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Phonon Heat Conduction
• Phonons are quantized 

lattice vibrations
• Govern thermal properties 

in electrical insulators and 
semiconductors

• Can be modeled to first 
order with spring-mass 
dynamics

• Wave solutions
♦ wave vector K=2π/λ
♦ phonon energy=ħω
♦ dispersion relations gives 

ω = fn(K)
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Heat Conduction Through Thin Films
• Experimental results 

for 3-micron silicon 
films

• Non-equilibrium 
scattering models 
work fairly well

• Crystalline structure 
often has larger
impact than film 
thickness

3 micron

Asheghi et al., 1999



nanoHUB.org online simulations and more

T.S. Fisher, Purdue University 4

Heat Conduction Through Multiple Thin Films
• Fine-pitch 5 nm 

superlattices

• Cross-thickness 
conductivity measurement

• Measured values are 
remarkably close to bulk 
alloy values (nearly within 
measurement error)

• Expected large reduction 
in conductivity not 
observed

5nm

Cahill et al., 2003
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Lattice Vibrations

• Consider two neighboring atoms that share a 
chemical bond

• The bond is not rigid, but rather like a spring with 
an energy relationship such as…
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Lattice Vibrations, cont’d

• Near the minimum, the energy is well 
approximated by a parabola

♦ u = r – r0 and   g = spring constant
• Now consider a one-dimensional chain of 

molecules
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Lattice Energy and Motion

• Harmonic potential energy is the sum of potential 
energies over the lattice

• Equation of motion of atom at location u(na)

• Simplified notation
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Lattice Motion, cont’d

• Seek solutions of the form

• Boundary conditions
♦ Born-von Karman: assume that the ends of the chain are 

connected
• uN+1 = u1

• u0 = uN

( ){ }( ) ~ expnu t i Kna t− ω
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Lattice Motion, cont’d

• Then the boundary conditions become

• Let λ be the vibration wavelength, λ = aN/n

• Minimum wavelength, λmin = 2a = 2(lattice spacing)
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Solution to the Equations of Motion

• Substitute exponential solution into equation of 
motion

• Solve for ω

• This is the dispersion relation for acoustic phonons
♦ relates phonon frequency (energy) to wave vector 

(wavelength)
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Dispersion Curve
• Changing K by 2π/a leaves u unaffected

♦ Only N values of K are unique
♦ We take them to lie in -π/a < K < π/a

ω(K)
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Wave Velocities

• Phase velocity: c = ω/K
• Group velocity: vg = ∂ω/∂K = a(g/m)1/2cos(Ka/2)
• For small K:

• Thus, for small K (large λ), group velocity equals 
phase velocity (and speed of sound)

• We call these acoustic vibration modes
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Notes on Lattice Vibrations

• For K = ±π/a, the group velocity is zero
♦ why?

♦ neighbors are 180 deg out of phase

• The region -π/a < K < π/a is the first Brillouin zone 
of the 1D lattice

• We must extrapolate these results to three 
dimensions for bulk crystals

{ } { }1 exp exp cos sin 1n

n
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Density of Phonon States
• Consider a 1D chain of total length L carrying M+1 particles 

(atoms) at a separation a
♦ Fix the position of atoms 0 and M
♦ Each normal vibrational mode of polarization p takes the form of a 

standing wave

♦ Only certain wavelengths (wavevectors) are allowed
λmax=2L (Kmin=π/L), λmin=2a (Kmax=π/a=Mπ/L)

♦ In general, the allowed values of K are

0 1 MM-1

L

a

~ sin( ) exp( )n Kpu nKa i t− ω

2 3 ( 1), , ,..., MK
L L L L
π π π − π

=

Note: K=Mπ/L is not included 
because it implies no atomic 
motion, i.e., 
sin(nMπa/L)=sin(nπ)=0.

See Kittel, Ch5, 
Intro to Solid-State
Physics, Wiley 1996
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Density of States, cont’d

• Thus, we have M-1 allowed, independent values of K
♦ This is the same number of particles allowed to move
♦ In K-space, we thus have M-1 allowable wavevectors
♦ Each wavevector describes a single mode, and one mode exists in 

each distance π/L of K-space
♦ Thus, dK/dN = π/L, where N is the number of modes

π/(M-1)a π/aπ/L

π/a
Discrete K-space representation
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Density of States, cont’d

• The phonon density of states gives the number of 
modes per unit frequency per unit volume of real 
space

♦ The last denominator is simply the group velocity, 
derived from the dispersion relation
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Periodic Boundary Conditions

• For more generality, apply periodic boundary 
conditions to the chain and find

♦ Still gives same number of modes (one per particle that 
is allowed to move) as previous case, but now the 
allowed wavevectors are separated by ΔK = 2π/L

♦ Useful in the study of higher-dimension systems (2D and 
3D)
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L L L
π π π
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2D Density of States
• Each allowable wavevector

(mode) occupies a region of 
area (2π/L)2

• Thus, within the circle of 
radius K, approximately 
N=πK2/ (2π/L)2 allowed 
wavevectors exist

• Density of states

K-space
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3D Density of States
• Using periodic boundary conditions in 3D, there is 

one allowed value of K per (2π/L)3 volume of K-
space

• The total number of modes with wavevectors of 
magnitude less than a given K is thus

• The 3D density of states becomes
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Glossary for Lattice Descriptions and 
Lattice Dynamics

T.S. Fisher
Purdue University
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Lattice Structure

• a = lattice constant
• Common crystal structures

• Body centered (bcc)
• Face centered (fcc)
• Diamond (dia)

• Bravais lattice: an infinite array of discrete points 
whose position vectors can be expressed as:

a

a

a

1 1 2 2 3 3

i

where  are PRIMITIVE VECTORS
and n  are integers

i

R n a n a n a

a

= + +
JG JJG JJG JJG

JJG
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Primitive Unit Cells

• A primitive unit cell is a volume of real space that , when 
translated through all R, just fills all space without overlaps 
or voids and contains one lattice point

• 2D examples

Jarrell (2) Fig2
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Lattice with a Basis
• Often, we need to 

describe a 
crystalline material’s 
structure by placing 
a primary atom at 
each lattice point 
and one or more 
basis atoms relative 
to it
♦ For compound 

materials (eg CuO2), 
this is an obvious 
requirement

♦ Also applies to some 
monoatomic crystals 
(eg Si)

Jarrell (2) Fig3
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Reciprocal Lattice

• More convenient to express spatial dependencies 
in terms of wave vectors, instead of wavelengths

• Reciprocal lattice (RL) is like the inverse of a 
Bravais lattice

• G is the vector that satisfies

♦ mi are integers, and

1 1 2 2 3 3G m b m b m b= + +
JG JG JJG JG

( ) ( ) ( )
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1 2 3 1 2 3 1 2 3
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a a a a a a a a a

× × ×
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× × ×

JJG JJG JJG JG JG JJGJG JJG JG
JG JJG JJG JG JJG JJG JG JJG JJG
i i i

2 integer• = π×G R



nanoHUB.org online simulations and more

T.S. Fisher, Purdue University 25

Primitive Cells & Miller Indices

• Primitive Cell: A region of space that is closer to 
one point than any others

• 1st Brillouin Zone: The primitive cell of the 
reciprocal lattice

• For a given lattice plane, Miller indices are 
coordinates of the shortest reciprocal lattice vector 
normal to the plane
♦ A plane with Miller indices (hkl) is perpendicular to the 

vector

1 2 3G hb kb lb= + +
JG JG JJG JG
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Dispersion Curves

Animated chains from 
http://www.chembio.uoguelph.ca/educmat/chm729/Phonons/movies.htm

• Phase velocity: c = ω/q
• Group velocity: vg = ∂ω/∂q
• Acoustic phonons: determine the speed of sound in a solid 

and are characterized by ω ~ q for q 0
• Optical phonons: occur for lattices with more than one atom 

per unit cell and are characterized by flat dispersion curves 
with relatively high frequencies

• Branch: acoustic or optical
• Polarization: defines the direction of oscillation of 

neighboring atoms of a given dispersion curve
♦ Longitudinal: atomic displacements aligned with wave direction

♦ Transverse: atomic displacements perpendicular to wave direction
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Phonons
• Phonon: a quantized lattice vibration (i.e., one that 

can take on only a discrete energy, ħω)
• Normal mode: a lattice wave that is characterized 

by a branch, polarization, wave vector, and 
frequency

• Occupation number (or excitation number) nKp: the 
number of phonons of a given wave vector (K) and 
branch/polarization p
♦ Note that nKp depends on frequency, which in turn 

depends on wave vector and branch/polarization as 
defined by the dispersion curve

♦ Note also that, in this context, the term p implies both 
branch and polarization
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Overview of Phonon Simulation Tools

• Boltzmann Transport Equation (BTE)
♦ Requires boundary scattering models
♦ Requires detailed understanding of phonon scattering and 

dispersion for rigorous inclusion of phonon physics
• Molecular Dynamics (MD)

♦ Computationally expensive
♦ Not strictly applicable at low temperatures
♦ Handling of boundaries requires great care for links to larger 

scales and simulation of functional transport processes
• Atomistic Green’s Function (AGF)

♦ Efficient handling of boundary and interface scattering
♦ Straightforward links to larger scales
♦ Inclusion of anharmonic effects is difficult


