
An Integrated Circuit/Architecture Approach to Reducing Leakage in
Deep-Submicron High-Performance I-Caches

Se-Hyun Yang✝1, Michael D. Powellϒ, Babak Falsafi✝1, Kaushik Royϒ, and T. N. Vijaykumarϒ

✝Electrical and Computer Engineering Department
Carnegie Mellon University

{sehyun,babak}@ece.cmu.edu

ϒSchool of Electrical and Computer Engineering
Purdue University

{mdpowell,kaushik,vijay}@ecn.purdue.edu

To appear in the Proceedings of the Seventh International Symposium on High-Performance Computer Architecture (HPCA), 2001.

r,
old
h-
al-
tor
ce
to

the
f
tal

ac-
ls
uff-
nd

res
of
he
g

m-
ill

3
L1

for-
res
ct

ge
ld
ic
is-
ir-
are
sor
lt-
sor
ue

d,
igns
ost.
y

o-
1 This work was performed when Se-Hyun Yang and Babak Falsafi were at the

School of Electrical and Computer Engineering at Purdue University.

Abstract

Deep-submicron CMOS designs maintain high transistor switch-
ing speeds by scaling down the supply voltage and proportionately
reducing the transistor threshold voltage. Lowering the threshold
voltage increases leakage energy dissipation due to subthreshold
leakage current even when the transistor is not switching. Esti-
mates suggest a five-fold increase in leakage energy in every future
generation. In modern microarchitectures, much of the leakage
energy is dissipated in large on-chip cache memory structures with
high transistor densities. While cache utilization varies both within
and across applications, modern cache designs are fixed in size
resulting in transistor leakage inefficiencies.

This paper explores an integrated architectural and circuit-level
approach to reducing leakage energy in instruction caches (i-
caches). At the architectural level, we propose theDynamically
ResIzable i-cache (DRI i-cache), a novel i-cache design that
dynamically resizes and adapts to an application’s required size.
At the circuit-level, we use gated-Vdd, a mechanism that effectively
turns off the supply voltage to, and eliminates leakage in, the
SRAM cells in a DRI i-cache’s unused sections. Architectural and
circuit-level simulation results indicate that a DRI i-cache success-
fully and robustly exploits the cache size variability both within
and across applications. Compared to a conventional i-cache
using an aggressively-scaled threshold voltage a 64K DRI i-cache
reduces on average both the leakage energy-delay product and
cache size by 62%, with less than 4% impact on execution time.

1 Introduction
The ever-increasing levels of on-chip integration in the recent

decade have enabled phenomenal increases in computer system
performance. Unfortunately, the performance improvement has
been accompanied by an increase in chips’ energy dissipation.
Higher energy dissipation requires more expensive packaging and
cooling technology, increases cost, and decreases reliability of
products in all segments of computing market from portable sys-
tems to high-end servers [23]. Moreover, higher energy dissipation
significantly reduces battery life and diminishes the utility of por-
table systems.

Historically, the primary source of energy dissipation in
CMOS transistor devices has been thedynamic energydue to
charging/discharging load capacitances when a device switches.
Chip designers have relied on scaling down the transistor supply
voltage in subsequent generations to reduce this dynamic energy

dissipation due to a much larger number of on-chip transistors.

Maintaining high transistor switching speeds, howeve
requires a commensurate down-scaling of the transistor thresh
voltage along with the supply voltage [20]. The International Tec
nology Roadmap for Semiconductors [22] predicts a steady sc
ing of supply voltage with a corresponding decrease in transis
threshold voltage to maintain a 30% improvement in performan
every generation. Transistor threshold scaling, in turn, gives rise
a significant amount ofleakage energydissipation due to an expo-
nential increase in subthreshold leakage current even when
transistor is not switching [3,7]. Borkar [3] estimates a factor o
7.5 increase in leakage current and a five-fold increase in to
leakage energy dissipation in every chip generation.

State-of-the-art microprocessor designs devote a large fr
tion of the chip area to memory structures — e.g., multiple leve
of instruction caches and data caches, translation lookaside b
ers, and prediction tables. For instance, 30% of Alpha 21264 a
60% of StrongARM are devoted to cache and memory structu
[14]. Unlike dynamic energy which depends on the number
actively switching transistors, leakage energy is a function of t
number of on-chip transistors, independent of their switchin
activity. As such, caches account for a large (if not dominant) co
ponent of leakage energy dissipation in recent designs, and w
continue to do so in the future. Recent energy estimates for 0.1µ
processes indicate that leakage energy accounts for 30% of
cache energy and as much as 80% of L2 cache energy [8]. Un
tunately, current proposals for energy-efficient cache architectu
[12,2,1] only target reducing dynamic energy and do not impa
leakage energy.

There are a myriad of circuit techniques to reduce leaka
energy dissipation in transistors/circuits (e.g., multi-thresho
[30,25,17,28] or multi-supply [27] voltage designs, dynam
threshold [29] or dynamic supply [5] voltage designs, and trans
tor stacking [32]). These techniques, however, typically impact c
cuit performance and are only applicable to circuit sections that
not performance-critical [10]. Second, unlike embedded proces
designs [15,9], techniques relying only on multiple threshold vo
ages may not be as effective in high-performance microproces
designs, where the range of offered supply voltages is limited d
to gate-oxide wear-out and reliability considerations [10]. Thir
techniques such as dynamic supply- and threshold-voltage des
may require a sophisticated fabrication process and increase c
Finally, the circuit techniques apply low-level leakage energ
reduction atall timeswithout taking into account the application
behavior and the dynamic utilization of the circuits.

Current high-performance microprocessor designs incorp

ibe
ri-
lly,

s

-
ory
hey
at
ze,

is
xt
ll’s

e
ion
ize
that
e
s to
s to
in

an-
red
tly
the

ting
lso
so
to

e
he

sets.
ro-
-
tart
ct-
ncy
oth
an

ntly

s
ause
e

rate multi-level cache hierarchies on chip to reduce the off-chip
access frequency and improve performance. Modern cache hier-
archies are designed to satisfy the demands of the most memory-
intensive applications or application phases. The actual cache
hierarchy utilization, however, varies widely bothwithin and
acrossapplications. Recent studies on block frame utilization in
caches [18], for instance, show that at any given instance in an
application’s execution, on average over half of the block frames
are “dead” — i.e., they miss upon a subsequent reference. These
“dead” block frames continue dissipating leakage energy while
not holding useful data.

This paper presents the first integrated architectural and cir-
cuit-level approach to reducing leakage energy dissipation in
deep-submicron cache memories. We propose a novel instruction
cache design, theDynamically ResIzable instruction cache (DRI
i-cache),which dynamically resizes itself to the size required at
any point during application execution and virtually turns off the
supply voltage to the cache’s unused sections to eliminate leak-
age. At the architectural level, a DRI i-cache relies on simple
techniques to exploit variability in i-cache usage and reduce the i-
cache size dynamically to capture the application’s primary
instruction working set.

At the circuit level, a DRI i-cache uses a mechanism we
recently proposed,gated-Vdd [19], which reduces leakage by
effectively turning off the supply voltage to the SRAM cells of
the cache’s unused block frames. Gated-Vdd may be implemented
using NMOS or PMOS transistors, presenting a trade-off among
area overhead, leakage reduction, and impact on performance. By
curbing leakage, gated-Vdd enables high performance through
aggressive threshold-voltage-scaling, which has been considered
difficult due to inordinate increase in leakage.

We use cycle-accurate architectural simulation and circuit
tools for energy estimation, and compare a DRI i-cache to a con-
ventional i-cache using an aggressively-scaled threshold voltage
to show that:

• There is a large variability in L1 i-cache utilization both
within andacrossapplications. Using a simple adaptive hard-
ware scheme, a DRI i-cache effectively exploits this variabil-
ity and significantly reduces the average size.

• A DRI i-cache effectively integrates architectural and the
gated-Vdd circuit techniques to reduce leakage in an L1 i-
cache. A DRI i-cache reduces the leakage energy-delay prod-
uct by 62% with performance degradation within 4%, and by
67% with higher performance degradation.

• Our adaptive scheme gives a DRI i-cache tight control over
the miss rate to keep it close to a preset value, enabling the
DRI i-cache to contain both the performance degradation and
the increase in lower cache levels’ energy dissipation. More-
over, the scheme is robust and performs predictably without
drastic reactions to varying the adaptivity parameters.

• Because higher set-associativities encourage more downsiz-
ing, and larger sizes imply larger relative size reduction, DRI
i-caches achieve even better energy-delay products with
higher set-associativity and larger size.

The rest of the paper is organized as follows. In Section 2,
we describe the architectural techniques to resize i-caches dynam-

ically. In Section 3, we describe the gated-Vdd circuit-level mech-
anism to reduce leakage in SRAM cells. In Section 4, we descr
our experimental methodology. In Section 5, we present expe
mental results, and in Section 6 we discuss related work. Fina
in Section 7 we conclude the paper.

2 DRI i-cache:Reducing leakage in i-caches
This paper describes theDynamically ResIzable instruction

cache (DRI i-cache). The key observation behind a DRI i-cache i
that there is a large variability in i-cache utilization bothwithin
andacrossprograms leading to large energy inefficiency for con
ventional caches in deep-submicron designs; while the mem
cells in a cache’s unused sections are not actively referenced, t
leak current and dissipate energy. A DRI i-cache’s novelty is th
it dynamically estimates and adapts to the required i-cache si
and uses a novel circuit-level technique, gated-Vdd [19], to turn
off the supply voltage to the cache’s unused SRAM cells. In th
section, we describe the anatomy of a DRI i-cache. In the ne
section, we present the circuit technique to gate a memory ce
supply voltage.

The large variability in i-cache utilization is inherent to an
application’s execution. Application programs often break th
computation into distinct phases. In each phase, an applicat
typically iterates and computes over a set of data. The code s
executed in each phase dictates the required i-cache size for
phase. Our ultimate goal is to exploit the variability in the cod
size and the required i-cache size across application phase
save energy. The key to our leakage energy saving technique i
have a minimal impact on performance and a minimal increase
dynamic energy dissipation.

To exploit the variability in i-cache utilization, hardware (or
software) must provide accurate mechanisms to determine a tr
sition among two application phases and estimate the requi
new i-cache size. Inaccurate cache resizing may significan
increase the access frequency to lower cache levels, increase
dynamic energy dissipated, and degrade performance, offset
the gains from leakage energy savings. A mechanism is a
required to determine how long an application phase executes
as to select phases that have long enough execution times
amortize the resizing overhead.

In this paper, we use a simple and intuitive all-hardwar
design to resize an i-cache dynamically. Our approach to cac
resizing increases or decreases the number of active cache
Alternatively, we could increase/decrease associativity, as is p
posed for reducing dynamic energy in [1]. This alternative, how
ever, has several key shortcomings. First, it assumes that we s
with a base set-associative cache and is not applicable to dire
mapped caches, which are widely used due to their access late
advantages. Second, reducing associativity may increase b
capacity and conflict miss rates in the cache. Hence, such
approach may increase the cache resizing overhead, significa
reducing the opportunity for energy reduction.

While many of the ideas in this paper apply to both i-cache
and data caches (d-caches), we focus on i-cache designs. Bec
of complications involving dirty cache blocks, studying d-cach
designs is beyond the scope of this paper.

e

the
al
of
a
the

ller
to

ze
the
re-
che

its,
in
its

if-
as
he
n-
be
d
For
g

l of

c-

p.
ks
p
or

nly
ch,
In the rest of this section, we first describe the basic DRI i-
cache design and the adaptive mechanisms to detect the required
i-cache size. Next, we discuss the block lookup implications of a
DRI i-cache. Finally, we present the impact of our design on
energy dissipation and performance.

2.1 Basic DRI i-cache design
Much like conventional adaptive computing frameworks, our

cache uses a set of parameters to monitor, react, and adapt to
changes in application behavior and system requirements dynam-
ically. Figure 1 depicts the anatomy of a direct-mapped DRI i-
cache (the same design applies to set-associative caches). To
monitor cache performance, a DRI i-cache divides an applica-
tion’s execution time into fixed-length intervals, thesense-inter-
vals, measured in the number of dynamic instructions (e.g., one
million instructions). We use miss rate as the primary metric for
monitoring cache performance. A miss counter counts the num-
ber of cache misses in each sense-interval. At the end of each
sense-interval, the cache upsizes/downsizes, depending on
whether the miss counter is lower/higher than a preset value, the
miss-bound(e.g., ten thousand misses). The factor by which the
cache changes size is called thedivisibility. A divisibility of two,
for instance, changes the cache size upon upsizing/downsizing by
a factor of two. To prevent the cache from thrashing and downsiz-
ing to prohibitively small sizes (e.g., 1K), thesize-boundspecifies
the minimum size the i-cache can assume.

All the cache parameters can be set either dynamically or
statically. Because this paper is a first step towards understanding
a dynamically resizable cache design, we focus on designs that
statically set the values for the parameters prior to the start of pro-
gram execution.

Among these parameters, the key parameters that control the
i-cache’s size and performance are the miss-bound and size-
bound. The combination of these two key parameters provides
accurate and tight control over the cache’s performance. Miss-
bound allows the cache to react and adapt to an application’s
instruction working set by “bounding” the cache’s miss rate in
each monitoring interval. Thus, the miss-bound provides a “fine-
grain” resizing control between any two intervals independent of
the cache size. Applications typically require a specific minimum
cache capacity beyond which they incur a large number of capac-
ity misses and thrash. Size-bound provides a “coarse-grain” resiz-
ing control by preventing the cache from thrashing by downsizing
past a minimum size.

The other two parameters, the sense-interval length and
divisibility, are less-critical to a DRI i-cache’s performance. Intu-
itively, the sense-interval length allows selecting a length that best
matches an application’s phase transition times, and the divisibil-
ity determines the rate at which the i-cache is resized.

While the above parameters control the cache’s aggressive-
ness in resizing, the adaptive mechanism may need throttling to
prevent repeated resizing between two sizes if the desired size lies
between the two sizes. We use a simple saturating counter to
detect repeated resizing between two adjacent sizes. Upon detec-
tion, our mechanism prevents downsizing (while allowing upsiz-
ing) for a fixed number of successive intervals. This simple

throttling mechanism works well in practice, at least for th
benchmarks studied in this paper.

Resizing the cache requires that we dynamically change
cache block lookup and placement function. Convention
(direct-mapped or set-associative) i-caches use a fixed set
index bits from a memory reference to locate the set to which
block maps. Resizing the cache either reduces or increases
total number of cache sets thereby requiring a larger or sma
number of index bits to look up a set. Our design uses a mask
find the right number of index bits used for a given cache si
(Figure 1). Every time the cache downsizes, the mask shifts to
right to use a smaller number of index bits and vice versa. The
fore, downsizing removes the highest-numbered sets in the ca
in groups of powers of two.

Because smaller caches use a small number of index b
they require a larger number of tag bits to distinguish data
block frames. Because a DRI i-cache dynamically changes
size, it requires a different number of tag bits for each of the d
ferent sizes. To satisfy this requirement, our design maintains
many tag bits as required by the smallest size to which the cac
may downsize itself. Thus, we maintain more tag bits than co
ventional caches of equal size. We define the extra tag bits to
theresizing tag bits. The size-bound dictates the smallest allowe
size and, hence, the corresponding number of resizing bits.
instance, for a 64K DRI i-cache with a size-bound of 1K, the ta
array uses 16 (regular) tag bits and 6 resizing tag bits for a tota
22 tag bits to support downsizing to 1K.

2.2 Implications on cache lookups
Using the resizing tag bits, we ensure that the cache fun

tions correctly at every individual size. However, resizing from
one size to another may still cause problems in cache looku
Because resizing modifies the set-mapping function for bloc
(by changing the index bits), it may result in an incorrect looku
if the cache contents are not moved to the appropriate places
flushed before resizing. For instance, a 64K cache maintains o
16 tag bits whereas a 1K cache maintains 22 tag bits. As su

min

size

DRI I-CACHE

do
w

ns
ize

up
si

ze

tag index offset

address

size mask: 0 11

+

masked index

miss counter

FIGURE 1. Anatomy of a DRI i-cache.

miss count <miss count >

miss
downsize

miss-bound

compare miss
count

yes

111

resizing range

tag data blockv

end of interval?

size-bound

miss-bound? miss-bound?

upsize

su-

y,
he

e
tal
ve

-
rs

-
he

ch-
ic
to

ing

nd
ight
the
of

ry)
ead
rval
all
he
the
a-
e-
ults
se
v-

ig-
is

st
I i-
ent-
even though downsizing the cache from 64K to 1K allows the
cache to maintain the upper 1K contents, the tags are not compa-
rable. While a simple solution, flushing the cache or moving
block frames to the appropriate places may incur prohibitively
large overhead. Our design does not resort to this solution
because we already maintain all the tag bits necessary for the
smallest cache size at all times (i.e., a 64K cache maintains the
same 22 tag bits from the block address that a 1K cache would).

Moreover, upsizing the cache may complicate lookup
because blocks map to different sets in different cache sizes when
upsizing the cache. Such a scenario creates two problems. A
lookup for a block after upsizing fails to find it, and therefore
fetches and places the block into a new set. While the overhead of
such (compulsory) misses after upsizing may be negligible and
can be amortized over the sense-interval length, such an approach
will result in multiplealiasesof the block in the cache. Unlike d-
caches, however, in the common case a processor only reads and
fetches instructions from an i-cache and does not modify a
block’s contents. Therefore, allowing multiple aliases does not
interfere with processor lookups and instruction fetch in i-caches.

There are scenarios, however, which require invalidating all
aliases of a block. Unmapping an instruction page (when swap-
ping the page to the disk) requires invalidating all of the page’s
blocks in the i-cache. Similarly, dynamic libraries require call
sites which are typically placed in the heap and require coherence
between the i-cache and the d-cache. Fortunately, conventional
systems often resort to flushing the i-cache in these cases because
such scenarios are infrequent. Moreover, these operations typi-
cally involve OS intervention and incur high overheads, amortiz-
ing the cache flush overhead.

Compared to a conventional cache, the DRI i-cache has one
extra gate delay in the index path due to the size mask (Figure 1),
which may impact the cache lookup time. Because the size mask
is modified at most only once every sense-interval, which is usu-
ally of the order of a million cycles, implementation of the extra
gate level can be optimized to minimize delay. For instance, the
size mask inputs to the extra gate level can be set up well ahead of
the address, minimizing the index path delay. Furthermore, the
extra gate level can also be folded into the address decode tree of
the cache’s tag and data arrays. Hence, in the remainder of the
paper we assume that the extra gate delay does not significantly
impact the cache lookup time.

2.3 Impact on energy and performance
Cache resizing helps reduce leakage energy by allowing a

DRI i-cache to turn off the cache’s unused sections. Resizing,
however, may adversely impact the miss rate (as compared to a
conventional i-cache) and the access frequency to the lower-level
(L2) cache. The resulting increase in L2 accesses may impact
both execution time and the dynamic energy dissipated in L2.
While the impact on execution time depends on an application’s
sensitivity to i-cache performance, the higher miss rate may sig-
nificantly impact the dynamic energy dissipated due to the grow-
ing size of on-chip L2 caches [1]. We present energy calculations
in Section 5.2.1 to show that for a DRI i-cache to cause signifi-
cant increase in the L2 dynamic energy, the extra L1 misses have
to be considerably large in number. In Section 5.3, we present

experimental results that indicate that the extra L1 misses are u
ally small in number.

In addition to potentially increasing the L2 dynamic energ
a DRI i-cache may dissipate more dynamic energy due to t
resizing tag bits, as compared to a conventional design. W
present energy calculations in Section 5.2.1 and experimen
results in Section 5.3 that indicate that the resizing tag bits ha
minimal impact on a DRI i-cache’s energy.

Finally, the resizing circuitry may increase energy dissipa
tion offsetting the gains from cache resizing. The counte
required to implement resizing have a small number of bits com
pared to the cache, making their leakage negligible. Using t
argument that the ith bit in a counter switches once only every 2i

increments, we can show that the average number of bits swit
ing on a counter increment is less than two. Thus the dynam
energy of the counters is also small. The energy dissipated
drive the resizing control lines can be neglected because resiz
occurs infrequently (e.g., once every one million instructions).

2.3.1 Controlling extra misses
Because a DRI i-cache’s miss rate impacts both energy a

performance, the cache uses its key parameters to achieve t
control over its miss rate. There are two sources of increase in
miss rate when resizing. First, resizing may require remapping
data into the cache and incur a large number of (compulso
misses at the beginning of a sense-interval. The resizing overh
is dependent on both the resizing frequency and the sense-inte
length. Fortunately, applications tend to have at most a sm
number of well-defined phase boundaries at which the i-cac
size requirements drastically change due to a change in
instruction working set size. Furthermore, the throttling mech
nism helps reduce unnecessary resizing, virtually eliminating fr
quent resizing between two adjacent sizes, in practice. Our res
indicate that optimal interval lengths to match application pha
transition times are long enough to amortize the overhead of mo
ing blocks around at the beginning of an interval (Section 5.3).

Second, downsizing may be suboptimal and result in a s
nificant increase in miss rate when the required cache size
slightly below a given size. The impact on the miss rate is highe
at small cache sizes when the cache begins to thrash. A DR
caches uses the size-bound to guarantee a minimum size prev
ing the cache from thrashing.

FIGURE 2. 6-T SRAM cell schematics:
(a) conventional, (b) with NMOS gated-Vdd.

Gnd
gated-Vdd

control

Vdd

wordline

bitlinebitline

Gnd

Vdd

wordline

bitlinebitline

(a) (b)Conventional 6-T cell NMOS gated-V dd cell

virtual Gnd

on
e
re

y
d

re
stor

r a

e
s
a

o
he

se

ngle
ns
ne

le
and

lls
the
Miss-bound and size-bound control a DRI i-cache’s aggres-
siveness in reducing the cache size and leakage energy. In an
aggressive DRI i-cache configuration with a large miss-bound and
a small size-bound, the cache is allowed to resize more often and
to small cache sizes, thereby aggressively reducing leakage at the
cost of high performance degradation. A conservative DRI i-
cache configuration maintains a miss rate which is close to the
miss rate of a conventional i-cache of the same base size, and
bounds the downsizing to larger sizes to prevent thrashing and
significantly increasing the miss rate. Such a configuration
reduces leakage with minimal impact on execution time and
dynamic energy.Sense-interval length and divisibility may also
affect a DRI i-cache’s ability to adapt to the required i-cache size
accurately and timely. While larger divisibility favors applications
with drastic changes in i-cache requirements, it makes size transi-
tions more coarse reducing the opportunity to adapt closer to the
required size. Similarly, while longer sense-intervals may span
multiple application phases reducing opportunity for resizing,
shorter intervals may result in higher overhead. Our results indi-
cate sense-interval and divisibility are less critical than miss-
bound and size-bound to controlling extra misses (Section 5.6).

3 Gated-Vdd: supply-voltage gating
Current technology scaling trends [3] require aggressively

scaling down the threshold voltage (Vt) to maintain transistor
switching speeds. Unfortunately,subthreshold leakagecurrent
through transistors increases exponentially with decreasing
threshold voltage, resulting in a significant amount ofleakage
energydissipation at a low threshold voltage.

To prevent the leakage energy dissipation in a DRI i-cache
from limiting aggressive threshold-voltage scaling, we use a cir-
cuit-level mechanism calledgated-Vdd [19]. Gated-Vdd enables a
DRI i-cache to effectively turn off the supply voltage and virtually
eliminate the leakage in the cache’s unused sections. The key idea
is to introduce an extra transistor in the leakage path from the sup-
ply voltage to the ground of the cache’s SRAM cells; the extra
transistor is turned on in the used and turned off in the unused
sections, essentially “gating” the cell’s supply voltage. Gated-Vdd
maintains the performance advantages of lower supply and
threshold voltages while reducing the leakage.

The fundamental reason why gated-Vdd achieves signifi-
cantly lower leakage is that two off transistors connected in series
reduce the leakage current by orders of magnitude due to the self
reverse-biasing of stacked transistors. This effect is called the
stacking effect[32]. The gated-Vdd transistor connected in series
with the SRAM cell transistors produces the stacking effect when
the gated-Vdd transistor is turned off, resulting in a high reduction
in leakage. When the gated-Vdd transistor is turned on, the cell is
said to be in “active” mode and when turned off, the cell is said to
be in “standby” mode.

Figure 2 (a) depicts the anatomy of a conventional 6-T
SRAM cell with dual-bitline architecture. On a cache access, the
corresponding wordline is activated by the address decode logic,
causing the cells to read their values out to the precharged bitlines
or to write the values from the bitlines into the cells through the
“pass” transistors. The two inverter “cell” transistors (Figure 2

(a)) each have a Vdd to Gnd leakage path going through an
NMOS or a PMOS transistor connected in series. Depending
the bit value (0 or 1) held in the cell, the PMOS transistor of on
and the corresponding NMOS transistor of the other inverter a
“off”. Figure 2 (b) shows a DRI i-cache SRAM cell using an
NMOS gated-Vdd transistor. When the gated-Vdd transistor is
“off”, it is in series with the “off” transistors of the inverters, pro-
ducing the stacking effect. The DRI i-cache resizing circuitr
keeps the gated-Vdd transistors of the used sections turned on an
the unused sections turned off.

As in conventional gating techniques, the gated-Vdd transis-
tor can be shared among multiple SRAM cells of one or mo
cache blocks to amortize the area overhead of the extra transi
[19]. Moreover, gated-Vdd can be implemented using either an
NMOS transistor connected between the SRAM cell and Gnd o
PMOS transistor connected between Vdd and the cell [19]. In
addition, gated-Vdd can be coupled with dual-Vt to achieve even
larger reductions in leakage. With dual-Vt, the SRAM cell transis-
tors use low Vt to maintain a high speed while the gated-Vdd tran-
sistors use high Vt to achieve additional leakage reduction [19].

4 Methodology
We use SimpleScalar-2.0 [6] to simulate an L1 DRI i-cach

in the context of an out-of-order microprocessor. Table 1 show
the base configuration for the simulated system. We simulate
1Ghz processor. We run all of SPEC95 with the exception of tw
floating-point benchmarks and one integer benchmark (in t
interest of reducing simulation turnaround time).

To determine the energy usage of a DRI i-cache, we u
geometry and layout information from CACTI [31]. Using Spice
information from CACTI to model the 0.18µ SRAM cells and
related capacitances, we determine the leakage energy of a si
SRAM cell and the dynamic energy of read and write operatio
on single rows and columns. We use this information to determi
energy dissipation for appropriate cache configurations.

We use a Mentor Graphics IC-Station layout of a sing
cache line to estimate area. To minimize the area overhead
optimize layout, we implemented the gated-Vdd transistor as rows
of parallel transistors placed along the length of the SRAM ce
where each row is as long as the height of the cells. We obtain
desired gated-Vdd transistor width by varying the number of rows

Instruction issue &
decode bandwidth

8 issues per cycle

L1 i-cache/
L1 DRI i-cache

64K, direct-mapped, 1 cycle latency

L1 d-cache 64K, 2-way (LRU), 1 cycle latency

L2 cache 1M, 4-way, unified, 12 cycle latency

Memory access
latency

80 cycles + 4cycles per 8 bytes

Reorder buffer size 128

LSQ size 128

Branch predictor 2-level hybrid

TABLE 1. System configuration parameters.

I i-
ely-

si-
e-

rst
ssi-

e
rgy
i-

he
nd
e
-
be
30
te

si-
n.
its
ne
m-
ce
be
of transistors used, and estimate the area overhead accordingly.

All simulations use an aggressively-scaled supply voltage of
1.0V. We estimate cell read time and energy dissipation using
Hspice transient analysis. We ensure that the SRAM cells are all
initialized to a stable state prior to taking measurements. We com-
pute active and standby mode energy dissipation after the cells
reach steady state with the gated-Vdd transistor in the appropriate
mode. We assume the read time to be the time to lower the bitline
to 75% of Vdd after the wordline is asserted.

5 Results
In this section, we present experimental results on the energy

and performance trade-off of a DRI i-cache as compared to a con-
ventional i-cache. First, we present circuit results corroborating
the impact of technology scaling trends on an SRAM cell’s per-
formance and leakage, and evaluate various gated-Vdd implemen-
tations. Second, we present our energy calculations and discuss
the leakage and dynamic energy trade-off of a DRI i-cache.
Finally, we present energy savings achieved for the benchmarks,
demonstrating a DRI i-cache’s effectiveness in reducing average
cache size and energy dissipation, and the impact of a DRI i-
cache’s parameters on energy and performance.

5.1 Circuit results
In our previous work [19], we evaluated various gated-Vdd

schemes and showed that a wide NMOS gated-Vdd with dual-Vt
and a charge pump [20] offers the best gating configuration, and
virtually eliminates the leakage with minimal impact on read time
and area overhead. In this section, we summarize our circuit
results. Table 2 depicts the leakage energy per cycle (1ns), rela-
tive read time, and the area overhead associated with gated-Vdd.
The leakage energy is measured at a 110C operating temperature.
For reference purposes, we also present base SRAM cell results
(without gated-Vdd) with both low and high Vt.

The Active Leakage Energy and Standby Leakage Energy
rows indicate leakage energy dissipated per cycle when the cell is
in active and standby mode, respectively. From the first two col-
umns, we see that lowering the cache Vt from 0.4V to 0.2V
reduces the read time by over half but increases the leakage
energy by more than a factor of 30. From the third column we see
that using gated-Vdd, the leakage energy can be reduced by 97%
in standby mode, confining the leakage to high-Vt levels while
maintaining low-Vt speeds. This large reduction in leakage is key
to ensuring that unused sections of the cache dissipate exponen-
tially lower leakage energy.

To minimize the area overhead, we share a gated-Vdd tran-
sistor among the SRAM cells in a cache line [19]. By construct-
ing the gated-Vdd transistor such that the transistor width expands
along the length of the cache line, only the data array width —
and not the height — increases. The total increase in array area
due to the addition of the gated-Vdd transistor is about 5%.

5.2 Energy calculations
A DRI i-cache decreases leakage energy by gating Vdd to

cache sections in standby mode but increases both L1 dynamic
energy due to the resizing tag bits and L2 dynamic energy due to

extra L1 misses. We compute the energy savings using a DR
cache compared to a conventional i-cache using an aggressiv
scaled threshold voltage. Therefore,

energy savings = conventional i-cache leakage energy−
effective L1 DRI i-cache leakage energy

effective L1 DRI i-cache leakage energy = L1 leakage energy +
extra L1 dynamic energy + extra L2 dynamic energy

L1 leakage energy = active portion leakage energy +
standby portion leakage energy

active portion leakage energy = active fraction×
conventional i-cache leakage energy

standby portion leakage energy≈ 0
extra L1 dynamic energy = resizing bits×

dynamic energy of 1 bitline per L1 access× L1 accesses
extra L2 dynamic energy = dynamic energy per L2 access×

extra L2 accesses

The effective L1 leakage energy is the leakage energy dis
pated by the DRI i-cache during the course of the application ex
cution. This energy consists of three components. The fi
component, the L1 leakage energy, is the leakage energy di
pated in the active and standby portions of the DRI i-cache. W
compute the active portion’s leakage energy as the leakage ene
dissipated by a conventional i-cache in one cycle times a DRI
cache active portion size (as a fraction of the total size) times t
number of cycles. We obtain the average active portion size a
the number of cycles from Simplescalar simulations. Using th
low-Vt active cell leakage energy numbers in Table 2, we com
pute the leakage energy for a conventional i-cache per cycle to
0.91 nJ. Because the standby mode energy is a factor of
smaller than the active mode energy in Table 2, we approxima
the standby mode term as zero. Therefore,

L1 leakage energy = active fraction× 0.91× cycles

The second component is the extra L1 dynamic energy dis
pated due to the resizing tag bits during the application executio
We compute this component as the number of resizing tag b
used by the program times the dynamic energy dissipated in o
access of one resizing tag bitline in the L1 cache times the nu
ber of L1 accesses made in the program. Using CACTI’s Spi
files, we estimate the dynamic energy per resizing bitline to
0.0022 nJ. Therefore,

TABLE 2. Energy, speed, and area trade-off of
varying threshold voltage and gated-Vdd.

Implementation
Technique

base
high-Vt

base
low-Vt

NMOS
gated-Vdd

Gated-Vdd Vt (V) N/A N/A 0.40

SRAM Vt (V) 0.40 0.20 0.20

Relative Read Time 2.22 1.00 1.08

Active Leakage
Energy (x10-9 nJ)

50 1740 1740

Standby Leakage
Energy (x10-9 nJ)

N/A N/A 53

Energy Savings (%) N/A N/A 97

Area Increase (%) N/A N/A 5

s
ea-
on
g
rat-
a

ds
ergy
ers.
h-

ity
to
ow-
re-
de

that
in
pa-
r-
e’s
.

ergy-
as
led
re-
it-
e-
rgy-

es
-

i-
cu-

ge
en-

or-
ed

gy-
exe-
rs
er-
ked
mic
ph
cu-
w
ove

ge
da-
ap-
0%
extra L1 dynamic energy = resizing bits× 0.0022×
L1 accesses

The third component is the extra L2 dynamic energy dissi-
pated in accessing the L2 cache due to the extra L1 misses during
the application execution. We compute this component as the
dynamic energy dissipated in one access of the L2 cache times the
number of extra L2 accesses. We use the calculations for cache
access energy in [11] and estimate the dynamic energy per L2
access to be 3.6 nJ. Therefore,

extra L2 dynamic energy = 3.6× extra L2 accesses

Using these expressions for L1 leakage energy, extra L1
dynamic energy, and extra L2 dynamic energy, we compute the
effective L1 leakage energy and the overall energy savings of a
DRI i-cache.

5.2.1 Leakage and dynamic energy trade-off
If the extra L1 and L2 dynamic energy components do not

significantly add to L1 leakage energy, a DRI i-cache’s energy
savings will not be outweighed by the extra (L1+L2) dynamic
energy, as forecasted in Section 2.3. To demonstrate that the com-
ponents do not significantly add to L1 leakage energy, we com-
pare each of the components to the L1 leakage energy and show
that the components are much smaller than the leakage energy.

extra L1 dynamic energy / L1 leakage energy≈
(resizing bits× 0.0022) / (active fraction× 0.91)≈
0.024 (if resizing bits = 5 and active fraction = 0.50)

We compare the extra L1 dynamic energy against the L1
leakage energy by computing their ratio. We simplify the ratio by
approximating the number of L1 accesses to be equal to the num-
ber of cycles (i.e., an L1 access is made every cycle), and cancel-
ling the two in the ratio. If the number of resizing tag bits is 5
(i.e., the size-bound is a factor of 32 smaller than the original
size), and the active portion is as small as half the original size,
the ratio reduces to 0.024, implying that the extra L1 dynamic
energy is about 3% of the L1 leakage energy, under these extreme
assumptions. This assertion implies that if a DRI i-cache achieves
sizable savings in leakage, the extra L1 dynamic energy will not
outweigh the savings.

extra L2 dynamic energy / L1 leakage energy =
(3.6× extra L2 accesses) / (active fraction× 0.91× cycles)≈
(3.95 / active fraction)× extra L1 miss rate≈
0.08 (if active fraction = 0.50 and extra L1 miss rate = 0.01)

Now we compare the extra L2 dynamic energy against the
L1 leakage energy by computing their ratio. As, before, we sim-
plify this ratio by approximating the number of cycles to be equal
to the total number of L1 accesses, which allows us to express the
ratio as a function of theabsoluteincrease in the L1 miss rate
(i.e., number of extra L1 misses divided by the total number of L1
accesses). If the active portion is as small as half the original size,
and the absolute increase in L1 miss rate is as high as 1% (e.g., L1
miss rate increases from 5% to 6%), the ratio reduces to 0.08,
implying that the extra L2 dynamic energy is about 8% of the L1
leakage energy, under these extreme assumptions. This assertion
implies that if a DRI i-cache achieves sizable savings in leakage,
the extra L2 dynamic energy will not outweigh the savings.

5.3 Overall energy savings and performance
In this section, we present the overall energy saving

achieved by a DRI i-cache. Unless stated otherwise, all the m
surements in this section use a sense-interval of one milli
instructions and a divisibility of two. To prevent repeated resizin
between two adjacent sizes (Section 2.1), we use a 3-bit satu
ing counter to trigger throttling and prevent downsizing for
period of ten sense-intervals.

Because a DRI i-cache’s energy dissipation mainly depen
on the miss-bound and size-bound, we show the best-case en
savings achieved under various combinations of these paramet
We determine the best case via simulation by empirically searc
ing the combination space. Each benchmark’s level of sensitiv
to parameter values is different, requiring different settings
determine the best-case energy-delay. Most benchmarks, h
ever, exhibit low miss rates in the conventional i-cache, and the
fore tolerate miss-bounds that are one to two orders of magnitu
higher than the conventional i-cache miss rates.

We present the energy-delay product because it ensures
both reduction in energy and the accompanying degradation
performance are taken into consideration together, and not se
rately. We present results on two design points. Our “perfo
mance-constrained” measurements focus on a DRI i-cach
ability to save energy with minimal impact on performance
Therefore, these measurements search for the best-case en
delay while limiting the performance degradation to under 4%
compared to a conventional i-cache using an aggressively-sca
threshold voltage. The “performance-unconstrained” measu
ments simply search for the best-case energy-delay without lim
ing the performance degradation. We include performanc
unconstrained measurements to show the best possible ene
delay, although the performance-unconstrained case sometim
amounts to prohibitively high performance degradation. We com
pute the energy-delay product by multiplying the effective DRI
cache leakage energy numbers from Section 5.2 with the exe
tion time.

Figure 3 shows our base energy-delay product and avera
cache size measurements normalized with respect to the conv
tional i-cache. The figure depicts measurements for both perf
mance-constrained (left bars) and performance-unconstrain
(right bars) cases. The left graph depicts the normalized ener
delay products. The graph shows the percentage increase in
cution time relative to a conventional i-cache above the ba
whenever performance degradation is more than 4% for the p
formance-unconstrained measurements. In the graph, the stac
bars show the breakdown between the leakage and the dyna
component due to the extra dynamic energy. The right gra
shows the DRI i-cache size averaged over the benchmark exe
tion time, as a fraction of the conventional i-cache size. We sho
the miss rates under the performance-unconstrained case ab
the bars whenever the miss rates are higher than 1%.

From the left graph, we see that a DRI i-cache achieves lar
reductions in the energy-delay product as performance degra
tion is constrained, demonstrating the effectiveness of our ad
tive resizing scheme. The reduction ranges from as much as 8
for applu, compress, ijpeg, andmgrid, to 60% forapsi, hydro2d,

ic
se
ted

are

rily
en-

igh
ult-
r-

bits,

the
his
ng
e

ic
ngs,

ith

s
t on
ize

ir-
e

e

ce-
vely

s-
ss-
li , andswim, 40% for m88ksim, perl, andsu2cor, and 10% for
gcc, go, and tomcatv. In fpppp the 64K i-cache is fully-utilized
preventing the cache from resizing and reducing the energy-delay.
The energy-delay products’ dynamic component is small for all
the benchmarks, indicating that both the extra L1 dynamic energy
due to resizing bits is small and the extra L2 accesses are few, as
discussed in Section 2.3.

There are only a few benchmarks (gcc, go, m88ksim, and
tomcatv) which exhibit a significantly lower energy-delay under
the performance-unconstrained scenario. For all these bench-
marks, performance of the performance-unconstrained case is
considerably worse than that of the conventional i-cache (e.g.,gcc
by 27%,go by 30%,tomcatvby 21%), indicating that the lower
energy-delay product is achieved at the cost of lower perfor-
mance.

From the right graph, we see that the average DRI i-cache
size is significantly smaller than the conventional i-cache and the
i-cache requirements largely vary across benchmarks. The aver-
age cache size reduction ranges from as much as 80% forapplu,
compress, ijpeg, li , and mgrid, to 60% for m88ksim, perl, and
su2cor, and 20% forgcc, go, andtomcatv.

The conventional i-cache miss rate (not shown) is less than
1% for all the benchmarks (highest being 0.7% forperl). The DRI
i-cache miss rates are also all below 1%, except forperl at 1.1%,
for the performance-constrained case. It follows that the absolute
difference between DRI and conventional i-cache miss rates is
less than 1%, well within the bounds necessary to keep the extra
dynamic component low (computed in Section 5.2).

A DRI i-cache’s simple adaptive scheme enables the cache
to downsize while keeping a tight control over the miss rate and
the extra L2 dynamic energy. Our miss rate measurements (not
shown) for the performance-constrained experiments, where miss
rate control is key, indicate that the largest absolute difference
between the effective DRI i-cache miss rate and the miss-bound is
0.004 forgcc.

To understand the average i-cache size requirements better,
we categorize the benchmarks into three classes. Benchmarks in
the first class primarily require a small i-cache throughout their
execution. They mostly execute tight loops allowing a DRI i-
cache to stay at the size-bound, causing the performance-con-
strained and performance-unconstrained cases to match.Applu,

compress, li, mgridandswimfall in this class, and primarily stay
at the minimum size allowed by the size-bound. The dynam
component is a large fraction of the DRI i-cache energy in the
benchmarks because much of the L1 leakage energy is elimina
through size reduction and a large number of resizing tag bits
used to allow a small size-bound.

The second class consists of the benchmarks that prima
require a large i-cache throughout their execution and do not b
efit much from downsizing.Apsi, fpppp, go, m88ksimand perl
fall under this class, andfpppp is an extreme example of this
class. If these benchmarks are encouraged to downsize via h
miss-bounds, they incur a large number of extra L1 misses, res
ing in a significant performance loss. Consequently, the perfo
mance-constrained case uses a small number of resizing tag
forcing the size-bound to be reasonably large.Fpppprequires the
full-sized i-cache, so reducing the size dramatically increases
miss rate, canceling out any leakage energy savings for t
benchmark. Therefore, we disallow the cache from downsizi
for fpppp by setting the size-bound to 64K. In the rest of th
benchmarks, when performance is constrained, the dynam
energy overhead is much less than the leakage energy savi
allowing the cache to benefit from downsizing.

The last class of benchmarks exhibit distinct phases w
diverse i-cache size requirements.Gcc, hydro2d, ijpeg, su2cor
andtomcatvbelong to this class of benchmarks. A DRI i-cache’
effectiveness to adapt to the required i-cache size is dependen
its ability to detect the program phase transitions and res
appropriately.Hydro2dandijpeg both have relatively clear phase
transitions. After the initialization phase requiring the full size of
i-cache, these benchmarks consists mainly of small loops requ
ing only 2K of i-cache. Therefore, a DRI i-cache adapts to th
phases ofhydro2dand ijpeg well, achieving small average sizes
with little performance loss. The phase transitions ingcc, su2cor
andtomcatvare not as clearly defined, resulting in a DRI i-cach
not adapting as well as it did forhydro2dor ijpeg. Consequently,
these benchmarks’ average sizes under both the performan
constrained and performance-unconstrained cases are relati
large.

5.4 Effect of miss-bound and size-bound
In this section, we present the effect of varying the mis

bound and size-bound on the energy-delay product. The mi

0.0

0.2

0.4

0.6

0.8

1.0
L1 Leakage Extra L1 + L2 Dynamic

14

30

6
12 27

7

21
9

6

% Slowdown

R
el

at
iv

e
En

er
gy

-D
el

ay

3.73.2

1.1

2.3
1.4

DRI i-cache miss rate

 C U

C: Performance-constrained U: Performance-unconstrained

ap
plu

co
mpr

es
s li

mgr
id

sw
im ap
si

fpp
pp go

m88
ks

im pe
rl

gc
c

hy
dr

o2
d

ijp
eg

su
2c

or
tom

ca
tv

 Class 1 Class 2 Class 3

FIGURE 3. Base energy-delay and average cache size measurements.

ap
plu

co
mpr

es
s li

mgr
id

sw
im ap
si

fpp
pp go

m88
ks

im pe
rl

gc
c

hy
dr

o2
d

ijp
eg

su
2c

or
tom

ca
tv

 Class 1 Class 2 Class 3

 C U

Av
er

ag
e

C
ac

he
 S

iz
e

gy-
s of
se
are
e

re,
nd
ns

ges
h-
h-
he
an

es-
hat

al
he.
i-
d a
e
for-
ed
tag

ct-
own
nt

fit
i-
ative

n
e a
me
che
d to
or
e

in
dby

The
ow-

not
e
to
is
bound and size-bound are key parameters which determine the L2
and extra L1 dynamic energy, respectively. From this section
onwards, we focus on the performance-constrained measurements
and present only the relative energy-delay and not the average
cache size graphs. However, average cache size can be inferred
from the leakage component of the relative energy-delay because
leakage energy is proportional to average cache size and the
increase in delay is limited to 4% by the constraint.

5.4.1 Impact of varying miss-bound
Figure 4 shows the results for varying the miss-bound to half

and double the miss-bound for the base performance-constrained
measurements, while keeping the size-bound the same. The graph
shows the effective energy-delay product normalized to the con-
ventional i-cache leakage energy-delay, together with the percent-
age performance degradation for those cases which are higher
than 4%.

The energy-delay graph shows that despite varying the miss-
bound over a factor of four range (i.e., from 0.5x to 2x), most of
the energy-delay products do not change significantly. Even when
the miss-bound is doubled, the L1 miss rates stay within 1% and
the extra L2 dynamic energy-delay does not increase much for
most of the benchmarks. Therefore, our adaptive scheme is fairly
robust with respect to a reasonable range of miss-bounds. The
exceptions aregcc, go, perl, and tomcatv, which need large i-
caches but allow for more downsizing under higher miss-bounds.
The DRI i-cache does not readily identify phase transitions in
these benchmarks. These benchmarks achieve average i-cache
sizes smaller than those of the base case, but incur between 5%-
8% performance degradation compared to the conventional i-
cache.

5.4.2 Impact of varying size-bound
Figure 5 shows the results for varying the size-bound to dou-

ble and half the size-bound for the base performance-constrained
measurements, while keeping the miss-bound the same.Fpppp’s
base size-bound is 64K, and therefore there is no measurement
corresponding to double the size-bound forfpppp. The graph
shows the effective energy-delay product normalized to the con-
ventional i-cache leakage energy-delay and also the percentage
slowdown for the cases which are higher than 4%.

The graph shows that a smaller size-bound results in a larger

reduction in the average cache size, but the effect on the ener
delay varies depending on the benchmark class. The first clas
benchmarks incur little performance degradation with the ba
size-bound because the benchmarks’ i-cache requirements
small. Throughout the benchmarks’ execution, a DRI i-cach
stays at the minimum size allowed by the size-bound. Therefo
doubling the size-bound simply increases the energy-delay a
halving it increases the extra L2 dynamic energy, which worse
the energy-delay.

Decreasing the size-bound for the second class encoura
downsizing at the cost of a lower performance due the benc
marks’ large i-cache requirements. For the third class of benc
marks, the extra L1 dynamic energy incurred by decreasing t
size-bound outstrips the leakage energy savings, resulting in
increase in energy-delay.Fpppp’s results for a 32K size-bound
indicate that a poor choice of parameters may result in unnec
sary resizing and actually increase the energy-delay beyond t
of a conventional i-cache.

5.5 Effect of conventional cache parameters
In this section, we investigate the impact of convention

cache parameters, size and associativity, on a DRI i-cac
Figure 6 displays the results for a 64K 4-way associative DRI
cache, a 64K direct-mapped DRI i-cache (as in Section 5.3), an
128K direct-mapped DRI i-cache, shown from left to right. Th
miss-bound and size-bound are set to those for the base per
mance-constrained measurements for a 64K direct-mapp
cache. The 128K direct-mapped cache uses one more resizing
bit so that its size-bound is the same as that of the 64K dire
mapped cache. Energy-delay and performance degradation sh
in the figure are all relative to a conventional i-cache of equivale
size and associativity.

Applu, apsi, compress, fpppp, ijpeg, li , and mgrid have
instruction footprints that are capacity-bound and do not bene
from added associativity. Therefore, the direct-mapped DRI
cache achieves the same average size as the 4-way associ
DRI i-cache, resulting in identical energy-delay products.Gcc,
go, hydro2d, su2cor, swimandtomcatv, exhibit conflict misses in
the direct-mapped DRI i-cache, allowing the 4-way cache a
opportunity to absorb some of the conflict misses and achiev
smaller average size and lower energy-delay. Using the sa
miss-bound for the 4-way cache as the base direct-mapped ca
encourages extra misses in the 4-way DRI i-cache as compare
a conventional 4-way conventional i-cache. Consequently, f
gcc, hydro2d, andtomcatv, the smaller average size comes at th
cost of performance degradation beyond 4%.

Increasing the base cache size gives higher savings
energy-delay, because a larger fraction of the cache is in stan
mode. In all cases, except forfppppandgcc, the 128K cache is
downsized to the same absolute magnitude as the 64K cache.
magnitude expressed as a fraction of the base 128K cache, h
ever, is half that for a base 64K cache.Fpppp’s andgcc’sworking
set sizes are larger than 64K and so the 128K cache does
always downsize to 64K in those applications, preventing th
128K cache’s average cache size as a fraction from reducing
half of that for the 64K cache. The base 64K cache miss-bound
too high for a 128K cache inperl, gcc, andhydro2d, resulting in

FIGURE 4. Impact of varying the miss-bound.

L1 Leakage Extra L1 Dynamic Extra L2 Dynamic

7

7

8

5

–: 0.5 x base miss-bound b: base miss-bound +: 2 x base miss-bound

– b +

 % Slowdown

 Class 1 Class 2 Class 3

ap
plu

co
mpr

es
s li

mgr
id

sw
im ap
si

fpp
pp go

m88
ks

im pe
rl

gc
c

hy
dr

o2
d

ijp
eg

su
2c

or
tom

ca
tv

R
el

at
iv

e
En

er
gy

-D
el

ay

0.0

0.2

0.4

0.6

0.8

1.0

of
ap-

s.

ry-
ing
se
e
ce
e
nd

it-
ep-
e.
he
s.
ase
e-
-
he
nd
cu-
o

nce
it-
a

s

e
h-
es
g-

a-
ol
the
the
he
c-
relatively more L1 misses and the corresponding higher extra L2
dynamic energy and performance degradation in the 128K cache.

5.6 Varying sense-interval length and divisibility
In this section, we discuss our measurements varying the

sense-interval length and divisibility. Ideally, we want the sense-
interval length to correspond to program phases, allowing the
cache to resize before entering a new phase. Our experiments
show that a DRI i-cache is highly robust to the interval length for
the benchmarks we studied. When varying the interval length
from 250K to 4M i-cache accesses, the energy-delay product var-
ies by less than 1% in all but one benchmark, and less than 5% in
go due to its irregular phase transitions.

A large divisibility reduces the switching overhead in appli-
cations with frequent switching between two extreme i-cache
sizes. Our experiments indicate that for all the benchmarks, a
divisibility of four or eight (i.e., a factor of four or eight change in
size) prohibitively increases the resizing granularity preventing
the cache from assuming a size close to the required size, offset-
ting the gains from reduced switching overhead.

6 Related work
There are a number of previous studies that have focused on

circuit-level only techniques to reduce leakage power. Techniques
such as multi-threshold [30,25,17] or multi-supply [27] voltage
designs, dynamic-threshold [29] or dynamic-supply [5] voltage
designs, and transistor stacking [32], have been used to reduce
leakage energy dissipation while maintaining high performance.
However, circuit-level techniques that apply leakage reduction
ignore application/architectural behavior and circuit utilization.
Moreover, circuit-level techniques often trade off performance for
energy. Instead, we propose an integrated architectural and cir-
cuit-level approach to maximize opportunity for leakage reduc-
tion with minimal impact on performance.

There are a number of previous studies focusing on reducing
switchingpower and energy dissipation in processors. Some of
these techniques have targeted reducing energy dissipation in the
processor pipeline through gating [14], operand reduction [4], and
instruction scheduling [26]. Others have targeted reducing energy
dissipation in memory hierarchy [16,1,12,24,2,13]. All of these
techniques target reducing switching rather than leakage energy

dissipation in caches. Rather than resizing the cache, many
these techniques propose using energy-efficient structures to c
ture small program working sets and filter references to cache

There are two previous proposals for cache resizing by va
ing set-associativity. One proposes resizing to reduce switch
energy [1] and the other uses resizing to store instruction reu
information to improve performance [21]. Both proposals us
static rather than dynamic resizing and fix the cache size on
prior to application execution. DRI i-cache proposes varying th
number of cache sets and resizes dynamically both within a
across application execution.

7 Conclusions
This paper explored an integrated architectural and circu

level approach to reducing leakage energy dissipation in de
submicron cache memories while maintaining high performanc
The key observation in this paper is that the demand on cac
memory capacity varies both within and across application
Modern caches, however, are designed to meet the worst-c
application demand, resulting in poor utilization and cons
quently high energy inefficiency in on-chip caches. We intro
duced a novel cache called the Dynamically Resizable i-cac
(DRI i-cache) that dynamically reacts to application demand a
adapts to the required cache size during an application’s exe
tion. At the circuit-level, the DRI i-cache employs gated-Vdd t
virtually eliminate leakage in the cache’s unused sections.

We evaluated the energy savings and the energy performa
trade-off of a DRI i-cache and presented architectural and circu
level simulation results. Our results indicated that: (i) There is
large variability in L1 i-cache utilization both within and acros
applications. A DRI i-cache effectively exploits this variability
and significantly reduces the average size; (ii) A DRI i-cach
effectively integrates architectural and the gated-Vdd circuit tec
niques to reduce leakage in an L1 i-cache. A DRI i-cache reduc
the leakage energy-delay product by 62% with performance de
radation within 4%, and by 67% with higher performance degr
dation; (iii) Our adaptive scheme gives a DRI i-cache tight contr
over the miss rate to keep it close to a preset value, enabling
DRI i-cache to contain both the performance degradation and
increase in lower cache levels’ energy dissipation. Moreover, t
scheme is robust and performs predictably without drastic rea

17
6

12 14

8

5
8

6

L1 Leakage Extra L1 Dynamic Extra L2 Dynamic

N
O
T

A
P
P
L
I
C
A
B
L
E

% Slowdown

FIGURE 5. Impact of varying the size-bound.

+ b –

+: 2 x base size-bound b: base size-bound –: 0.5 x base size-bound

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
En

er
gy

-D
el

ay
ap

plu
co

mpr
es

s li
mgr

id
sw

im ap
si

fpp
pp go

m88
ks

im pe
rl

gc
c

hy
dr

o2
d

ijp
eg

su
2c

or
tom

ca
tv

L1 Leakage Extra L1 Dynamic Extra L2 Dynamic

A: 64K 4-way B: 64K direct-mapped C: 128K direct-mapped

5 5

10 5
9

% Slowdown

 Class 1 Class 2 Class 3

ap
plu

co
mpr

es
s li

mgr
id

sw
im ap
si

fpp
pp go

m88
ks

im pe
rl

gc
c

hy
dr

o2
d

ijp
eg

su
2c

or
tom

ca
tv

FIGURE 6. Varying conventional cache parameters.

 Class 1 Class 2 Class 3

A B C

R
el

at
iv

e
En

er
gy

-D
el

ay

r,

. C.
.

:
rs.
r-

d
-

y

rt
S

he

ch-

c-

l-
i-

.
-

er

d

,
r,
S
In

-
-

In

-

-

d

cle
l
ly

e

tions to varying the adaptivity parameters; (iv) Because higher
set-associativities encourage more downsizing, and larger sizes
imply larger relative size reduction, DRI i-caches achieve even
better energy-delay products with higher set-associativity and
larger size.

Acknowledgements
This research is supported in part by SRC under contract

2000-HJ-768. This material is also based upon work supported
under a National Science Foundation Graduate Fellowship. We
would like to thank Shekhar Borkar, Vivek De, Ali Keshavarzi,
and Faith Hamzaoglu for information on leakage trends in cache
hierarchies in emerging deep-submicron technologies.

References
[1] D. H. Albonesi. Selective cache ways: On-demand cache resource

allocation. InProceedings of the 32nd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO 32), pages
248–259, Nov. 1999.

[2] N. Bellas, I. Hajj, and C. Polychronopoulos. Using dynamic man-
agement techniques to reduce energy in high-performance pro-
cessors. InProceedings of the 1999 International Symposium on
Low Power Electronics and Design (ISLPED), pages 64–69, Aug.
1999.

[3] S. Borkar. Design challenges of technology scaling.IEEE Micro,
19(4):23–29, July 1999.

[4] D. Brooks and M. Martonosi. Dynamically exploiting narrow
width operands to improve processor power and performance. In
Proceedings of the Fifth IEEE Symposium on High-Performance
Computer Architecture, Jan. 1999.

[5] T. Burd and R. Brodersen. Design issues for dynamic voltage
scaling. InProceedings of the 2000 International Symposium on
Low Power Electronics and Design (ISLPED), July 2000.

[6] D. Burger and T. M. Austin. The SimpleScalar tool set, version
2.0. Technical Report 1342, Computer Sciences Department,
University of Wisconsin–Madison, June 1997.

[7] B. Davari, R. Dennard, and G. Shahidi. CMOS scaling for high
performance and low power- the next ten years.Proceedings of
the IEEE, 83(4):595, June 1995.

[8] V. De. Private communication.
[9] I. Fukushi, R. Sasagawa, M. Hamaminato, T. Izawa, and

S. Kawashima. A low-power SRAM using improved charge
transfer sense. InProceedings of the 1998 International Sympo-
sium on VLSI Circuits, pages 142–145, 1998.

[10] F. Hamzaoglu, Y. Ye, A. Keshavarzi, K. Zhang, S. Narendra,
S. Borkar, M. Stan, and V. De. Dual-Vt SRAM cells with full-
swing single-ended bit line sensing for high-performance on-chip
cache in 0.13um technology generation. InProceedings of the
2000 International Symposium on Low Power Electronics and
Design (ISLPED), July 2000.

[11] M. B. Kamble and K. Ghose. Analytical energy dissipation mod-
els for low power caches. InProceedings of the 1997 Internation-
al Symposium on Low Power Electronics and Design (ISLPED),
Aug. 1997.

[12] J. Kin, M. Gupta, and W. H. Mangione-Smith. The filter cache:
An energy efficient memory structure. InProceedings of the 30th
Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO 30), pages 184–193, Dec. 1997.

[13] U. Ko, P. T. Balsara, and A. K. Nanda. Energy optimization of
multilevel cache architectures for risc and cisc processors. InPro-
ceedings of the 1998 International Symposium on Low Power
Electronics and Design (ISLPED), 1998.

[14] S. Manne, A. Klauser, and D. Grunwald. Pipline gating: Specula-
tion control for energy reduction. InProceedings of the 25th An-
nual International Symposium on Computer Architecture, pages
132–141, June 1998.

[15] J. Montanaro, R. T. Witek, K. Anne, A. J. Black, E. M. Cooper,

D. W. Dobberpuhl, P. M. Donahue, J. Eno, G. W. Hoeppne
D. Kruckemyer, T. H. Lee, P. C. M. Lin, L. Madden, D. Murray,
M. H. Pearce, S. Santhanam, K. J. Snyder, R. Stephany, and S
Thierauf. A 160-MHz, 32-b, 0.5-W CMOS RISC microprocessor
IEEE Journal of Solid-State Circuits, 31(11):1703–1714, 1996.

[16] A. Moshovos, G. Memik, B. Falsafi, and A. Choudhary. JETTY
Filtering snoops for reduced power consumption in SMP serve
In Proceedings of the Seventh IEEE Symposium on High-Perfo
mance Computer Architecture, Jan. 2001.

[17] S. Mutoh, T. Douskei, Y. Matsuya, T. Aoki, S. Shigematsu, an
J. Yamada. 1-V power supply high-speed digital circuit technolo
gy with multithreshold-voltage CMOS.IEEE Journal of Solid-
State Circuits, 30(8):847–854, 1995.

[18] J.-K. Peir, Y. Lee, and W. W. Hsu. Capturing dynamic memor
reference behavior with adaptive cache topology. InProceedings
of the Eighth International Conference on Architectural Suppo
for Programming Languages and Operating Systems (ASPLO
VIII) , pages 240–250, Oct. 1998.

[19] M. D. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N. Vijayku-
mar. Gated-Vdd: A circuit technique to reduce leakage in cac
memories. InProceedings of the 2000 International Symposium
on Low Power Electronics and Design (ISLPED), pages 90–95,
July 2000.

[20] J. M. Rabaey.Digital Integrated Circuits. Prentice Hall, 1996.
[21] P. Ranganathan, S. Adve, and N. P. Jouppi. Reconfigurable ca

es and their application to media processing. InProceedings of
the 27th Annual International Symposium on Computer Archite
ture, pages 214–224, June 2000.

[22] Semiconductor Industry Association. The International Techno
ogy Roadmap for Semiconductors (ITRS). http://www.sem
chips.org, 1999.

[23] D. Singh and V. Tiwari. Power challenges in the internet world
Cool Chips Tutorial in conjunction with the 32nd Annual Interna
tional Symposium on Microarchitecture, November 1999.

[24] C.-L. Su and A. M. Despain. Cache design trade-offs for pow
and performance optimization: A case study. InProceedings of
the 1995 International Symposium on Low Power Electronics an
Design (ISLPED), pages 63–68, 1995.

[25] L. Su, R. Schulz, J. Adkisson, K. Byer, G. Biery, W. Cote
E. Crabb, D. Edelstein, J. Ellis-Monaghan, E. Eld, D. Foste
R. Gehres, and et. al. A high performance sub-0.25um CMO
technology with multiple thresholds and copper interconnects.
IEEE Symposium on VLSI Technology, 1998.

[26] M. C. Toburen, T. M. Conte, and M. Reilly. Instruction schedul
ing for low power disspiation in high performance microproces
sors. In Proceedings of the Power Driven Microarchitecture
Workshop, June 1998.

[27] K. Usami and M. Horowitz. Design methodology of ultra low-
power mpeg4 codec core ecploiting voltage scaling techniques.
Proceedings of the 35th Design Automation Conference, pages
483–488, 1998.

[28] L. Wei, Z. Chen, M. Johnson, K. Roy, and V. De. Design and op
timization of low voltage high performance dual threshold CMOS
circuits. InProceedings of the 35th Design Automation Confer
ence, pages 489–494, 1998.

[29] L. Wei, Z. Chen, and K. Roy. Double gate dynamic threshol
voltages (DGDT) SOI MOSFETs for low power high perfor-
mance designs. InIEEE International SOI Conference, pages 82–
83, 1997.

[30] L. Wei and K. Roy. Design and optimization for low-leakage with
multiple threshold CMOS. InIEEE Workshop on Power and Tim-
ing Modeling, pages 3–7, Oct. 1998.

[31] S. J. E. Wilson and N. P. Jouppi. An enhanced access and cy
time model for on-chip caches. Technical Report 93/5, Digita
Equipment Corporation, Western Research Laboratory, Ju
1994.

[32] Y. Ye, S. Borkar, and V. De. A new technique for standby leakag
reduction in high performance circuits. InIEEE Symposium on
VLSI Circuits, pages 40–41, 1998.

	Abstract
	1 Introduction
	2 DRI i-cache: Reducing leakage in i-caches
	2.1 Basic DRI i-cache design
	FIGURE 1. Anatomy of a DRI i-cache.

	2.2 Implications on cache lookups
	2.3 Impact on energy and performance
	2.3.1 Controlling extra misses
	FIGURE 2. 6-T SRAM cell schematics: (a) conventional, (b) with NMOS gated-Vdd.

	3 Gated-Vdd: supply-voltage gating
	4 Methodology
	TABLE 1. System configuration parameters.

	5 Results
	5.1 Circuit results
	TABLE 2. Energy, speed, and area trade-off of varying threshold voltage and gated-Vdd.

	5.2 Energy calculations
	5.2.1 Leakage and dynamic energy trade-off

	5.3 Overall energy savings and performance
	FIGURE 3. Base energy-delay and average cache size measurements.

	5.4 Effect of miss-bound and size-bound
	5.4.1 Impact of varying miss-bound
	FIGURE 4. Impact of varying the miss-bound.

	5.4.2 Impact of varying size-bound

	5.5 Effect of conventional cache parameters

	N O T
	A P P L I C A B L E
	5.6 Varying sense-interval length and divisibility
	6 Related work
	7 Conclusions
	Acknowledgements
	References

