation while maintaining high performance. yade-off of a DRI i-cache and presented architectural and circuit-
However, circuit-level techniques that apply leakage reduction |eye| simulation results. Our results indicated that: (i) There is a
ignore application/architectural behavior and circuit utilization. large variability in L1 i-cache utilization both within and across
Moreover, circuit-level techniques often trade off performance for applications. A DRI i-cache effectively exploits this variability
energy. Instead, we propose an integrated architectural and cir4pq significantly reduces the average size; (i) A DRI i-cache
cuit-level approach to maximize opportunity for leakage reduc- effectively integrates architectural and the gated-Vdd circuit tech-
tion with minimal impact on performance. niques to reduce leakage in an L1 i-cache. A DRI i-cache reduces

There are a number of previous studies focusing on reducingthe leakage energy-delay product by 62% with performance deg-
switchingpower and energy dissipation in processors. Some of radation within 4%, and by 67% with higher performance degra-
these techniques have targeted reducing energy dissipation in thelation; (iii) Our adaptive scheme gives a DRI i-cache tight control
processor pipeline through gating [14], operand reduction [4], and over the miss rate to keep it close to a preset value, enabling the
instruction scheduling [26]. Others have targeted reducing energyDRI i-cache to contain both the performance degradation and the
dissipation in memory hierarchy [16,1,12,24,2,13]. All of these increase in lower cache levels’ energy dissipation. Moreover, the
techniques target reducing switching rather than leakage energyscheme is robust and performs predictably without drastic reac-

tions to varying the adaptivity parameters; (iv) Because higher
set-associativities encourage more downsizing, and larger sizes
imply larger relative size reduction, DRI i-caches achieve even
better energy-delay products with higher set-associativity and
larger size. [16]

Acknowledgements

This research is supported in part by SRC under contract [17]
2000-HJ-768. This material is also based upon work supported
under a National Science Foundation Graduate Fellowship. We
would like to thank Shekhar Borkar, Vivek De, Ali Keshavarzi, [18]
and Faith Hamzaoglu for information on leakage trends in cache
hierarchies in emerging deep-submicron technologies.

References [19]

[1] D. H. Albonesi. Selective cache ways: On-demand cache resource
allocation. InProceedings of the 32nd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO 3@ages
248-259, Nov. 1999. [20]

[2] N. Bellas, I. Hajj, and C. Polychronopoulos. Using dynamic man- [21]
agement techniques to reduce energy in high-performance pro-
cessors. IiProceedings of the 1999 International Symposium on
Low Power Electronics and Design (ISLPEPages 64—69, Aug.
1999.

[3] S. Borkar. Design challenges of technology scaliid=E Micro,
19(4):23-29, July 1999.

[4] D. Brooks and M. Martonosi. Dynamically exploiting narrow [23]
width operands to improve processor power and performance. In
Proceedings of the Fifth IEEE Symposium on High-Performance
Computer Architecturglan. 1999. 24

[5] T.Burd and R. Brodersen. Design issues for dynamic voltage
scaling. InProceedings of the 2000 International Symposium on
Low Power Electronics and Design (ISLPEDyly 2000.

[6] D. Burger and T. M. Austin. The SimpleScalar tool set, version [25]
2.0. Technical Report 1342, Computer Sciences Department,
University of Wisconsin— Madlson June 1997.

[7] B. Davari, R. Dennard, and G. Shahidi. CMOS scaling for high
performance and low power- the next ten ye&sceedings of

(22]

the IEEE 83(4):595, June 1995. [26]
[8] V. De. Private communication.
[9] I. Fukushi, R.Sasagawa, M.Hamaminato, T.lzawa, and

S. Kawashima. A low-power SRAM using improved charge
transfer sense. IRroceedings of the 1998 International Sympo- [27]
sium on VLSI Circuitgpages 142-145, 1998.

[10] F. Hamzaoglu, Y.Ye, A.Keshavarzi, K.Zhang, S.Narendra,
S. Borkar, M. Stan, and V. De. Dual-Vt SRAM cells with full-
swing smgle -ended bit line sensing for high-performance on-chip [28]
cache in 0.13um technology generation.Rroceedings of the
2000 International Symposium on Low Power Electronics and
Design (ISLPED)July 2000.

[11] M. B. Kamble and K. Ghose. Analytical energy dissipation mod- [29]
els for low power caches. IRroceedings of the 1997 Internation-
al Symposium on Low Power Electronics and Design (ISLRED)
Aug. 1997.

[12] J.Kin, M. Gupta, and W. H. Mangione-Smith. The filter cache: [30]
An energy efficient memory structure. Rroceedings of the 30th
Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO 30)pages 184-193, Dec. 1997. [31]

[13] U.Ko, P.T. Balsara, and A. K. Nanda. Energy optimization of
multilevel cache architectures for risc and cisc processofxdn
ceedings of the 1998 International Symposium on Low Power
Electronics and Design (ISLPED)998. [32]

[14] S.Manne, A. Klauser, and D. Grunwald. Pipline gating: Specula-
tion control for energy reduction. IRroceedings of the 25th An-
nual International Symposium on Computer Architectyr@ges
132-141, June 1998.

[15] J. Montanaro, R. T. Witek, K. Anne, A. J. Black, E. M. Cooper,

D. W. Dobberpuhl, P. M. Donahue, J. Eno, G.W. Hoeppner,
D. Kruckemyer, T. H. Lee, P. C. M. Lin, L. Madden, D. Murray,

M. H. Pearce, S. Santhanam, K. J. Snyder, R. Stephany, and S. C.
Thierauf. A 160-MHz, 32-b, 0.5-W CMOS RISC microprocessor.
IEEE Journal of Solid-State Circuijt81(11):1703—-1714, 1996.

A. Moshovos, G. Memik, B. Falsafi, and A. Choudhary. JETTY:
Filtering snoops for reduced power consumption in SMP servers.
In Proceedings of the Seventh IEEE Symposium on High-Perfor-
mance Computer Architectyréan. 2001.

S. Mutoh, T. Douskei, Y. Matsuya, T. Aoki, S. Shigematsu, and
J. Yamada. 1-V power supply high-speed digital circuit technolo-
gy with multithreshold-voltage CMOSEEE Journal of Solid-
State Circuits30(8):847-854, 1995.

J.-K. Peir, Y. Lee, and W. W. Hsu. Capturing dynamic memory
reference behavior with adaptive cache topologyPloceedings

of the Eighth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS
VIII), pages 240-250, Oct. 1998.

M. D. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N. Vijayku-
mar. Gated-Vdd: A circuit technique to reduce leakage in cache
memories. InProceedings of the 2000 International Symposium
on Low Power Electronics and Design (ISLPEDages 90-95,
July 2000.

J. M. RabaeyDigital Integrated Circuits Prentice Hall, 1996.

P. Ranganathan, S. Adve, and N. P. Jouppi. Reconfigurable cach-
es and their application to media processingPhoceedings of

the 27th Annual International Symposium on Computer Architec-
ture, pages 214-224, June 2000.

Semiconductor Industry Association. The International Technol-
ogy Roadmap for Semiconductors (ITRS). http://www.semi-
chips.org, 1999.

D. Singh and V. Tiwari. Power challenges in the internet world.
Cool Chips Tutorial in conjunction with the 32nd Annual Interna-
tional Symposium on Microarchitecture, November 1999.

C.-L. Su and A. M. Despain. Cache design trade-offs for power
and performance optimization: A case study Proceedings of
the 1995 International Symposium on Low Power Electronics and
Design (ISLPED)pages 63-68, 1995.

L. Su, R.Schulz, J. Adkisson, K.Byer, G. Biery, W. Cote,
E. Crabb, D. Edelstein, J. Ellis-Monaghan, E. Eld, D. Foster,
R. Gehres, and et. al. A high performance sub-0.25um CMOS
technology with multiple thresholds and copper interconnects. In
IEEE Symposium on VLSI Technolpf998.

M. C. Toburen, T. M. Conte, and M. Reilly. Instruction schedul-
ing for low power disspiation in high performance microproces-
sors. InProceedings of the Power Driven Microarchitecture
Workshop June 1998.

K. Usami and M. Horowitz. Design methodology of ultra low-
power mpeg4 codec core ecploiting voltage scaling techniques. In
Proceedings of the 35th Design Automation Conferepeges
483-488, 1998.

L. Wei, Z. Chen, M. Johnson, K. Roy, and V. De. Design and op-
timization of low voltage high performance dual threshold CMOS
circuits. InProceedings of the 35th Design Automation Confer-
ence pages 489-494, 1998.

L. Wei, Z. Chen, and K. Roy. Double gate dynamic threshold
voltages (DGDT) SOl MOSFETSs for low power high perfor-
mance designs. lEEE International SOl Conferencpages 82—
83, 1997.

L. Wei and K. Roy. Design and optimization for low-leakage with
multiple threshold CMOS. IfEEE Workshop on Power and Tim-
ing Modeling pages 3-7, Oct. 1998.

S. J. E. Wilson and N. P. Jouppi. An enhanced access and cycle
time model for on-chip caches. Technical Report 93/5, Digital
Equipment Corporation, Western Research Laboratory, July
1994

Y. Ye, S. Borkar, and V. De. A new technique for standby leakage
reduction in high performance circuits. IREE Symposium on
VLSI Circuits pages 40-41, 1998.

	Abstract
	1 Introduction
	2 DRI i-cache: Reducing leakage in i-caches
	2.1 Basic DRI i-cache design
	FIGURE 1. Anatomy of a DRI i-cache.

	2.2 Implications on cache lookups
	2.3 Impact on energy and performance
	2.3.1 Controlling extra misses
	FIGURE 2. 6-T SRAM cell schematics: (a) conventional, (b) with NMOS gated-Vdd.

	3 Gated-Vdd: supply-voltage gating
	4 Methodology
	TABLE 1. System configuration parameters.

	5 Results
	5.1 Circuit results
	TABLE 2. Energy, speed, and area trade-off of varying threshold voltage and gated-Vdd.

	5.2 Energy calculations
	5.2.1 Leakage and dynamic energy trade-off

	5.3 Overall energy savings and performance
	FIGURE 3. Base energy-delay and average cache size measurements.

	5.4 Effect of miss-bound and size-bound
	5.4.1 Impact of varying miss-bound
	FIGURE 4. Impact of varying the miss-bound.

	5.4.2 Impact of varying size-bound

	5.5 Effect of conventional cache parameters

	N O T
	A P P L I C A B L E
	5.6 Varying sense-interval length and divisibility
	6 Related work
	7 Conclusions
	Acknowledgements
	References

