Lattice Dynamics

Timothy S. Fisher
Purdue University
School of Mechanical Engineering, and
Birck Nanotechnology Center

tsfisher@purdue.edu

ME 595M May 2007

Phonon Heat Conduction

- Phonons are quantized lattice vibrations
- Govern thermal properties in electrical insulators and semiconductors
- Can be modeled to first order with spring-mass dynamics

- Wave solutions
 - wave vector $K=2\pi/\lambda$
 - phonon energy=ħω
 - dispersion relations gives
 ω = fn(K)

Heat Conduction Through Thin Films

 Experimental results for 3-micron silicon films

- Non-equilibrium scattering models work fairly well
- Crystalline structure often has larger impact than film thickness

Asheghi et al., 1999

Heat Conduction Through Multiple Thin Films

 Fine-pitch 5 nm superlattices

- Cross-thickness conductivity measurement
- Measured values are remarkably close to bulk alloy values (nearly within measurement error)
- Expected large reduction in conductivity not observed

Cahill et al., 2003

Lattice Vibrations

 Consider two neighboring atoms that share a chemical bond

• The bond is not rigid, but rather like a spring with an energy relationship such as...

Lattice Vibrations, cont'd

Near the minimum, the energy is well approximated by a parabola

$$U = \frac{1}{2}gu^2$$

- $u = r r_0$ and g = spring constant
- Now consider a one-dimensional chain of molecules

Lattice Energy and Motion

Harmonic potential energy is the sum of potential energies over the lattice

$$U^{harm} = \frac{1}{2} g \sum_{n} \{ u[na] - u[(n+1)a] \}^{2}$$

Equation of motion of atom at location u(na)

$$F = m\frac{d^2u(na)}{dt^2} = -\frac{\partial U^{harm}}{\partial u(na)} = -g\left\{2u(na) - u\left[(n-1)a\right] - u\left[(n+1)a\right]\right\}$$

Simplified notation

$$m\frac{d^{2}u_{n}}{dt^{2}} = -g\left\{2u_{n} - u_{n-1} - u_{n+1}\right\}$$

Lattice Motion, cont'd

Seek solutions of the form

$$u_n(t) \sim \exp\{i(Kna - \omega t)\}$$

- Boundary conditions
 - Born-von Karman: assume that the ends of the chain are connected
 - $u_{N+1} = u_1$
 - $u_0 = u_N$

Lattice Motion, cont'd

Then the boundary conditions become

$$u_{N+1} \sim \exp\left\{i\left[K(N+1)a - \omega t\right]\right\}$$

 $u_1 \sim \exp\left\{i\left[Ka - \omega t\right]\right\}$
 $\to 1 = \exp\left[iKNa\right] \to KNa = 2\pi n$,
where n is an integer

• Let λ be the vibration wavelength, $\lambda = aN/n$

$$K = \frac{2\pi n}{aN} = \frac{2\pi}{\lambda}$$
 $K = \text{wave vector}$

Minimum wavelength, λ_{min} = 2a = 2(lattice spacing)

Solution to the Equations of Motion

Substitute exponential solution into equation of motion

$$-m\omega^{2}e^{i(Kna-\omega t)} = -g\left[2 - e^{-iKa} - e^{iKa}\right]e^{i(Kna-\omega t)}$$
$$= -2g\left(1 - \cos Ka\right)e^{i(Kna-\omega t)}$$

Solve for ω

$$\omega(K) = \sqrt{\frac{2g(1 - \cos Ka)}{m}} = 2\sqrt{\frac{g}{m}} \left| \sin(\frac{1}{2}Ka) \right|$$

- This is the dispersion relation for acoustic phonons
 - relates phonon frequency (energy) to wave vector (wavelength)

Dispersion Curve

- Changing K by 2π/a leaves u unaffected
 - ◆ Only N values of K are unique
 - We take them to lie in $-\pi/a < K < \pi/a$

Wave Velocities

- Phase velocity: $c = \omega/K$
- Group velocity: $v_g = \partial \omega / \partial K = a(g/m)^{1/2} \cos(Ka/2)$
- For small K:

$$\lim_{K \to 0} \omega = a \sqrt{\frac{g}{m}} |K|$$

- Thus, for small K (large λ), group velocity equals phase velocity (and speed of sound)
- We call these acoustic vibration modes

Notes on Lattice Vibrations

- For $K = \pm \pi/a$, the group velocity is zero
 - why? $\frac{u_{n+1}}{u_n} = \exp\{iKa\} = \exp\{i\pi\} = \cos\pi + i\sin\pi = -1$
 - neighbors are 180 deg out of phase
- The region $-\pi/a < K < \pi/a$ is the first Brillouin zone of the 1D lattice
- We must extrapolate these results to three dimensions for bulk crystals

Density of Phonon States

- Consider a 1D chain of total length L carrying M+1 particles (atoms) at a separation a
 - Fix the position of atoms 0 and M
 - Each normal vibrational mode of polarization p takes the form of a standing wave $u_n \sim \sin(nKa) \exp(-i\omega_{Kp}t)$
 - Only certain wavelengths (wavevectors) are allowed $\lambda_{\text{max}} = 2L (K_{\text{min}} = \pi/L), \ \lambda_{\text{min}} = 2a (K_{\text{max}} = \pi/a = M\pi/L)$
 - In general, the allowed values of K are

$$K = \frac{\pi}{L}, \frac{2\pi}{L}, \frac{3\pi}{L}, \dots, \frac{(M-1)\pi}{L}$$

Note: $K=M\pi/L$ is not included because it implies no atomic motion, i.e., $\sin(nM\pi a/L)=\sin(n\pi)=0$.

See Kittel, Ch5, Intro to Solid-State Physics, Wiley 1996

Density of States, cont'd

- Thus, we have M-1 allowed, independent values of K
 - This is the same number of particles allowed to move
 - ◆ In K-space, we thus have M-1 allowable wavevectors
 - Each wavevector describes a single mode, and one mode exists in each distance π/L of K-space
 - Thus, $dK/dN = \pi/L$, where N is the number of modes

Density of States, cont'd

 The phonon density of states gives the number of modes per unit frequency per unit volume of real space

$$D(\omega) = \frac{1}{L^{\alpha = 1}} \frac{dN}{d\omega} = \frac{1}{L} \frac{dN}{dK} \frac{dK}{d\omega} = \frac{1}{\pi} \frac{1}{d\omega/dK}$$

 The last denominator is simply the group velocity, derived from the dispersion relation

$$D(\omega) = \frac{1}{\pi v_g(\omega)} = \left[\pi a \sqrt{\frac{g}{m}} \cos\left(\frac{1}{2}K(\omega)a\right) \right]^{-1}$$

Note singularity for $K = \pi / a$

Periodic Boundary Conditions

 For more generality, apply periodic boundary conditions to the chain and find

$$K = 0, \pm \frac{2\pi}{L}, \pm \frac{4\pi}{L}, \dots, \frac{M\pi}{L}$$

- Still gives same number of modes (one per particle that is allowed to move) as previous case, but now the allowed wavevectors are separated by $\Delta K = 2\pi/L$
- Useful in the study of higher-dimension systems (2D and 3D)

2D Density of States

- Each allowable wavevector (mode) occupies a region of area (2π/L)²
- Thus, within the circle of radius K, approximately N=πK²/ (2π/L)² allowed wavevectors exist
- Density of states

K-space

$$D(\omega) = \frac{1}{L^{\alpha=2}} \frac{dN}{d\omega} = \frac{1}{V} \frac{dN}{dK} \frac{dK}{d\omega} = \frac{K(\omega)}{2\pi} \frac{1}{v_g(\omega)}$$

18

3D Density of States

- Using periodic boundary conditions in 3D, there is one allowed value of **K** per $(2\pi/L)^3$ volume of **K**-space
- The total number of modes with wavevectors of magnitude less than a given K is thus

$$N = \left(\frac{L}{2\pi}\right)^3 \left(\frac{4}{3}\pi K^3\right) = \frac{VK^3}{6\pi^2}$$

The 3D density of states becomes

$$D(\omega) = \frac{1}{L^{\alpha=3}} \frac{dN}{d\omega} = \frac{1}{V} \frac{dN}{dK} \frac{dK}{d\omega} = \frac{K(\omega)^2}{2\pi^2} \frac{1}{v_g(\omega)}$$

Glossary for Lattice Descriptions and Lattice Dynamics

T.S. Fisher
Purdue University

Lattice Structure

- a = lattice constant
- Common crystal structures
 - Body centered (bcc)
 - Face centered (fcc)
 - Diamond (dia)

 Bravais lattice: an infinite array of discrete points whose position vectors can be expressed as:

$$\overrightarrow{R} = n_1 \overrightarrow{a_1} + n_2 \overrightarrow{a_2} + n_3 \overrightarrow{a_3}$$

where $\overrightarrow{a_i}$ are PRIMITIVE VECTORS
and n_i are integers

Primitive Unit Cells

- A primitive unit cell is a volume of real space that, when translated through all R, just fills all space without overlaps or voids and contains one lattice point
- 2D examples

Centered

Jarrell (2) Fig2

Lattice with a Basis

- Often, we need to describe a crystalline material's structure by placing a primary atom at each lattice point and one or more basis atoms relative to it
 - For compound materials (eg CuO₂), this is an obvious requirement
 - Also applies to some monoatomic crystals (eg Si)

Jarrell (2) Fig3

(0)

Basis

Reciprocal Lattice

- More convenient to express spatial dependencies in terms of wave vectors, instead of wavelengths
- Reciprocal lattice (RL) is like the inverse of a Bravais lattice
- G is the vector that satisfies

$$\mathbf{G} \bullet \mathbf{R} = 2\pi \times \text{integer}$$
 $\overrightarrow{G} = m_1 \overrightarrow{b_1} + m_2 \overrightarrow{b_2} + m_3 \overrightarrow{b_3}$

m_i are integers, and

$$\overrightarrow{b_1} = 2\pi \frac{\overrightarrow{a_2} \times \overrightarrow{a_3}}{\overrightarrow{a_1} \cdot (\overrightarrow{a_2} \times \overrightarrow{a_3})}; \quad \overrightarrow{b_2} = 2\pi \frac{\overrightarrow{a_3} \times \overrightarrow{a_1}}{\overrightarrow{a_1} \cdot (\overrightarrow{a_2} \times \overrightarrow{a_3})}; \quad \overrightarrow{b_3} = 2\pi \frac{\overrightarrow{a_1} \times \overrightarrow{a_2}}{\overrightarrow{a_1} \cdot (\overrightarrow{a_2} \times \overrightarrow{a_3})}$$

Primitive Cells & Miller Indices

- Primitive Cell: A region of space that is closer to one point than any others
- 1st Brillouin Zone: The primitive cell of the reciprocal lattice
- For a given lattice plane, Miller indices are coordinates of the shortest reciprocal lattice vector normal to the plane
 - A plane with Miller indices (hkl) is perpendicular to the vector

$$\overrightarrow{G} = h\overrightarrow{b_1} + k\overrightarrow{b_2} + l\overrightarrow{b_3}$$

Dispersion Curves

- Phase velocity: $c = \omega/q$
- Group velocity: $v_g = \partial \omega / \partial q$
- Acoustic phonons: determine the speed of sound in a solid and are characterized by ω ~ q for q→0
- Optical phonons: occur for lattices with more than one atom per unit cell and are characterized by flat dispersion curves with relatively high frequencies
- Branch: acoustic or optical
- Polarization: defines the direction of oscillation of neighboring atoms of a given dispersion curve
 - Longitudinal: atomic displacements aligned with wave direction

•••••

Transverse: atomic displacements perpendicular to wave direction

Phonons

- Phonon: a quantized lattice vibration (i.e., one that can take on only a discrete energy, ħω)
- Normal mode: a lattice wave that is characterized by a branch, polarization, wave vector, and frequency
- Occupation number (or excitation number) n_{Kp}: the number of phonons of a given wave vector (K) and branch/polarization p
 - Note that n_{Kp} depends on frequency, which in turn depends on wave vector and branch/polarization as defined by the dispersion curve
 - Note also that, in this context, the term p implies both branch and polarization

Overview of Phonon Simulation Tools

- Boltzmann Transport Equation (BTE)
 - Requires boundary scattering models
 - Requires detailed understanding of phonon scattering and dispersion for rigorous inclusion of phonon physics
- Molecular Dynamics (MD)
 - Computationally expensive
 - Not strictly applicable at low temperatures
 - Handling of boundaries requires great care for links to larger scales and simulation of functional transport processes
- Atomistic Green's Function (AGF)
 - Efficient handling of boundary and interface scattering
 - Straightforward links to larger scales
 - Inclusion of anharmonic effects is difficult