Lattice Dynamics

Timothy S. Fisher
Purdue University
School of Mechanical Engineering, and
Birck Nanotechnology Center

tsfisher@purdue.edu

ME 595M
May 2007
Phonon Heat Conduction

- Phonons are quantized lattice vibrations
- Govern thermal properties in electrical insulators and semiconductors
- Can be modeled to first order with spring-mass dynamics

Wave solutions
- Wave vector $K = \frac{2\pi}{\lambda}$
- Phonon energy $= \hbar \omega$
- Dispersion relations gives $\omega = f_n(K)$

![Diagram showing phonon wave vector](image)

- Optical branch
- Acoustic branch
- Sound speed (group velocity)
Heat Conduction Through Thin Films

- Experimental results for 3-micron silicon films
- Non-equilibrium scattering models work fairly well
- Crystalline structure often has larger impact than film thickness

Asheghi et al., 1999
Heat Conduction Through Multiple Thin Films

- Fine-pitch 5 nm superlattices
- Cross-thickness conductivity measurement
- Measured values are remarkably close to bulk alloy values (nearly within measurement error)
- Expected large reduction in conductivity not observed

Cahill et al., 2003
Lattice Vibrations

- Consider two neighboring atoms that share a chemical bond

\[U(r) = k(r - r_0)^2 \]

- The bond is not rigid, but rather like a spring with an energy relationship such as…
Lattice Vibrations, cont’d

• Near the minimum, the energy is well approximated by a parabola
 \[U = \frac{1}{2} gu^2 \]
 \(u = r - r_0 \) and \(g = \text{spring constant} \)

• Now consider a one-dimensional chain of molecules

\[\text{spring constant} \quad g \quad \text{atom, mass} \quad m \]

\[\text{a} \]
Lattice Energy and Motion

- **Harmonic** potential energy is the sum of potential energies over the lattice
 \[U^{\text{harm}} = \frac{1}{2} g \sum_n \left\{ u[na] - u[(n+1)a] \right\}^2 \]

- Equation of motion of atom at location \(u(na) \)
 \[F = m \frac{d^2 u(na)}{dt^2} = -\frac{\partial U^{\text{harm}}}{\partial u(na)} = -g \left\{ 2u(na) - u[(n-1)a] - u[(n+1)a] \right\} \]

- Simplified notation
 \[m \frac{d^2 u_n}{dt^2} = -g \left\{ 2u_n - u_{n-1} - u_{n+1} \right\} \]
Lattice Motion, cont’d

• Seek solutions of the form

\[u_n(t) \sim \exp\left\{ i \left(Kna - \omega t \right) \right\} \]

• Boundary conditions
 ♦ Born-von Karman: assume that the ends of the chain are connected
 • \(u_{N+1} = u_1 \)
 • \(u_0 = u_N \)
Lattice Motion, cont’d

• Then the boundary conditions become

\[u_{N+1} \sim \exp\left\{ i \left[K (N + 1) a - \omega t \right] \right\} \]

\[u_1 \sim \exp\left\{ i \left[Ka - \omega t \right] \right\} \]

\[\rightarrow 1 = \exp\left\{ iKNa \right\} \rightarrow KNa = 2\pi n, \]

where \(n \) is an integer

• Let \(\lambda \) be the vibration wavelength, \(\lambda = aN/n \)

\[K = \frac{2\pi n}{aN} = \frac{2\pi}{\lambda} \]

\(K = \) wave vector

• Minimum wavelength, \(\lambda_{\text{min}} = 2a = 2(\text{lattice spacing}) \)
Solution to the Equations of Motion

- Substitute exponential solution into equation of motion
 \[-m\omega^2 e^{i(Kn_a - \omega t)} = -g \left[2 - e^{-iKa} - e^{iKa} \right] e^{i(Kn_a - \omega t)}\]
 \[= -2g (1 - \cos Ka) e^{i(Kn_a - \omega t)}\]
- Solve for \(\omega\)
 \[\omega(K) = \sqrt{\frac{2g(1 - \cos Ka)}{m}} = 2\sqrt{\frac{g}{m}} \left| \sin(\frac{1}{2} Ka) \right|\]
- This is the dispersion relation for acoustic phonons
 - relates phonon frequency (energy) to wave vector (wavelength)
Dispersion Curve

- Changing K by $2\pi/a$ leaves u unaffected
 - Only N values of K are unique
 - We take them to lie in $-\pi/a < K < \pi/a$

\[
\omega(K) = 2(g/m)^{1/2}
\]
Wave Velocities

- Phase velocity: \(c = \frac{\omega}{K} \)
- Group velocity: \(v_g = \frac{\partial \omega}{\partial K} = a\left(\frac{g}{m}\right)^{1/2}\cos\left(\frac{Ka}{2}\right) \)
- For small \(K \):
 \[
 \lim_{K \to 0} \omega = a \sqrt{\frac{g}{m}} |K|
 \]
 \[
 \Rightarrow \lim_{K \to 0} v_g = a \sqrt{\frac{g}{m}} = \left| \frac{\omega}{K} \right| = c
 \]
- Thus, for small \(K \) (large \(\lambda \)), group velocity equals phase velocity (and speed of sound)
- We call these acoustic vibration modes
Notes on Lattice Vibrations

• For \(K = \pm \pi/a \), the group velocity is zero
 ∗ why? \[\frac{u_{n+1}}{u_n} = \exp\{iKa\} = \exp\{i\pi\} = \cos \pi + i \sin \pi = -1 \]
 ∗ neighbors are 180 deg out of phase

• The region \(-\pi/a < K < \pi/a\) is the first Brillouin zone of the 1D lattice

• We must extrapolate these results to three dimensions for bulk crystals
Density of Phonon States

• Consider a 1D chain of total length L carrying $M+1$ particles (atoms) at a separation a
 ♦ Fix the position of atoms 0 and M
 ♦ Each normal vibrational mode of polarization p takes the form of a standing wave

$$u_n \sim \sin(nKa) \exp(-i\omega_{Kp} t)$$

♦ Only certain wavelengths (wavevectors) are allowed

$$\lambda_{\text{max}} = 2L \quad (K_{\text{min}} = \pi/L), \quad \lambda_{\text{min}} = 2a \quad (K_{\text{max}} = \pi/a = M\pi/L)$$

♦ In general, the allowed values of K are

$$K = \frac{\pi}{L}, \frac{2\pi}{L}, \frac{3\pi}{L}, ..., \frac{(M-1)\pi}{L}$$

Note: $K = M\pi/L$ is not included because it implies no atomic motion, i.e.,
$$\sin(nM\pi a/L) = \sin(n\pi) = 0.$$
Density of States, cont’d

• Thus, we have M-1 allowed, independent values of \(K \)
 ♦ This is the same number of particles allowed to move
 ♦ In \(K \)-space, we thus have \(M-1 \) allowable wavevectors
 ♦ Each wavevector describes a single mode, and one mode exists in each distance \(\pi/L \) of \(K \)-space
 ♦ Thus, \(dK/dN = \pi/L \), where \(N \) is the number of modes

Discrete \(K \)-space representation

\[\pi/a \]

\[\pi/(M-1)a \] \[\pi/L \] \[\pi/a \]
Density of States, cont’d

- The phonon density of states gives the number of modes per unit frequency per unit volume of real space

\[
D(\omega) = \frac{1}{L^{\alpha=1}} \frac{dN}{d\omega} = \frac{1}{L} \frac{dN}{dK} \frac{dK}{d\omega} = \frac{1}{\pi} \frac{1}{d\omega / dK}
\]

- The last denominator is simply the group velocity, derived from the dispersion relation

\[
D(\omega) = \frac{1}{\pi v_g (\omega)} = \left[\pi a \sqrt{\frac{g}{m}} \cos \left(\frac{1}{2} K(\omega)a \right) \right]^{-1}
\]

Note singularity for \(K = \pi / a \)
Periodic Boundary Conditions

• For more generality, apply periodic boundary conditions to the chain and find

\[K = 0, \pm \frac{2\pi}{L}, \pm \frac{4\pi}{L}, ..., \frac{M\pi}{L} \]

♦ Still gives same number of modes (one per particle that is allowed to move) as previous case, but now the allowed wavevectors are separated by \(\Delta K = \frac{2\pi}{L} \)

♦ Useful in the study of higher-dimension systems (2D and 3D)
2D Density of States

- Each allowable wavevector (mode) occupies a region of area \((2\pi/L)^2\)
- Thus, within the circle of radius \(K\), approximately \(N=\pi K^2/(2\pi/L)^2\) allowed wavevectors exist
- Density of states

\[
D(\omega) = \frac{1}{L^\alpha=2} \frac{dN}{d\omega} = \frac{1}{V} \frac{dN}{dK} \frac{dK}{d\omega} = \frac{K(\omega)}{2\pi} \frac{1}{v_g(\omega)}
\]
3D Density of States

• Using periodic boundary conditions in 3D, there is one allowed value of K per $(2\pi/L)^3$ volume of K-space.

• The total number of modes with wavevectors of magnitude less than a given K is thus

$$N = \left(\frac{L}{2\pi}\right)^3 \left(\frac{4}{3} \pi K^3\right) = \frac{VK^3}{6\pi^2}$$

• The 3D density of states becomes

$$D(\omega) = \frac{1}{L^{\alpha=3}} \frac{dN}{d\omega} = \frac{1}{V} \frac{dN}{dK} \frac{dK}{d\omega} = \frac{K(\omega)^2}{2\pi^2} \frac{1}{v_g(\omega)}$$
Glossary for Lattice Descriptions and Lattice Dynamics

T.S. Fisher
Purdue University
Lattice Structure

• **a = lattice constant**

• **Common crystal structures**
 - Body centered (bcc)
 - Face centered (fcc)
 - Diamond (dia)

• **Bravais lattice**: an infinite array of discrete points whose position vectors can be expressed as:

\[\mathbf{R} = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3 \]

where \(\mathbf{a}_i \) are PRIMITIVE VECTORS
and \(n_i \) are integers
Primitive Unit Cells

- A primitive unit cell is a volume of real space that, when translated through all \(\mathbf{R} \), just fills all space without overlaps or voids and contains one lattice point.
- 2D examples

Jarrell (2) Fig2
Lattice with a Basis

- Often, we need to describe a crystalline material’s structure by placing a primary atom at each lattice point and one or more basis atoms relative to it.
 - For compound materials (e.g., CuO₂), this is an obvious requirement.
 - Also applies to some monoatomic crystals (e.g., Si).

Jarrell (2) Fig3
Reciprocal Lattice

• More convenient to express spatial dependencies in terms of wave vectors, instead of wavelengths

• Reciprocal lattice (RL) is like the inverse of a Bravais lattice

• \(\mathbf{G} \) is the vector that satisfies

\[
\mathbf{G} \cdot \mathbf{R} = 2\pi \times \text{integer} \quad \Rightarrow \quad \mathbf{G} = m_1 \mathbf{b}_1 + m_2 \mathbf{b}_2 + m_3 \mathbf{b}_3
\]

\(m_i \) are integers, and

\[
\mathbf{b}_1 = 2\pi \frac{\mathbf{a}_2 \times \mathbf{a}_3}{\mathbf{a}_1 \cdot (\mathbf{a}_2 \times \mathbf{a}_3)}; \quad \mathbf{b}_2 = 2\pi \frac{\mathbf{a}_3 \times \mathbf{a}_1}{\mathbf{a}_1 \cdot (\mathbf{a}_2 \times \mathbf{a}_3)}; \quad \mathbf{b}_3 = 2\pi \frac{\mathbf{a}_1 \times \mathbf{a}_2}{\mathbf{a}_1 \cdot (\mathbf{a}_2 \times \mathbf{a}_3)}
\]
Primitive Cells & Miller Indices

- **Primitive Cell**: A region of space that is closer to one point than any others
- **1st Brillouin Zone**: The primitive cell of the reciprocal lattice
- For a given lattice plane, *Miller indices* are coordinates of the shortest reciprocal lattice vector normal to the plane
 - A plane with Miller indices \((hkl)\) is perpendicular to the vector
 \[
 \vec{G} = h\vec{b}_1 + k\vec{b}_2 + l\vec{b}_3
 \]
Dispersion Curves

- **Phase velocity:** \(c = \frac{\omega}{q} \)
- **Group velocity:** \(v_g = \frac{\partial \omega}{\partial q} \)
- **Acoustic phonons:** determine the speed of sound in a solid and are characterized by \(\omega \sim q \) for \(q \to 0 \)
- **Optical phonons:** occur for lattices with more than one atom per unit cell and are characterized by flat dispersion curves with relatively high frequencies
- **Branch:** acoustic or optical
- **Polarization:** defines the direction of oscillation of neighboring atoms of a given dispersion curve
 - **Longitudinal:** atomic displacements aligned with wave direction
 - **Transverse:** atomic displacements perpendicular to wave direction

Animated chains from http://www.chembio.uoguelph.ca/educmat/chm729/Phonons/movies.htm

T.S. Fisher, Purdue University
Phonons

- **Phonon**: a quantized lattice vibration (i.e., one that can take on only a discrete energy, $\hbar \omega$)

- **Normal mode**: a lattice wave that is characterized by a branch, polarization, wave vector, and frequency

- **Occupation number (or excitation number) n_{Kp}**: the number of phonons of a given wave vector (K) and branch/polarization p
 - Note that n_{Kp} depends on frequency, which in turn depends on wave vector and branch/polarization as defined by the dispersion curve
 - Note also that, in this context, the term p implies both branch and polarization
Overview of Phonon Simulation Tools

• **Boltzmann Transport Equation (BTE)**
 - Requires boundary scattering models
 - Requires detailed understanding of phonon scattering and dispersion for rigorous inclusion of phonon physics

• **Molecular Dynamics (MD)**
 - Computationally expensive
 - Not strictly applicable at low temperatures
 - Handling of boundaries requires great care for links to larger scales and simulation of functional transport processes

• **Atomistic Green’s Function (AGF)**
 - Efficient handling of boundary and interface scattering
 - Straightforward links to larger scales
 - Inclusion of anharmonic effects is difficult