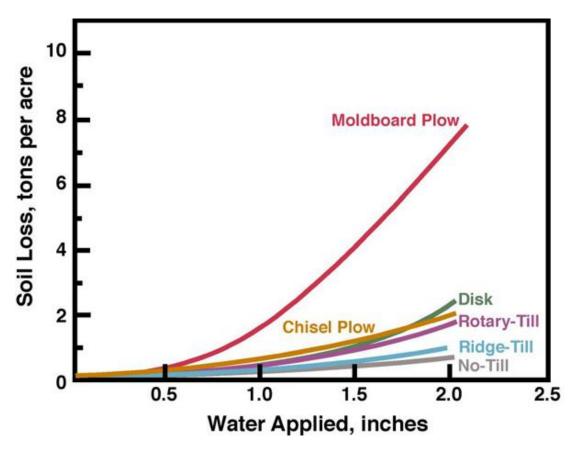
Application of remote sensing based tillage mapping technique in Upper White River watershed


Shashank Singh

Master's student Purdue University

Co-authors
Indrajeet Chaubey, Associate Professor, Purdue University
Prasanna Gowda, USDA-ARS

Soil loss under various tillage practices

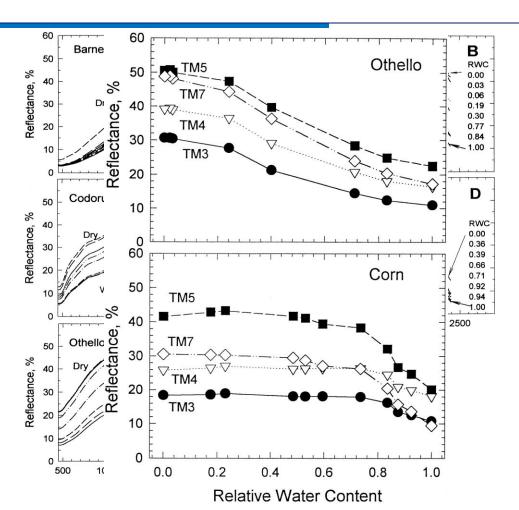
Estimated annual soil and nutrient losses under various tillage practices

Practice	Soil erosion / Sediment yield	Total water and soil losses (lb/ac)	
	(t/ac/yr)	N	Р
Moldboard plow	15	55.6	21.0
No till	1.0	9.7	3.1

Source: www.epa.gov/msbasin/

Practice	Eroded soil	Total N	Total P	Total K
	(t/ha)	(5% OM)	(5% OM)	(5% OM)
Conventional Till	141	296	2.5	266
Mulch Tilled	88	47	0.4	34
No Till	1.7	14	0.1	9

Source: Comia et al., 1994



Objective

Mapping tillage practices using Landsat Thematic Mapper (TM) data and logistical regression models for the Upper White River watershed

Reflectance curve

Source: Daughtry et al., 2004

Reflectance Reflection than the spipe of the conflict of the spice of the conflict of the conf

Satellite sensors

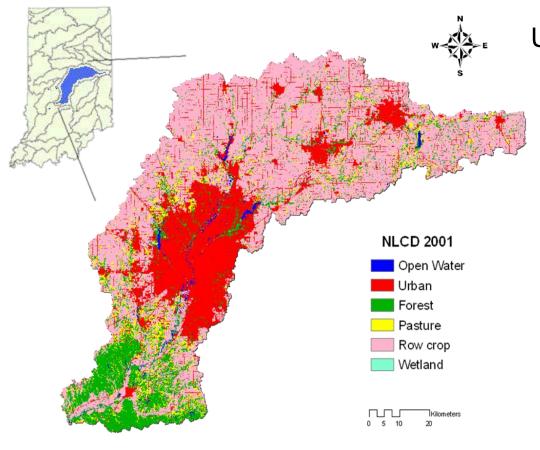
- Landsat MSS
- Landsat TM and ETM+
- NOAA AVHRR
- SPOT
- □ IRS



Spectral resolution

- Refers to width of each band on the electromagnetic spectrum
 - Landsat TM sensor consists of 7 bands
 - ☐ TM Band 1 Blue 0.45 0.52 micro meters
 - ☐ TM Band 2 Green– 0.52 0.60 micro meters
 - \square TM Band 3 Red 0.63 0.69 micro meters
 - \square TM Band 4 NIR 0.76 0.90 micro meters
 - \square TM Band 5 MIR 1.55 1.74 micro meters
 - ☐ TM Band 6 TIR 10.40 12.50 micro meters
 - \square TM Band 7 MIR 2.08 2.35 micro meters

Landsat spectrum range


Source: http://svs.gsfc.nasa.gov/vis/

Radiometric and temporal resolutions

- □ Radiometric: refers to the dynamic range, or number of possible data values in each band. For example, Landsat TM sensor stores 8-bit image, i.e. data values range from 0 to 255.
- □ Temporal: refers to how often a sensor obtains imagery of a particular area. For example, Landsat TM can view the same area of the globe once every 16 days.

Watershed

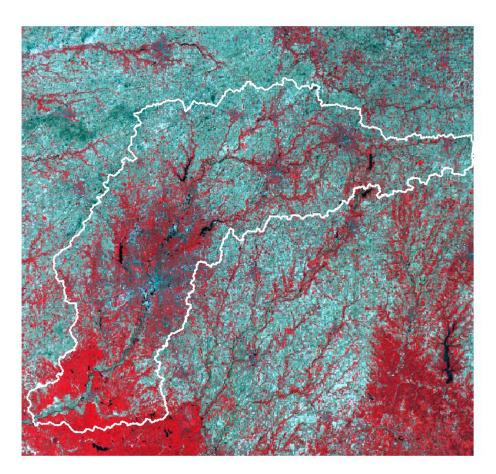
Upper White River Watershed

- 7043 km²
- Land Use
 - ☐ 23% Urban
 - ☐ 55% Row crop

Tillage data collection

Acquisition of satellite imagery

 Applying logistic regression models to determine tillage probability


Accuracy assessment of tillage maps

- □ Tillage data collection
 - Conventional and Conservational tillage percentage for corn at county level from Indiana State Department of Agricultural
- Satellite imagery
 - Two Landsat TM imagery
 - Mapping tillage practices Preplanting season (May 8, 2003) (Source: www.indianaview.org)
- □ Mapping land use Standing crop (July 25, 2003) (Source: Purdue Terrestrial Observatory)

Landsat TM imagery

Landsat TM imagery May 8, 2003 Path 21 runs 32-33

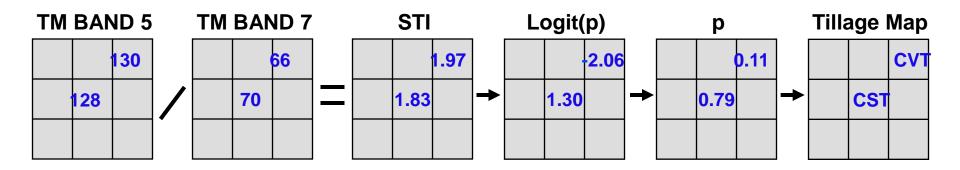
- Logistical regression models
 - General expression: Logit(p) = $\ln \left(\frac{p}{1-p} \right) = \alpha + \beta X$
 - □ p − Tillage response probability
 - α intercept
 - \square β -slope
 - ☐ X Variable based on reflectance

$$p = \frac{e^{logit(p)}}{1 + e^{logit(p)}}$$

100% conventional tillage

100% conservational tillage

Logistic regression models


- 1. Logit(p) = 10.215 0.072 * TM5
- 2. Logit(p) = -19.404 + 29.949 * R15
 - \square where R15 = (TM1 / TM5)
- 3. Logit(p) = 8.785 + 40.947 * M15
- 4. Logit(p) = 10.931 + 0.135 * D35
 - \square where D35 = TM3 TM5
- 5. Logit(p) = 45.218 23.998 * STI
 - where STI = TM5 / TM7
- 6. Logit(p) = 30.464 99.483 * NDTI

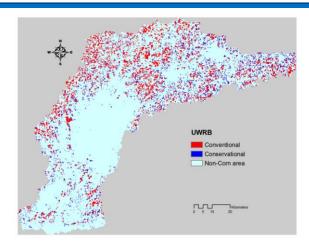
where NDTI = (TM5 - TM7) / (TM5 + TM7)

Source: Van Deventer et al. (1997)

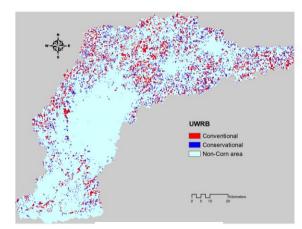
☐ How to identify tillage practices — An example Logit(p) = 45.218 – 23.998 * STI where STI = TM5 / TM7

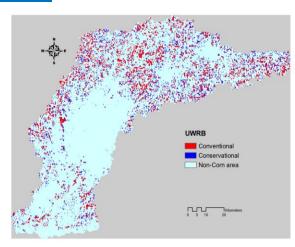

```
If p < cut point tillage probability – Conventional Tillage (CVT)

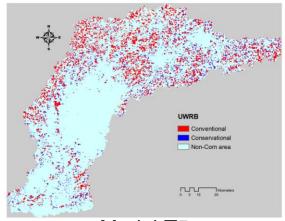
If p > cut point tillage probability – Conservation Tillage (CST)
```



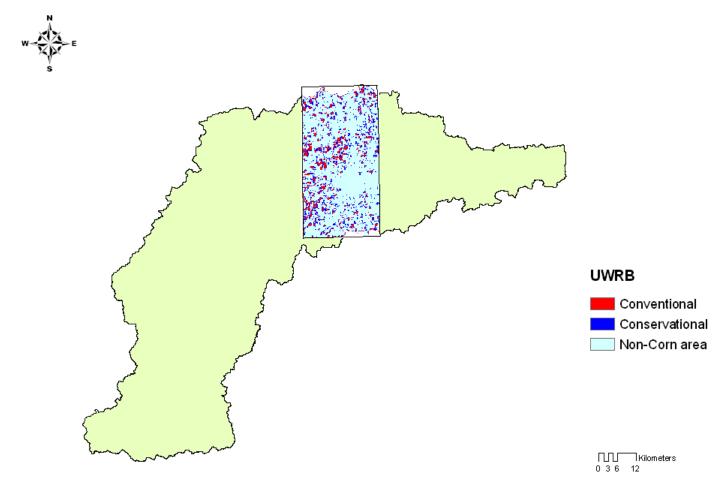
Cut-off Tillage Probability


Model	Intercept	Slope	Cut-off Tillage Probability
TM5	10.215	-0.072	0.62
R15	-19.404	29.949	0.56
M15	8.785	40.947	0.56
D35	10.931	0.135	0.44
STI	45.218	-23.998	0.64
NDTI	30.464	-99.483	0.62

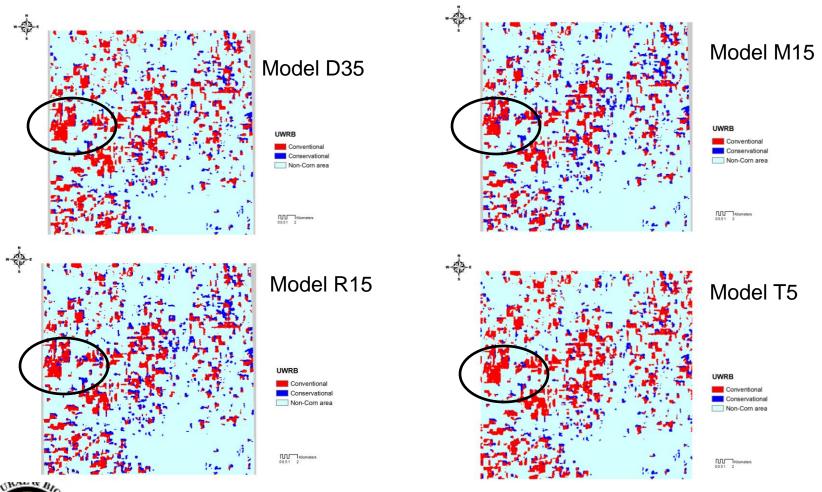

Models comparison


Model D35

Model R15



Model M15


Model T5

Example: Madison county

Model result

Model accuracy

 Percentage conventional and conservational tillage under corn crop production from different logistic regression model and ISDA

	Models		ISDA data	
	Conventional	Conservational	Conventional	Conservational
Model R15	59.1%	40.9%		
Model D35	67.4%	32.6%	56.3%	43.7%
Model M15	58.3%	41.7%	30.070	15.770
Model T5	73%	27%		

Conclusions

- Logistic regression models were easy to use and cost- and time-effective
- Regression models M15 provided a more accurate map
- This approach is promising for the rapid collection of tillage information on individual fields over large areas

Future research

- Development of new models to classify more than two tillage classes
- Use organic matter content as one of the variable in the regression model
- □ Use the regression model output to watershed modeling tools requiring specific information about tillage practice

