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ABSTRACT

Given an arbitrary network of interconnected nodes, each with some initial value, we develop

and analyze distributed strategies that enable a subset of the nodes to calculate any function

of the initial values of the nodes. Specifically, we focus on linear iterative strategies where

each node updates its value to be a weighted average of its previous value and those of its

neighbors over the course of several time-steps. We show that this approach can be viewed

as a linear system with dynamics that are given by the weight matrix of the linear iteration,

and with outputs for each node that are captured by the set of values that are available to

that node at each time-step. Based on this insight, we develop a framework to analyze linear

iterative strategies from the perspective of control and linear system theory, drawing upon

the notions of observability theory, structured system theory, dynamic system inversion,

invariant zeros of linear systems, and coding theory.

We start by showing that in networks with time-invariant topologies, choosing the

weights for the linear iteration randomly from a field of sufficiently large size will (with

high probability) allow every node to calculate any arbitrary function of the initial node

values after running the linear iteration for a finite number of time-steps. We show that the

number of time-steps required can be determined from the structure of the network topol-

ogy, and in fact, may be minimal over all possible strategies for information dissemination.

We demonstrate that the nodes can implement the linear iterative strategy in a purely

decentralized manner, without requiring a centralized coordinator to design and assign the

weights in the network.

We then apply our results to calculate linear functions in networks with real-valued

transmissions and updates, where communications between nodes are corrupted by additive

noise. We show that by using a linear iterative strategy with almost any set of real-valued

weights for a finite number of time-steps, any node in the network will be able to calculate

an unbiased estimate of any linear function by taking a linear combination of the values

that it sees over the course of the linear iteration. Furthermore, for a given set of weights,

we describe how to choose this linear combination to minimize the variance of the unbiased

estimate calculated by each node.

Next, we consider the problem of distributed function calculation in the presence of

faulty or malicious agents, and we study the susceptibility of linear iterative strategies to
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misbehavior by some nodes in the network; specifically, we consider a node to be malicious

if it updates its value arbitrarily at each time-step, instead of following the predefined linear

iterative strategy. If a certain node xi has 2f or fewer node-disjoint paths from another

node xj , we show that it is possible for a set of f malicious nodes to conspire in a way

that makes it impossible for xi to correctly calculate any function of xj ’s value. Conversely,

when every node in the network has at least (2f + 1) node-disjoint paths to xi, we show

that xi can calculate any arbitrary function of all initial node values after running the linear

iteration for a finite number of time-steps (upper bounded by the number of nodes in the

network) using almost any set of real-valued weights (i.e., for all weights except for a set of

measure zero), despite the (possibly coordinated) actions of up to f malicious nodes. Our

analysis is constructive, in that it provides specific attacking and decoding strategies which

the malicious and non-malicious nodes can use to achieve their objectives.

We then utilize our framework to study the topic of network coding in the presence of

malicious nodes. Specifically, for any fixed network with a given set S of source nodes, a

given set T of sink nodes, and an unknown set F of malicious nodes, we examine the problem

of transmitting a stream of information from every source node to all of the sink nodes

(possibly after some delay). We consider the wireless broadcast communication model,

where each transmission by a node is received by all of its neighbors in the network. We

use linear network coding to disseminate information, whereby at each time-step, each

node transmits a value that is a linear combination of the most recent transmissions of its

neighbors. We allow for the possibility that the malicious nodes conspiratorially transmit

arbitrary values in an effort to disrupt the network, and we show that linear network codes

in the presence of such attackers can be conveniently modeled as a linear dynamical system

with unknown inputs. This allows us to use techniques from control theory pertaining to

dynamic system inversion to show that if there are |S|+ 2f node-disjoint paths from S ∪J

(where J is any set of at most 2f nodes) to a given sink node, then that sink node can

uniquely recover the stream of data from every source node and also locate and isolate f

(possibly coordinated) malicious nodes. In particular, we show that linear network codes

inherently make use of the redundancy in the network topology to achieve this robustness,

and do not require any additional redundancy to be added to the source data. Our approach

can be applied over arbitrary fields (of sufficiently large size), and immediately provides a

systematic decoding procedure that can be used by the sink nodes, along with an upper

bound on the latency required to recover the source streams.

Finally, we generalize existing theory on structured linear systems to encompass finite

fields, and apply these results at various points in the thesis. Specifically, we show that

certain structural properties of linear systems remain valid with high probability if the

parameters are chosen from a finite field of sufficiently large size. In the process, we obtain

new insights into structural properties of linear systems (such as an improved upper bound

on the observability index in terms of the topology of the graph associated with the system).
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Introduction

It has long been recognized that distributed and decentralized systems have certain desirable

characteristics such as modularity, fault-tolerance, and simplicity of implementation. For

these reasons, the distributed system paradigm is finding a foothold in an extraordinarily

large number of applications (many of which are life- and mission-critical), ranging from

transmitting patient diagnostic data in hospitals via multi-hop wireless networks [1], to

coordinating teams of autonomous aircraft for search and rescue operations [2]. A key

requirement in such systems and networks is for some or all of the nodes to calculate some

function of certain parameters, or for some of the nodes to recover sequences of values sent

by other nodes. For example, sink nodes in sensor networks may be tasked with calculating

the average value of all available sensor measurements [3, 4, 5]. Another example is the

case of multi-agent systems, where agents communicate with each other to coordinate their

speed and direction [6, 7]. Yet another example is the case of transmitting streams of

values in communication networks from a set of source nodes to a set of sink nodes [8, 9].

The problems of information dissemination and function calculation in networks have been

studied by the computer science, communication, and control communities over the past few

decades, leading to the development of various protocols [10, 11, 12, 13, 14, 15, 16, 17, 18, 19].

A special case of the distributed function calculation problem is the distributed consensus

problem, where all nodes in the network calculate the same function [11], and this topic has

experienced a resurgence in the control community due to its applicability to tasks such

as coordination of multi-agent systems, and its ability to model physical and biological

behavior such as flocking (e.g., see [6, 7], and the references therein). In these cases, the

approach to consensus is to use a linear iteration where each node repeatedly updates

its value as a weighted linear combination of its own value and those of its neighbors

[20, 21, 22, 23, 24, 25, 26]. These works have revealed that if the network topology satisfies

certain conditions, the weights for the linear iteration can be chosen so that all of the nodes

asymptotically converge to the same value (even when the topology is time-varying). One

of the benefits of using linear iteration-based consensus schemes is that, at each time-step,

each node only has to transmit a single value to each of its neighbors, and perform simple
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linear operations (consisting of additions and multiplications by scalars). However, almost

all of the linear iterative schemes currently present in the literature only produce asymptotic

convergence (i.e., exact consensus is not reached in a finite number of steps).

In this thesis, we study the general problem of disseminating information and distribu-

tively calculating functions in networks, and we treat the topic of distributed consensus as

a special case of this problem. Specifically, we analyze linear iterative strategies for infor-

mation dissemination and use a control theoretic framework to show that such strategies

are substantially more powerful than previously recognized: they can actually allow all

nodes to calculate arbitrary and different functions of the initial values in a finite number of

time-steps (possibly minimal over all possible information dissemination strategies), they

are resilient to noise in the system, they can tolerate and overcome nodes in the network

that behave in malicious and unpredictable ways, and they can be used to transmit streams

of information through networks (rather than just initial values). In order to describe our

contributions in more detail, we will first need to introduce some terminology, discuss the

distributed system model, and provide a mathematical description of the linear iterative

strategy.

1.2 Notation and Graph-Theoretic Terminology

In our development, we use ei,l to denote the column vector of length l with a “1” in its

i–th position and zeros elsewhere. The symbol 1l represents the column vector of length l

that has all entries equal to “1”, and the symbol IN denotes the N × N identity matrix.

When the size of the vector or matrix is apparent, we will sometimes drop the corresponding

subscript and denote it simply as ei, 1 or I. We will say that an eigenvalue of a matrix A is

simple to indicate that it is algebraically simple (i.e., it appears only once in the spectrum

of A) [27]. The notation A′ indicates the transpose of matrix A. We will denote the rank

of matrix A by rank(A), and we will denote the range (or column space) of matrix A by

range(A). The notation diag (·) indicates a square matrix with the quantities inside the

brackets on the diagonal, and zeros elsewhere. The expected value of a random parameter A

is denoted by E[A], and the probability of an event A is denoted by Pr[A]. The cardinality

of a set S will be denoted by |S|. For two sets S1 and S2, the notation S1 \ S2 denotes all

elements in S1 that are not in the set S2. We will denote an arbitrary field by F, and use

the symbol Fq to denote the field of size q.

1.2.1 Graph-Theoretic Terminology

We will require the following terminology in order to facilitate our discussion. Further

details can be found in standard texts on graph theory, such as [28].

A graph is an ordered pair G = {X , E}, where X = {x1, . . . , xN} is a set of vertices (or

nodes), and E is a set of ordered pairs of vertices, called directed edges. If, ∀xi, xj ∈ X ,
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(xi, xj) ∈ E ⇔ (xj, xi) ∈ E , the graph is said to be undirected. The nodes in the set

Ni = {xj |(xj , xi) ∈ E , xj 6= xi} are said to be neighbors of node xi, and the in-degree of

node xi is denoted by degi = |Ni|. Similarly, the number of nodes that have node xi as a

neighbor is called the out-degree of node xi, and is denoted by out-degi. A subgraph of G is a

graph H = {X̄ , Ē}, with X̄ ⊆ X and Ē ⊆ E (where all edges in Ē are between vertices in X̄ ).

The subgraph H is said to be induced if, whenever xi, xj ∈ X̄ , (xi, xj) ∈ Ē ⇔ (xi, xj) ∈ E .

The subgraph H is called spanning if it contains all vertices of G (i.e., X̄ = X ).

A path P from vertex xi0 to vertex xit is a sequence of vertices xi0xi1 · · ·xit such that

(xij , xij+1) ∈ E for 0 ≤ j ≤ t− 1. The nonnegative integer t is called the length of the path.

A path is called a cycle if its start vertex and end vertex are the same, and no other vertex

appears more than once in the path. A graph is called acyclic if it contains no cycles. A

graph G is a spanning tree rooted at xi if it is an acyclic graph where every node in the graph

has a path to xi, and every node except xi has out-degree exactly equal to 1. Similarly,

a graph is a spanning forest rooted at R = {xi1 , xi2 , . . . , xip} if it is a disjoint union of a

set of trees, each of which is rooted at one of the vertices in R. An example of a spanning

tree rooted at x1 is shown in Figure 1.1.a, and an example of a spanning forest rooted at

R = {x1, x2, x3} is shown in Figure 1.1.b. For any given set of vertices S ⊆ X and a subset

R ⊆ S, we will use the terminology S-spanning forest rooted at R to indicate a forest that

includes all of the nodes in the set S.

x1x1 x2

x2

x3

x3 x4x4 x5

x5 x6x6

x7

x7 x8x8

(a) (b)

Figure 1.1: (a) Spanning tree rooted at x1. (b) Spanning forest rooted at {x1, x2, x3}.

Paths P1 and P2 are vertex disjoint if they have no vertices in common. Similarly, paths

P1 and P2 are internally vertex disjoint if they have no vertices in common, with the possible

exception of the end points. A set of paths P1, P2, . . . , Pr are (internally) vertex disjoint

if the paths are pairwise (internally) vertex disjoint. Given two subsets X1,X2 ⊂ X , a set

of r vertex disjoint paths, each with start vertex in X1 and end vertex in X2, is called an

r-linking from X1 to X2.
1 Note that if X1 and X2 are not disjoint, we will take each of their

common vertices to be a vertex disjoint path between X1 and X2 of length zero.

1There are various algorithms to find linkings, such as the Ford-Fulkerson algorithm, which has run-time
polynomial in the number of vertices [28, 29].
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A graph is said to be strongly connected if there is a path from vertex xi to vertex xj

for every xi, xj ∈ X . We will call a graph disconnected if there exists at least one pair of

vertices xi, xj ∈ X such that there is no path from xi to xj . A vertex cut in a graph is a

subset S ⊂ X such that removing the vertices in S (and the associated edges) from the

graph causes the graph to be disconnected. More specifically, an ij-cut in a graph is a

subset Sij ⊂ X such that the removal of the vertices in Sij (and the associated edges) from

the graph causes the graph to have no paths from vertex xj to vertex xi. We will denote

the smallest size of an ij-cut by κij . If (xj , xi) ∈ E (i.e., node xj is a neighbor of node

xi), we will take κij to be infinite (since removing other vertices will not remove the direct

path between xj and xi). Note that if minj κij is finite, then the in-degree of node xi must

be at least minj κij (since otherwise, removing all neighbors of node xi would disconnect

the graph, thereby producing an ij-cut of size less than minj κij). The connectivity of the

graph is defined as mini,j κij . A graph is said to be κ-connected if every vertex cut has

cardinality at least κ.

The following classical result will play an important role in our derivations (e.g., see

[28]).

Lemma 1.1 (Fan Lemma) Let xi be a vertex in graph G, and let c be a nonnegative

integer such that κij ≥ c for all xj ∈ X . Let R ⊂ X be any subset of the vertices with

|R| = c. Then there exists a set of c internally vertex disjoint paths from R to xi, where

the only common vertex of each of these paths is xi.

Since all internally vertex disjoint paths have to pass through different neighbors of xi,

the Fan Lemma implies that there will be a c-linking from R to Ni ∪ {xi}. Note that some

of the paths in this linking might have zero length (i.e., if xi or some of its neighbors are in

R).

1.3 Distributed System Model and Linear Iterative

Strategies

The distributed systems and networks that we will be studying in this thesis will be modeled

as a directed graph G = {X , E}, where X = {x1, . . . , xN} is the set of nodes in the system

and E ⊆ X × X is the set of directed edges (i.e., directed edge (xj , xi) ∈ E if node xi can

receive information from node xj). Note that undirected graphs can be readily handled by

treating each undirected edge as two directed edges.

We will deal with networks where information is disseminated via the wireless broadcast

model, whereby each node sends the same information to all of its neighbors. This model,

while obviously applicable to wireless networks, also holds when information is obtained

by direct sensing (i.e., where each node measures or senses the values of its neighbor, as
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opposed to receiving that value through a transmission). We assume that every node in

the network has an identifier (so that nodes can associate each piece of information that

they sense or receive with the corresponding neighbor). Every node is also assumed to have

some memory (so that they can store the information that they sense or receive from their

neighbors), and sufficient computational capability to perform mathematical operations on

this stored information (such as calculating the rank of a matrix, multiplying matrices,

etc.). We will generally assume that the network topology is fixed and known a priori to

certain nodes in the network, but we will discuss relaxations of this assumption at various

points in the thesis.2 We will also generally assume that all communications between nodes

are reliable (i.e., any transmission will be eventually received). However we do not assume

any fixed time-limit on message delivery;3 in other words, we assume that nodes in the

network wait until they have received transmissions from all of their neighbors, and then

execute their transmission or update strategies before waiting for the next transmissions

from their neighbors. We will capture this behavior by referring to the behavior of a node

at time-step k, by which we mean the k–th transmission or update step executed by that

node. We assume that all messages are either delivered in the order they were transmitted,

or have an associated time-stamp or sequence number to indicate the order of transmission.

1.3.1 Linear Iterative Strategy

Suppose that each node xi in the distributed system has some initial value, given by

xi[0] ∈ F (for some field F). Our goal is for the nodes to calculate some function of

x1[0], x2[0], . . . , xN [0] by updating and/or exchanging their values at each time-step k, based

on some distributed strategy that adheres to the constraints imposed by the network topol-

ogy (which is assumed to be time-invariant). The scheme that we study in this thesis

makes use of linear iterations; specifically, each node in the network repeatedly updates

its own value to be a weighted linear combination of its previous value and those of its

neighbors, which it then transmits. Mathematically, at each time-step, each node updates

and transmits its value as

xi[k + 1] = wiixi[k] +
∑

xj∈Ni

wijxj [k] ,

2One option to handle limited or periodic changes in the network could be for nodes that become aware
of changes in graph topology to inform the rest of the network, similar to what is proposed in [9]. Another
option would be to treat dropped or added links as faults in the network, and utilize the techniques for
fault-tolerant function calculation that we propose later in the thesis.

3However, when we discuss networks with potentially faulty or malicious nodes, we will either assume
that nodes always transmit a value (even if they are faulty), or we will assume that messages are delivered
in a fixed amount of time. We will have to strengthen our assumptions in this way due to the fact it is
impossible to perform fault-diagnosis without bounds on the time required to deliver messages – the receiving
node will never be able to determine whether an expected message from another node is simply delayed, or
if the transmitting node has failed [11].
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where the wij’s are a set of weights from F.4 Once again, note that the terminology time-

step k represents the k–th update and transmission by the node; however, we do not assume

that all nodes perform their updates or transmissions at the same instant in time (i.e., the

k–th time-step for a given node can occur at a different instant in time than the k–th

time-step for another node). For ease of analysis, the values of all nodes at time-step k

can be aggregated into the value vector x[k] =
[
x1[k] x2[k] · · · xN [k]

]′
, and the update

strategy for the entire system can be represented as5

x[k + 1] =





w11 w12 · · · w1N

w21 w22 · · · w2N

...
...

. . .
...

wN1 wN2 · · · wNN





︸ ︷︷ ︸
W

x[k] (1.1)

for k = 0, 1, . . ., where wij = 0 if j /∈ Ni (i.e., if (xj , xi) /∈ E).

Definition 1.1 (Calculable Function) Let g : F
N 7→ F

r be a function of the initial

values of the nodes (note that g(·) will be a vector-valued function if r ≥ 2). We say

g(x1[0], x2[0], . . . , xN [0]) is calculable by node xi if it can be calculated by node xi from some

or all of the information that it receives from the linear iteration (1.1) over a sufficiently

large number of time-steps. We call g(·) a linear function if g(x1[0], x2[0], . . . , xN [0]) =

Qx[0] for some r × N matrix Q.

Definition 1.2 (Distributed Consensus) The system is said to achieve distributed con-

sensus if all nodes in the system calculate the value g(x1[0], . . . , xN [0]) after running the

linear iteration for a sufficiently large number of time-steps. When the field under consid-

eration is F = R or C, and

g(x1[0], x2[0], . . . , xN [0]) =
1

N
1′x[0] ,

the system is said to perform distributed averaging (i.e., the consensus value is the average

of all initial node values).

Definition 1.3 (Asymptotic Consensus) The system is said to reach asymptotic con-

sensus if

lim
k→∞

xi[k] = g(x1[0], x2[0], . . . , xN [0])

for every i ∈ {1, 2, . . . , N}, where g(x1[0], x2[0], . . . , xN [0]) ∈ F.

4The methodology for choosing the weights in order to achieve certain objectives will be discussed in the
subsequent chapters. Much of our discussion will encompass weights from general fields, but we will restrict
our attention to real-valued weights (over the field of complex numbers) for certain parts of the thesis.

5We will generalize this model in subsequent chapters to include noise, malicious updates, or streams of
data from a set of sources.
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When F = C and g(x1[0], x2[0], . . . , xN [0]) = c′x[0] for some vector c′, the following

result by Xiao and Boyd from [22] characterizes the conditions under which the iteration

(1.1) achieves asymptotic consensus.

Theorem 1.1 ([22]) The iteration given by (1.1) reaches asymptotic consensus on the

linear function c′x[0] (under the technical condition that c is normalized so that c′1 = 1) if

and only if the weight matrix W satisfies the following conditions:

1. W has a simple eigenvalue at 1, with left eigenvector c′ and right eigenvector 1.

2. All other eigenvalues of W have magnitude strictly less than 1.

Furthermore, Xiao and Boyd showed that the rate of convergence is determined by the

eigenvalue with second-largest magnitude. Consequently, to maximize the rate of conver-

gence, they formulated a convex optimization problem to obtain the weight matrix satisfy-

ing the above conditions while minimizing the magnitude of the second largest eigenvalue.

There is a large amount of literature dealing with choosing the weights in (1.1) so that

the system reaches asymptotic consensus on a linear function (including cases where the

topology of the network is time-varying). Much of the analysis in these works focuses on

modeling the linear iterative strategy as a Markov chain (i.e., by choosing the weight matrix

W in (1.1) to be a stochastic matrix) [6, 24, 30]; the stationary distribution of the chain

then determines the consensus function c′x[0]. As a consequence of this type of analysis,

almost all of the existing work on the topic of linear iterative strategies only focuses on

reaching asymptotic consensus on a linear function, and only over the field of complex

numbers (with real-valued weights and initial values).

1.4 Contributions of Thesis

The main contribution of this thesis is the development of a control– and linear system–

theoretic framework to design and analyze linear iterative strategies for information dissem-

ination and distributed function calculation in networks. More precisely, we show how to

model the linear iterative strategy as a linear dynamical system and, based on this insight,

we leverage tools from control theory and linear system theory (such as observability theory,

structured system theory and dynamic system inversion) to characterize the capabilities of

such strategies. Our analysis produces the following key results.

Information Dissemination and Function Calculation in a Finite Number of

Time-Steps

We consider the linear iteration given by (1.1), and ask the question: What is the total

amount of information that any node in the network can infer about the initial values of
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other nodes after running the linear iteration for a certain number of time-steps? To answer

this question, we use observability theory to show that, after running the linear iteration in

connected time-invariant networks for a finite number of time-steps with a random choice

of weights from a field of sufficiently large size (including the field of real numbers), each

node in the network can actually obtain all of the initial values of the other nodes, and can

therefore calculate arbitrary (and possibly different) functions of these values. This result

is in contrast to the vast majority of the existing studies of linear iterative strategies, which

only focus on the network reaching asymptotic consensus on a linear function of the initial

values over the field of real numbers. Furthermore, our approach allows us to show that

the time required in order for any node to accumulate all of the initial values via a linear

iterative strategy is upper-bounded by the size of the largest tree in a certain subgraph

of the network; we conjecture that this quantity is actually the minimum amount of time

required by any protocol to disseminate information, in which case linear iterative strategies

will be time-optimal for any given network.

Function Calculation in the Presence of Noise

Having shown that linear iterative strategies of the form (1.1) allow every node to calculate

arbitrary functions of the initial values in finite time, we then consider what happens when

communications between nodes are corrupted by additive noise. To tackle this problem, we

focus on the case of linear iterative strategies with real-valued transmissions and updates,

and show that in connected time-invariant networks, every node in the network can obtain

an unbiased estimate of any linear function of the initial values after running the linear

iteration with almost any real-valued choice of weights for a finite number of time-steps.

Furthermore, we show how each node can use the values that it receives during the course

of the linear iteration in order to minimize its variance of the estimate. This result is in

stark contrast to the majority of existing work on linear iterative strategies which focus on

obtaining an unbiased estimate asymptotically (i.e., in an infinite number of time-steps).

Information Dissemination and Function Calculation in the Presence of

Malicious Agents

After establishing that function calculation can be achieved in networks when all nodes

apply the linear iterative strategy, we examine the case where some nodes in the network

do not follow the strategy. Specifically, we analyze the susceptibility of such strategies to

faulty or (possibly coordinated) malicious behavior by a subset of the nodes in the network.

Using the notion of invariant zeros of linear systems, we show that the network connectivity

is a determining factor in the capability of the linear iterative strategy to tolerate malicious

behavior. Specifically, we show that if there is some node xj that has 2f or fewer node-

disjoint paths to some other node xi, then a set of f malicious nodes can conspire to behave
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in such a way that xi cannot calculate any function of xj ’s value. However, for the case of

real-valued transmissions and updates, we also show that if all nodes in the network have

at least 2f + 1 node-disjoint paths to xi, the linear iterative strategy makes it impossible

for f or fewer nodes to prevent xi from calculating any arbitrary function of all initial

values. Furthermore, node xi can uniquely identify all nodes that were malicious during

the linear iteration. This topological condition is no stricter than that required by any other

information dissemination strategy in the presence of malicious agents; thus, we establish

linear iterative strategies as viable and effective methods for disseminating information in

networks with malicious agents, thereby narrowing the gap between such strategies and

other existing schemes [11, 31, 32, 33]. Once again, we demonstrate that linear iterative

strategies exhibit this resilience to malicious behavior for almost any choice of real-valued

weights, and only require a finite number of time-steps to disseminate information to all

nodes that satisfy the necessary connectivity requirements.

Transmitting Streams of Values

We extend our techniques to treat the problem of linear network coding in the presence

of malicious nodes, where a set of sources in the network has to transmit streams of data

(as opposed to only initial values) to a set of sinks, despite the actions of a set of nodes

that transmit arbitrary values at each time-step. In particular, we use dynamic system

inversion and structured system theory to show that if the weights for the linear network

code are chosen randomly (independently and uniformly) from a field of sufficiently large

size, and if the network topology satisfies certain conditions, then with high probability,

every sink node can decode each of the source streams and identify all malicious nodes. We

show that linear network codes are inherently robust to malicious nodes by virtue of the

network topology, and do not require additional redundancy to be added at the source node

(unlike all of the existing work that considers the problem of network coding with malicious

nodes [34, 35, 36, 37, 38, 39, 40]). Our approach also readily handles networks with cycles

(in which case we obtain convolutional network codes), and unlike existing solutions for

the design of decoders, it does not require manipulation of matrices of rational functions;

instead our design procedure focuses entirely on numerical matrices, thereby potentially

simplifying the analysis and design of linear network codes.

1.4.1 Contributions to Linear System Theory

Our analysis in this thesis will make extensive use of concepts from linear system the-

ory, and in particular, an area known as structured system theory (we will provide further

background on these topics in the next section). However, the current work on structured

system theory only deals with linear systems with real-valued parameters over the field of

complex numbers. While these existing results will be useful when we design linear iterative
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strategies with real-valued transmissions and updates, we will not be able to apply them

to linear iterative strategies over arbitrary (e.g., finite) fields. In order to deal with this

shortcoming, we develop in this thesis a theory of linear structured systems over finite fields.

Specifically, we show that certain structural properties of linear systems remain valid with

high probability even if the parameters are chosen from a finite field of sufficiently large size.

In the process, we obtain new insights into structural properties of linear systems (such as

an improved upper bound on the observability index in terms of the graph topology of the

system). We use these new insights to derive our results on linear iterative strategies for

function calculation and transmitting streams of values through networks.

1.5 Background on Linear System Theory

The control theoretic perspective that we adopt in this thesis will allow us to leverage

certain fundamental properties of linear systems in order to characterize the capabilities of

linear iterative strategies. In this section, we will review some of the important concepts

that we will be using during our derivations.

Consider a linear system of the form

x[k + 1] = Ax[k] + Bu[k]

y[k] = Cx[k] + Du[k] , (1.2)

with state vector x ∈ F
N , input u ∈ F

m and output y ∈ F
p, with p ≥ m (for some field

F). The matrices A,B,C and D are matrices (of appropriate sizes) with entries from the

field F. The output of the system over L+ 1 time-steps (for some nonnegative integer L) is

given by





y[0]

y[1]

y[2]
...

y[L]





︸ ︷︷ ︸
y[0:L]

=





C

CA

CA2

...

CAL





︸ ︷︷ ︸
OL

x[0] +





D 0 · · · 0

CB D · · · 0

CAB CB · · · 0
...

...
. . .

...

CAL−1B CAL−2B · · · D





︸ ︷︷ ︸
ML





u[0]

u[1]

u[2]
...

u[L]





︸ ︷︷ ︸
u[0:L]

. (1.3)

When L = N − 1, the matrix OL in the above expression is termed the observability

matrix for the pair (A,C), and the matrix ML is termed the invertibility matrix for the

set (A,B,C,D). Based on Equation (1.3), one can ask certain natural questions about the

system. For example, if the initial state of the system is not known, but the inputs are

completely known, what can one infer about the initial state by examining the outputs?

Conversely, if the inputs to the system are not known, but the initial state is known, what
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can one infer about the inputs from the outputs? Now if both the initial state and the

inputs are not known, what can one infer about these quantities based on Equation (1.3)?

The answers to these questions form the basis for much of classical control theory, and are

explored in further detail below. More details on linear system theory can be found in

standard textbooks (such as [41]); such books typically deal with linear systems over the

field of real numbers, but much of the basic theory also applies to arbitrary fields.

Observability of Linear Systems

Definition 1.4 (Observability) A linear system of the form (1.2) is said to be observable

if y[k] = 0 for all k implies that x[k] = 0 when u[k] = 0 for all k. By the linearity of the

system, this is equivalent to saying that two different initial states with the same input

sequence cannot produce the same output sequence, and thus the initial state x[0] can be

uniquely determined from the outputs of the system y[0],y[1], . . . ,y[L] (for some L) when

u[k] = 0 for all k.

Since y[0 : L] = OLx[0] when the inputs are zero (from Equation (1.3)), the system

is observable if and only if the observability matrix OL has rank N for some nonnegative

integer L. Note that the rank of OL is a nondecreasing function of L, and bounded above

by N . Suppose ν is the first integer for which rank(Oν) = rank(Oν−1). This implies that

there exists a matrix K such that CAν = KOν−1. In turn, this implies that

CAν+1 = CAνA = KOν−1A = K





CA

CA2

...

CAν




,

and so the matrix CAν+1 can be written as a linear combination of the rows in Oν . Con-

tinuing in this way, we see that

rank(O0) < rank(O1) < · · · < rank(Oν−1) = rank(Oν) = rank(Oν+1) = · · · ,

i.e., the rank of OL monotonically increases with L until L = ν − 1, at which point it

stops increasing. Since the matrix C contributes rank(C) linearly independent rows to

the observability matrix, the rank of the observability matrix can increase for at most

N − rank(C) time-steps before it reaches its maximum value, and thus the integer ν is

upper bounded as ν ≤ N − rank(C) + 1. In particular, this means that the system is

observable if and only if the rank of O
N−rank(C) is N . In the linear systems literature, the

integer ν is called the observability index of the pair (A,C). In the appendix, we derive a

stronger characterization of the observability index for a class of linear structured systems

(which we describe later in this chapter).
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Invertibility of Linear Systems

When the values of the inputs at each time-step are completely unknown and arbitrary in

the linear system (1.2), the system is called a linear system with unknown inputs [42, 43].

For such systems, it is often of interest to “invert” the system in order to reconstruct some

or all of the unknown inputs (assuming that the initial state is known), and this problem

has been studied under the moniker of dynamic system inversion. This concept will be

useful when we design linear iterative strategies to transmit streams of information through

networks, and so we will review some of the pertinent concepts related to system inversion

here.

We start by noting that if we take the z-transform of the system (1.2), we obtain

(assuming that x[0] = 0)

Y(z) =
(
C (zI − A)−1 B + D

)

︸ ︷︷ ︸
T(z)

U(z) .

Definition 1.5 (Transfer Function Matrix) The transfer function matrix T(z) is a p×

m matrix of rational functions of z (with coefficients in the field F), with the (i, j) entry

of the matrix capturing how the j–th component of the input sequence u affects the i–th

component of the output sequence y.

Definition 1.6 (Invertibility) The system (1.2) is said to have an L-delay inverse if

there exists a system with transfer function T̂(z) such that

T̂(z)T(z) =
1

zL
Im ;

note that T̂(z) is an m× p matrix. The system is invertible if it has an L-delay inverse for

some finite L. The least integer L for which an L-delay inverse exists is called the inherent

delay of the system.

In order for the system to be invertible, its transfer function must clearly have rank m

over the field of rational functions in z (with coefficients in the field F). The following result

from [43] and [44] provides a test for invertibility directly in terms of the system matrices

A,B, C and D (in the form of the invertibility matrix).

Theorem 1.2 ([43, 44]) For any nonnegative integer L,

rank(ML) ≤ m + rank(ML−1) (1.4)

with equality if and only if the system has an L-delay inverse (note that rank(M−1) is

defined to be zero). If the system is invertible, its inherent delay will not exceed L =

N − nullity(D) + 1, where nullity(D) denotes the dimension of the nullspace of D.
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Based on the form of the invertibility matrix in Equation (1.3), note that condition

(1.4) is equivalent to saying that the first m columns of ML must be linearly independent

of each other, and of all other columns in ML.

Strong Observability and Invariant Zeros of Linear Systems

While the notions of observability and invertibility deal with the separate relationships be-

tween the initial states and the output, and between the input and the output, respectively,

they do not consider the relationship between the states and input (taken together) and the

output. To deal with this, the following notion of strong observability has been established

in the literature (e.g., see [42, 45, 46, 47]).

Definition 1.7 (Strong Observability) A linear system of the form (1.2) is said to be

strongly observable if y[k] = 0 for all k implies x[0] = 0 (regardless of the values of the

unknown inputs u[k]). This is equivalent to saying that knowledge of the output over some

length of time is sufficient to uniquely determine the initial state, regardless of the inputs.

Recall that observability and invertibility of the system could be determined by examin-

ing the observability and invertibility matrices of the system; in order to characterize strong

observability, we must examine the relationship between the observability and invertibility

matrices. Specifically, it is easy to argue that the system is strongly observable if and only

if

rank
([

OL ML

])
= N + rank (ML)

for some nonnegative integer L; in other words, all columns of the observability matrix must

be linearly independent of all columns of the invertibility matrix. For real-valued systems,

it was shown in [48] that an upper-bound for L is N − 1 (i.e., if the above condition is not

satisfied for L = N − 1, it will never be satisfied); however the proof in [48] extends to

systems over arbitrary fields as well.

In our development, it will be convenient to use an alternative characterization of strong

observability. Before stating the result formally, the following definitions will be required.

Definition 1.8 (Matrix Pencil) For the linear system (1.2), the matrix

P(z) =

[
A− zIN B

C D

]

is called the matrix pencil of the set (A,B,C,D).

Definition 1.9 (Normal-Rank) The normal-rank of the matrix pencil P(z) is defined as

rankn(P(z)) ≡ maxz0∈F rank(P(z0)).
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Definition 1.10 (Invariant Zero) The complex number z0 ∈ F is called an invariant zero

of the system (1.2) if rank (P(z0)) < rankn(P(z)).

When the field under consideration is F = C (the field of complex numbers), the follow-

ing theorem provides a characterization of the strong observability of a system in terms of

the matrix pencil.

Theorem 1.3 ([42, 45, 46, 48]) The set (A,B,C,D) has no invariant zeros if and only

if the matrices ON−1 and MN−1 satisfy

rank
([

ON−1 MN−1

])
= N + rank (MN−1) ,

(i.e., if and only if the system (1.2) is strongly observable).

It is important to note that the above theorem does not hold for arbitrary fields. For

example, consider the system given by

x[k + 1] =




1 0 0

0 1 1

0 1 0





︸ ︷︷ ︸
A

x[k] +




1

0

0





︸︷︷︸
B

u[k]

y[k] =
[
1 0 0

]

︸ ︷︷ ︸
C

x[k]

over the binary field F2 = {0, 1}. The matrix pencil for this system is

P(z) =

[
A − zI3 B

C 0

]

=





1 − z 0 0 1

0 1 − z 1 0

0 1 −z 0

1 0 0 0




.

One can verify that the above matrix has full rank for z ∈ {0, 1}, and thus this system has

no invariant zeros over this field. However, the observability matrix and invertibility matrix

are given by

O2 =




1 0 0

1 0 0

1 0 0



 , M2 =




0 0 0

1 0 0

1 1 0



 ,

and rank
([

O2 M2

])
6= 3 + rank (M2) (which means that the system is not strongly

observable). The reason for this discrepancy is that the field F2 is not algebraically closed,

which means that not all polynomials with coefficients in this field have a root in the field

[49]. In the above example, the submatrix
[

1−z 1
1 −z

]
has determinant z2+z+1 over F2, which
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does not have any roots. Thus, the middle two columns of the matrix pencil are always

linearly independent, which causes the system not to have any invariant zeros over this

field. However, in an algebraically closed field (such as the field of complex numbers), there

will be some values of z for which the middle two columns will have rank less than 2, and

thus the system will have invariant zeros. One can show that no finite field is algebraically

closed, and thus the above theorem will not hold for any such field. Nevertheless, the above

theorem is important because it will provide us with a convenient method to devise robust

linear iterative strategies with real-valued transmissions and operations.

1.5.1 Background on Structured System Theory

While the above properties of linear systems were developed for systems with given (nu-

merically specified) A,B,C and D matrices, there is frequently a need to analyze systems

whose parameters are not exactly known, or where numerical computation of properties like

observability are not feasible (e.g., due to the need to manipulate large numerical matrices).

In response to this, control theorists have developed a theory of system properties based

on the structure of the system. Specifically, a linear system of the form (1.2) is said to be

structured if every entry in the matrices A,B,C and D is either zero or an independent

free parameter [50, 51, 52, 53]. A property is said to hold structurally for the system if

that property holds for at least one choice of free parameters. In fact, if the parameters are

taken to be real-valued parameters (with the underlying field of operation taken as the field

of complex numbers), structural properties will hold generically (i.e., the set of parameters

for which the property does not hold has Lebesgue measure zero); this is the situation that

is commonly considered in the literature on structured systems [52, 53]. In the appendix of

this thesis, we will develop a theory of structured systems over finite fields, but for now, we

will review some of the salient results on structured systems with real-valued parameters.

These results will be crucial to the development in this chapter.

To study properties of structured systems, one first associates a graph H with the

set (A,B,C,D) as follows. The vertex set of H is given by X ∪ U ∪ Y, where X =

{x1, x2, . . . , xN} is the set of state vertices, U = {u1, u2, . . . , um} is the set of input vertices,

and Y = {y1, y2, . . . , yp} is the set of output vertices. The edge set of H is given by

Exx ∪ Eux ∪ Exy ∪ Euy, where

• Exx = {(xj , xi) | Aij 6= 0} is the set of edges corresponding to interconnections

between the state vertices,

• Eux = {(uj , xi) | Bij 6= 0} is the set of edges corresponding to connections between

the input vertices and the state vertices,

• Exy = {(xj , yi) | Cij 6= 0} is the set of edges corresponding to connections between

the state vertices and the output vertices, and
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• Euy = {(uj , yi) | Dij 6= 0} is the set of edges corresponding to connections between

the input vertices and the output vertices.

In our development, we will frequently work with systems where the parameters in the B

and C matrices are already specified to be either ones or zeros, but the nonzero entries in the

A matrix remain free parameters. In such cases, we will sometimes focus only on the portion

of the graph corresponding to the interconnections between the state vertices (given by the

edge set Exx). We discuss this issue in greater detail in the Appendix. Interestingly, the

topology of the graph associated with the system (in either case) is sufficient to determine

whether a system with a given zero/nonzero structure will possess certain properties (such

as observability). We will describe some of these graph-based tests in further detail below. It

is important to note that these tests only apply to structured systems where the parameters

are allowed to take real values (over the field of complex numbers). We will later extend

some of these tests to handle structured systems over finite fields.

Structural Observability

Definition 1.11 (Structural Observability) A structured pair (A,C) is said to be struc-

turally observable if the corresponding observability matrix has full column rank for at least

one choice of free parameters.

The following theorem characterizes the conditions on H for the system to be structurally

observable. The terminology Y-topped path is used to denote a path with end vertex in Y.

Theorem 1.4 ([53]) The structured pair (A,C) is structurally observable if and only if

the graph H satisfies both of the following properties:

1. Every state vertex xi ∈ X is the start vertex of some Y-topped path in H.

2. H contains a subgraph that covers all state vertices, and that is a disjoint union of

cycles and Y-topped paths.

Structural Invertibility

Definition 1.12 (Structural Invertibility) A structured set (A,B,C,D) is said to be

structurally invertible if the corresponding transfer function matrix has full column rank for

at least one choice of free parameters.

For structured systems, we will be interested in the generic normal rank of the transfer

function matrix, which is the maximum rank (over the field of rational functions in z) of the

transfer function matrix over all possible choices of free parameters. The following theorem

characterizes the generic normal rank of the transfer function of a structured linear system

(A,B,C,D) in terms of the associated graph H.
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Theorem 1.5 ([53, 54]) Let the graph of a structured linear system be given by H. Then

the generic normal rank of the transfer function of the system is equal to the maximal size

of a linking in H from U to Y.

The above result says that if the graph of the structured system has m vertex disjoint

paths from the inputs to the outputs, then for almost any (real-valued) choice of free param-

eters in A, B,C and D, the transfer function matrix C(zI−A)−1B+D will have rank m.

Based on Theorem 1.2, this means that the first m columns of the matrix M
N−nullity(D)+1

will be linearly independent of all other columns in M
N−nullity(D)+1.

Structural Invariant Zeros

It turns out that the number of invariant zeros of a linear system is also a structured

property (i.e., a linear system with a given zero/nonzero structure will have the same

number of invariant zeros for almost any choice of the free parameters) [47]. The same

holds true for the normal rank of the matrix pencil (which is the maximum rank that the

matrix pencil takes over all choices of free parameters). The following theorems from [47]

and [53] characterize the generic number of invariant zeros of a structured system and the

normal-rank of a structured matrix pencil in terms of the associated graph H. Once again,

the terminology Y-topped path is used to denote a path with end vertex in Y.

Theorem 1.6 ([47]) Let P(z) be the matrix pencil of the structured set (A,B,C,D).

Then the generic normal-rank of P(z) is equal to N plus the maximum size of a linking

from U to Y.

Theorem 1.7 ([47, 53]) Let P(z) be the matrix pencil of the structured set (A,B,C,D),

and let the generic normal-rank of P(z) be N + m even after the deletion of an arbitrary

row from P(z). Then the generic number of invariant zeros of system (1.2) is equal to N

minus the maximal number of vertices in X contained in the disjoint union of a size m

linking from U to Y, a set of cycles in X , and a set of Y-topped paths.

From Theorem 1.3, one can characterize strong observability of a system (over the field of

complex numbers) by examining the number of invariant zeros of that system. Theorem 1.7

thus provides us with a method to analyze the strong observability of a given (real-valued)

system over the field of complex numbers.

As mentioned at the start of this section, all of the above results were derived under

the assumption that the parameters for the system matrices can take on any real values,

and all of the derivations were performed by working in the field of complex numbers [52].

We will be using these existing results to derive linear iterative strategies with real-valued

transmissions and operations in this thesis, but we will also be interested in extending our

results to transmissions and operations in finite fields. To do this, we will be deriving
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(in the Appendix) theorems on structural observability and invertibility over finite fields.

Unfortunately, obtaining a characterization of strong observability for structured systems

over finite fields appears to be rather difficult, and thus we leave this topic for future work

(we will restrict ourselves to linear iterative strategies with real-valued parameters when we

make use of the results on strong observability of systems).

1.6 Thesis Outline

We start our analysis in Chapter 2 by showing how to model the linear iterative strategy

as a linear dynamical system, and then use observability theory to show how each node

in the network can calculate any arbitrary function of the initial values after running the

iteration for a finite number of time-steps (upper bounded by the number of nodes in the

network). In Chapter 3, we demonstrate that our framework readily handles networks where

communications between nodes are corrupted by noise, and show how to distributively

calculate unbiased minimum-variance estimates of arbitrary linear functions of the initial

values via a linear iterative strategy. In Chapter 4, we show how the linear iterative strategy

can be used to effectively deal with faulty or malicious behavior by nodes in the network. In

Chapter 5, we extend our framework to treat the case where a set of nodes in the network

must transmit a stream of data (as opposed to a single initial value) to a set of sink nodes

despite the presence of malicious nodes. We examine linear network codes that have been

developed to enable such transmissions and show how one can use techniques from the

theory of dynamic system inversion to design decoders for each sink node. We conclude

with some directions for future research in Chapter 6. At various points in the thesis, we

will be calling on results pertaining to linear structured systems over finite fields, which we

derive in the Appendix of the thesis.
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CHAPTER 2

OBSERVABILITY THEORY

FRAMEWORK FOR DISTRIBUTED

FUNCTION CALCULATION

2.1 Introduction and Main Result

We begin our analysis of linear iterative strategies (of the form described in Chapter 1.3.1)

by showing how to model them as linear dynamical systems, which will allow us to use tech-

niques from observability theory to analyze the capabilities of these schemes. Specifically,

we utilize results on structured systems to show that if the weights for the linear iteration

are chosen randomly (independently and uniformly) from a field of sufficiently large size,

then with high probability, each node can calculate any desired function of the initial values

after observing the evolution of its own value and those of its neighbors over a finite number

of time-steps.

Before going into the details of our main result, it will be helpful to discuss a motivating

example. Consider the network G shown in Figure 2.1.a; each node in this network possesses

a single value from a field F, and node x1 needs to obtain all of these values. Each node

in the network is allowed to transmit a single value from the field F at each time-step.

Under these conditions, how many time-steps will it take for node x1 to obtain all of the

values? To answer this question, note that node x1 can obtain at most one new value at

each time-step from each of its neighbors. Since node x2 has one child in this network,

it will take exactly two time-steps for x1 to receive the values of x2 and x3. In parallel,

x1 is also receiving values from x4 and x7; it will take exactly three time-steps for x1 to

receive the values of x4, x5, x6, and exactly four time-steps to receive the values of x7, x8, x9

and x10. Thus, x1 can receive all values in the network after exactly four time-steps. This

example demonstrates that one bottleneck in the network is related to the number of values

that must pass through any given neighbor of x1. To state this in a form that will be easier

for us to analyze, we decompose the network into a spanning forest rooted at {x1} ∪ N1

(shown in Figure 2.1.b). The largest tree in this forest has four nodes, which is equal to

the number of time-steps required for x1 to obtain all of the values.

Now consider the network G shown in Figure 2.2.a, which is no longer a simple spanning

tree rooted at x1. How many time-steps will it take for node x1 to receive the values of

all nodes in this network? One can answer this question by noting that the forest shown

in Figure 2.1.b is a subgraph of G, and thus it is definitely possible for x1 to obtain the
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x8x8 x9x9

x10x10

(a) (b)

Figure 2.1: (a) Node x1 needs to receive the values of all of the nodes in this network. (b)
A subgraph of the original network that is a spanning forest rooted at x1, x2, x4 and x7.

values of all nodes in four time-steps. However, one can actually do better by noting that

G also contains the spanning forest rooted at {x1} ∪ N1 shown in Figure 2.2.b, which only

has three nodes in any tree. Thus, x1 can actually receive the values of all nodes in three

time-steps in this example.

x1x1

x2x2

x3x3

x4x4

x5x5

x6x6

x7x7

x8x8 x9x9

x10x10

(a) (b)

Figure 2.2: (a) Node x1 needs to receive the values of all of the nodes in this network. (b)
A subgraph of the original network that is a spanning forest rooted at x1, x2, x4 and x7,
with only three nodes in the largest tree.

The above examples show that the amount of time required by any node to receive

the values of all other nodes is related to the size of the largest tree in a subgraph of the

network that is a spanning forest rooted at that node and its neighbors. However, given an

arbitrary network (with potentially numerous and complicated interconnections), finding a

spanning forest with the smallest possible number of nodes in its largest tree is a daunting

task. Furthermore, even if such a tree could be found, it does not address problems where

20



multiple nodes in the network have to receive all of the values (since by removing edges to

create an optimal forest for a certain node, we could be degrading the optimal forest for

some other node).

In this chapter, we will demonstrate that linear iterative strategies provide a novel,

simple and effective solution to this problem. Specifically, consider the linear iterative

strategy given by Equation (1.1), where each node simply updates its value at each time-

step to be a weighted linear combination of its previous value and those of its neighbors.

For this strategy, we will demonstrate the following key result in this chapter.

Theorem 2.1 Let G denote the (fixed) graph of the network, and

Si = {xj | There exists a path from xj to xi in G} ∪ {xi} .

Consider a subgraph H of G that is a Si-spanning forest rooted at {xi}∪Ni, with the property

that the size of the largest tree in H is minimal over all possible Si-spanning forests rooted

at {xi}∪Ni. Let Di denote the size of the largest tree of H. Suppose that the weights for the

linear iteration are chosen randomly (independently and uniformly) from a field Fq of size

q ≥ (Di −1)(|Si|−degi −
Di

2 ). Then, with probability at least 1− 1
q
(Di −1)(|Si|−degi −

Di

2 ),

node xi can calculate the value xj[0], xj ∈ Si, after running the linear iteration (1.1) for

at most Di time-steps, and can therefore calculate any arbitrary function of the values

{xj [0] | xj ∈ Si}.

As an example of the quantities specified in the above theorem, consider node x1 in the

network shown in Figure 2.3. The set of neighbors of x1 is given by N1 = {x2, x4}. Since

every node in the network has a path to x1, the set S1 contains all of the nodes in the

network. Next, consider the set of all S1-spanning forests rooted at {x1, x2, x4}; all such

forests are shown in Figure 2.4. The first forest has 3 nodes in its largest tree, the second

forest has 3 nodes in its largest tree, the third forest has 2 nodes in its largest tree, and

the fourth forest has 3 nodes in its largest tree. Thus, the third spanning forest satisfies

the property that the size of the largest tree is minimal over all spanning forests rooted at

{x1, x2, x4}, and thus D1 = 2. Since deg1 = 2, we have (D1 − 1)(|S1| − deg1 −
D1
2 ) = 2,

and Theorem 2.1 implies that x1 can obtain the values of all nodes after D1 = 2 time-steps

in this network with probability at least 1 − 2
q

(if the weights for the linear iteration are

chosen randomly from the field Fq of size q ≥ 2).

Remark 2.1 Note that one does not necessarily need to know the quantity Di in order to

make use of the above theorem. Specifically, one can obtain more convenient (but looser)

expressions in the above theorem by noting that 1 ≤ Di ≤ |Si| − degi (the upper bound will

hold with equality if degi −1 neighbors of xi are connected only to xi, and all other nodes

in the set Si connect to the last neighbor of xi). With these bounds, one can verify that the
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Figure 2.3: Network with S1 = {x1, x2, x3, x4, x5} and N1 = {x2, x4}.
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1 2
3 4

Figure 2.4: All S1-spanning forests rooted at {x1, x2, x4} for the network shown in Fig-
ure 2.3.

quantity (Di − 1)(|Si| − degi −
Di

2 ) achieves a maximum value of (|S|−degi −1)(|Si−degi)
2 (and

this occurs at Di = |Si| − degi). Furthermore, since N > |Si| − degi, we can write

N(N − 1)

2
>

(|S| − degi −1)(|Si| − degi)

2
≥ (Di − 1)(|Si| − degi −

Di

2
)

and so Theorem 2.1 implies that if the weights are chosen randomly (independently and

uniformly) from a field Fq of size q ≥ N(N−1)
2 , then with probability at least 1 − N(N−1)

2q
,

xi can obtain the value xj [0], xj ∈ Si after running the linear iteration for at most Di(≤

|Si|−degi) time-steps. For example, in the network shown in Figure 2.3 (with N = 5), these

looser bounds say that the probability that node x1 can obtain the initial values of all nodes is

at least 1− 10
q

(for q ≥ 10). If one chooses q = 11, this bound evaluates to 0.091, whereas the

tighter bound from Theorem 2.1 evaluates to 1 − 2
q

= 0.818. Nevertheless, the looser bound

is easier to evaluate for a given network (since one does not have to explicitly calculate the

quantity Di), and thus it will be useful when we discuss a decentralized implementation of

our scheme. Note that even though we may not know the exact value of Di, if we choose the

weights from a field of size q ≥ N(N−1)
2 , x1 will still be able to obtain the initial values of the

nodes in Si after at most Di time-steps with probability at least 1− 1
q
(Di−1)(|Si|−degi −

Di

2 )

(since the condition in Theorem 2.1 will be satisfied with this larger choice of field). In
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particular, if the nodes are allowed to transmit and operate on values from a field of infinite

size (such as the field of real numbers), the above properties will hold with probability 1.

Theorem 2.1 reveals that linear iterative strategies essentially bypass the problem of

finding an optimal spanning forest in graphs – one can simply choose weights at random

from a field of sufficiently large size, and the linear iterative strategy will allow node xi to

receive all of the values in at most Di time-steps (where Di is the size of the largest tree

in the optimal spanning forest). The precise procedure that node xi can use to accomplish

this will be described later in the chapter. Furthermore, linear iterative strategies also solve

the subsequent problem where the initial values are supposed to be disseminated to some

or all of the nodes in the network. Specifically, once we prove Theorem 2.2, we will also be

able to prove the following theorem.

Theorem 2.2 Let G denote the (fixed) graph of the network, and

Si = {xj | There exists a path from xj to xi in G} ∪ {xi} .

For each xi ∈ X , consider a subgraph Hi of G that is a Si-spanning forest rooted at {xi}∪Ni,

with the property that the size of the largest tree in Hi is minimal over all possible Si-

spanning forests rooted at {xi}∪Ni. Let Di denote the size of the largest tree of Hi. Suppose

that the weights for the linear iteration are chosen randomly (independently and uniformly)

from a field Fq of size q ≥
∑N

i=1(Di − 1)(|Si| − degi −
Di

2 ). Then, with probability at least

1− 1
q

∑N
i=1(Di −1)(|Si|−degi −

Di

2 ), every node xi can obtain the value xj[0], xj ∈ Si, after

running the linear iteration (1.1) for at most Di time-steps, and can therefore calculate any

arbitrary function of the values {xj [0] | xj ∈ Si}.

By following the same reasoning as in Remark 2.1, we can restate the above theorem in

terms of looser (but more convenient) bounds as follows.

Corollary 2.1 Let G denote the (fixed) graph of the network, and

Si = {xj | There exists a path from xj to xi in G} ∪ {xi} .

For each xi ∈ X , consider a subgraph Hi of G that is a Si-spanning forest rooted at {xi}∪Ni,

with the property that the size of the largest tree in Hi is minimal over all possible Si-

spanning forests rooted at {xi} ∪ Ni. Let Di denote the size of the largest tree of Hi.

Suppose that the weights for the linear iteration are chosen randomly (independently and

uniformly) from a field Fq of size q ≥ N2(N−1)
2 . Then, with probability at least 1− N2(N−1)

2q
,

every node xi can obtain the value xj [0], xj ∈ Si, after running the linear iteration (1.1)

for at most Di time-steps, and can therefore calculate any arbitrary function of the values

{xj [0] | xj ∈ Si}.
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The above results reveal that linear iterative strategies are simple and powerful methods

for disseminating information rapidly in networks; we will develop the proofs of these results

over the next few sections. In fact, it seems reasonable to expect that any information

dissemination strategy will take at least Di time-steps in order to accumulate all of the node

values at node xi (based on the reasoning that the values of all nodes have to pass through

the neighbors of node xi); however, this result does not appear to have been established

anywhere in the literature, and the proof is rather elusive. Based on our intuition, we can

make the following conjecture.

Conjecture 1 Let G denote the (fixed) graph of the network, and

Si = {xj | There exists a path from xj to xi in G} ∪ {xi} .

Consider a subgraph H of G that is a Si-spanning forest rooted at {xi}∪Ni, with the property

that the size of the largest tree in H is minimal over all possible Si-spanning forests rooted

at {xi} ∪ Ni. Let Di denote the size of the largest tree of H. Then it will take at least

Di time-steps for node xi to receive the values of all nodes regardless of the protocol, and

thus linear iterative strategies are time-optimal means of disseminating information in any

arbitrary network.

The rest of the chapter is organized as follows. In Section 2.2, we cast function calcula-

tion via linear iterative strategies as an observability problem, and then apply concepts from

observability theory to analyze properties of these strategies. We use these concepts (along

with results from the Appendix on structured observability over finite fields) in Section 2.3

to design weight matrices that allow the desired functions to be calculated at certain nodes.

In Section 2.4, we discuss how to implement our scheme in a decentralized manner, and

in Section 2.5, we compare our scheme to previous work on linear iterative strategies and

distributed consensus. We present an example in Section 2.6.

2.2 Distributed Computation of Linear Functions

We start by asking the question: after running the linear iteration (1.1) with a given weight

matrix1 W (with entries in field F) for Li +1 time-steps (for some Li), what is the set of all

linear functions that are calculable by node xi? The following lemma provides an answer

to this question.

Lemma 2.1 Let Ci be the (degi +1)×N matrix where each row has a single nonzero entry

equal to “1” denoting the positions of the vector x[k] that are available to node xi (i.e.,

these positions correspond to nodes that are neighbors of node xi, along with node xi itself).

1We will discuss ways to choose appropriate weight matrices in the next section.
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Then, node xi can calculate the linear function Qx[0] after running the linear iteration (1.1)

for Li + 1 time-steps if and only if the row space of Q is contained in the row space of the

matrix

Oi,Li
≡





Ci

CiW

CiW
2

...

CiW
Li





. (2.1)

Proof: Consider the linear iteration given by (1.1). At each time-step, node xi has

access to its own value and those of its neighbors. From the perspective of node xi, the

linear iteration can then be viewed as the dynamical system

x[k + 1] = Wx[k]

yi[k] = Cix[k] , (2.2)

where yi[k] denotes the outputs (node values) that are seen by node xi during the k–th

time-step. Since x[k] = Wkx[0], we have yi[k] = CiW
kx[0], and the set of all values seen

by node xi over Li + 1 time-steps is given by





yi[0]

yi[1]

yi[2]
...

yi[Li]





=





Ci

CiW

CiW
2

...

CiW
Li





︸ ︷︷ ︸
Oi,Li

x[0] . (2.3)

The row space of Oi,Li
characterizes the set of all calculable linear functions for node xi up

to time-step Li. Suppose that the row space of matrix Q is not contained in the row space

of Oi,Li
. This means that

rank

([
Oi,Li

Q

])

> rank (Oi,Li
) ,

and so there exists a nonzero vector v such that Oi,Li
v = 0, but Qv 6= 0. If x[0] = v,

the values seen by node xi during the first Li + 1 time-steps of the linear iteration are all

zeros, and so node xi cannot calculate Qv from the outputs of the system (i.e., it cannot

distinguish the initial value vector x[0] = v from the case where all initial values are zero).
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On the other hand, if the row space of Q is contained in the row space of Oi,Li
, one can

find a matrix Γi such that

ΓiOi,Li
= Q . (2.4)

Thus, after running the linear iteration (1.1) for Li +1 time-steps, node xi can immediately

calculate Qx[0] as a linear combination of the outputs of the system over those time steps,

i.e.,

Γi





yi[0]

yi[1]
...

yi[Li]




= ΓiOi,Li

x[0] = Qx[0] . (2.5)

This concludes the proof of the lemma.

Remark 2.2 The above lemma shows (via Equation (2.5)) how node xi can obtain the

function Qx[0] after running the linear iteration for Li + 1 time-steps (for some Li, and

assuming that Q is in the row space of Oi,Li
). Note that node xi does not necessarily have to

store the entire set of values yi[0],yi[1], . . . ,yi[Li] in order to calculate the quantity Qx[0]

via (2.5). Instead, if we partition Γi as Γi =
[
Γi,0 Γi,1 · · · Γi,Li

]
and allow node xi to

have r extra registers (where r is the number of rows in Q), we can utilize the following

recursive strategy: we initialize the values of the r registers with x̄i[0] = Γi,0yi[0] and update

them at each time-step k as x̄i[k] = x̄i[k−1]+Γi,kyi[k]. After Li iterations, x̄i[Li] will hold

the value of Qx[0].

Note that the matrix Oi,Li
in (2.1) resembles the observability matrix for the pair

(W,Ci) (it is exactly the observability matrix when Li = N − 1). As described in Sec-

tion 1.5, the rank of Oi,Li
is a nondecreasing function of Li, and bounded above by N .

Specifically the rank of Oi,Li
monotonically increases with Li until Li = νi − 1 (where νi is

the observability index of the system), at which point it stops increasing. This means that

the outputs of the system yi[0],yi[1], . . . ,yi[νi − 1] contain the maximum amount of infor-

mation that node xi can possibly obtain about the initial values, and future outputs of the

system do not provide any extra information. Recall from Section 1.5 that νi can be upper

bounded as νi ≤ N − rank(Ci) + 1. Since Ci has rank degi +1 in the linear iteration model

(2.2), the above bound becomes νi ≤ N − degi. This immediately produces the following

fact: if it is possible for node xi to obtain the necessary information to calculate the linear

function Qx[0] via the linear iteration (1.1), it will require at most N − degi time-steps.

Remark 2.3 Note that the above discussion only provides a trivial upper bound that is

obtained purely from observability theory. We will later tighten this bound to be equal to the

size of the largest tree in any spanning forest rooted at {xi}∪Ni (as described in Section 2.1);

we will do this by using results on structured systems (that we derive in the Appendix). On
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the other hand, a lower bound on the number of time-steps required by node xi can be

obtained as follows. Let Fi denote the set of all nodes whose values are required by node

xi in order to calculate its function (if node xi’s function depends on all initial values, the

set Fi will contain all nodes in the graph). Pick a node xj ∈ Fi that is farthest away from

node xi in the network, and let the distance2 between node xj and node xi be denoted by

di. Since it takes one time-step for a value to propagate along an edge, it will take at least

di time-steps before node xi is able to obtain node xj ’s value, and thus a lower bound on

the number of time-steps required for function calculation by node xi is di. Note that if Fi

contains all nodes in the network, di is simply the eccentricity of node xi [28]. In particular,

if di = N − degi, then node xi will take exactly N − degi time-steps to calculate its desired

function (since the lower bound and upper bound coincide in this case). Also note that the

quantity Di defined in Theorem 2.1 satisfies Di ≥ di, since if there is a node xj at distance

di from node xi, then the tree containing xj in any spanning forest rooted at {xi}∪Ni must

contain at least di nodes (i.e., the di −1 nodes between xj and xi, along with xj). Thus, the

fact that linear iterative strategies require at most Di time-steps to disseminate information

to node xi does not violate the lower bound di. Based on Conjecture 1, it may be the case

that Di is actually a tighter lower bound on the number of time-steps required for node

xi to obtain all initial values, but it is helpful to keep in mind the various constraints on

time-complexity that are introduced by the network topology.

If the objective in the system is for some subset of the nodes to calculate the lin-

ear function Qx[0], one has to choose the weight matrix W so that Q is in the row

space of the observability matrices for all those nodes. More generally, suppose we re-

quire node xi to calculate the function g(xt1 [0], xt2 [0], . . . , xtS [0]), where {xt1 , xt2 , . . . xtS}

is some subset of the nodes in the system. If W can be designed so that the matrix

Q =
[
et1,N et2,N · · · etS ,N

]′
is in the row space of Oi,νi−1, node xi can recover the

initial values xt1 [0], xt2 [0], . . . , xtS [0] from yi[0],yi[1], . . . ,yi[νi − 1], and then calculate the

desired function of those values. If the pair (W,Ci) is observable (i.e., rank(Oi,νi−1) = N),

node xi can uniquely determine the entire initial value vector x[0] from the outputs of the

system and calculate any function of those values. Based on this discussion, we see that we

can recast the function calculation problem as a weight matrix design problem, where the

objective is to make the row space of the observability matrix for each node contain some

appropriate matrix Q. More generally, our goal will be to choose the weight matrix W to

maximize the set of functions that can be calculated by every node, and we describe how

to do this in the next section.

2Recall that the distance between node xj and node xi in a graph is the length of the shortest path
between node xj and node xi in the graph [28].

27



2.3 Designing the Weight Matrix

We will begin our discussion of designing the weight matrix for the linear iterative strategy

by considering the case of undirected ring networks. We will then generalize our discussion

to arbitrary networks, and obtain the proof of Theorem 2.1 (provided in Section 2.1).

2.3.1 Weight Matrix Design for Ring Networks

Consider an undirected ring network with N nodes, where node xi is connected to nodes

x(i mod N)+1 and x((i−2) mod N)+1. In other words, when the nodes are arranged in a circle,

each node connects to the nodes immediately to its left and to its right, as shown in

Figure 2.5.

x1
x2

x3

xN

xN−1

x⌊N
2
⌋

x⌊N
2
⌋+1x⌊N

2
⌋+2

Figure 2.5: Ring Network.

For such networks, we will demonstrate the following result.

Theorem 2.3 Let G denote an undirected ring network with N nodes. Suppose that all

initial values in the network are elements of a field F, and all weights for the linear iterative

strategy are chosen to be nonzero elements of the same field. Then, every node in the

network can obtain the initial values of all other nodes after running the linear iterative

strategy for exactly ⌊N
2 ⌋ time-steps (performing all operations in the field F).

Example 1 Before providing a general proof of the above theorem, it will be helpful to

consider a small ring network of N = 7 nodes. The weight matrix for such a network is

given by

W =





w11 w12 0 0 0 0 w17

w21 w22 w23 0 0 0 0

0 w32 w33 w34 0 0 0

0 0 w43 w44 w45 0 0

0 0 0 w54 w55 w56 0

0 0 0 0 w65 w66 w67

w71 0 0 0 0 w76 w77





.
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Consider node x2 in this network; the values that this node receives at each time-step are

given by y2[k] = C2x[k], where C2 =
[
I3 0

]
. The values seen by node x2 over ⌊N

2 ⌋ = 3

time-steps are given by y2[0 : 2] = O2,2x[0], where

O2,2 =




C2

C2W

C2W
2



 =





1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

w11 w12 0 0 0 0 w17

w21 w22 w23 0 0 0 0

0 w32 w33 w34 0 0 0

∗ ∗ ∗ 0 0 w17w76 ∗

∗ ∗ ∗ ∗ 0 0 ∗

∗ ∗ ∗ ∗ w34w45 0 0





;

in the above matrix, ∗ represents certain (unimportant) polynomials in the weights wij .

Now suppose that all weights are chosen to be nonzero elements of some field F. Then it is

easy to see that the above matrix will be guaranteed to be of full column rank over that field.

Specifically, the first three columns each contain a “1” in some position, whereas all other

columns contain a “0” in that position, and thus the first three columns are guaranteed to be

independent of all other columns. Similarly, columns four through seven are guaranteed to

be linearly independent of all other columns due to the nonzero entries w34, w34w45, w17w76

and w17, respectively. Thus, node x2 can obtain the initial values of all nodes from the

values that it receives over the first 3 time-steps of the linear iteration, regardless of the

field over which the iteration is operated.

Based on the intuition provided by the above example, we can now present a proof of

Theorem 2.3 for ring networks with an arbitrary number of nodes.

Proof: [Theorem 2.3] The weight matrix for a ring network with N nodes has the form

W =





w11 w12 0 · · · 0 w1N

w21 w22 w23 · · · 0 0

0 w32 w33 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · w(N−1)(N−1) w(N−1)N

wN1 0 0 · · · wN(N−1) wNN





where each of the weights is chosen to be a nonzero element of the field F. Since the graph

is node-transitive (i.e., the graph “looks the same” from every node), we can focus our

analysis on any single node. For convenience, consider node x2 in the network; the values

that this node receives at each time-step are given by y2[k] = C2x[k] = C2W
kx[0], where
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C2 =
[
I3 0

]
. The observability matrix for node x2 is given by the matrix Oi,L in (2.3)

(with i = 2).

To see that the matrix O2,⌊N
2
⌋−1 will have rank N over the field F, first note that the first

three rows of the observability matrix are given by matrix C2. From the structure of C2

above, this implies that the first three columns of the observability matrix are guaranteed to

be linearly independent of all of the other columns (because each of the first three columns

contains a nonzero element in some position, and all other columns have a zero in that

position). Now consider the first six rows of the observability matrix, given by

[
C2

C2W

]

=





1 0 0 0 0 · · · 0 0

0 1 0 0 0 · · · 0 0

0 0 1 0 0 · · · 0 0

w11 w12 0 0 0 · · · 0 w1N

w21 w22 w23 0 0 · · · 0 0

0 w32 w33 w34 0 · · · 0 0





.

This set of rows introduces a nonzero element in the (4, N) and (6, 4) entries of the observ-

ability matrix (given by the nonzero weights w1N and w34, respectively). These elements

will cause the fourth and N -th columns of the observability matrix to be linearly inde-

pendent of all other columns, again because they each contain a nonzero element in some

position that is zero in all other columns (recall that we do not have to consider the first

three columns anymore, since we have already shown them to be linearly independent of

all other columns).

We continue in this way by noting that each set of subsequent rows in the observability

matrix is of the form C2W
k for k = 2, 3, . . . , ⌊N

2 ⌋ − 1. The matrix C2 simply selects

the first three rows of Wk, and each entry in Wk is simply a polynomial in the weights

w11, w12, . . . , wNN . Specifically, the (i, j)–th entry of Wk is a sum of products of the weights

on paths of length k from node xj to node xi in the graph [28].

For example, in the ring network, there is only one path of length two from xN−1 to x1,

and the weights on that path are wN(N−1) and w1N . Thus, the (1, N − 1) entry in matrix

W2 will be wN(N−1)w1N . The only other nodes that have a path of length two to node x1

are nodes xN , x1, x2 and x3 (self-loops are included in the length of the path for the latter

three nodes), and thus entries (7, 4), (7, 5), · · · , (7, N −2) in the observability matrix will be

identically zero, and entry (7, N − 1) will be wN(N−1)w1N . This means that column N − 1

of the observability matrix will be linearly independent of columns 4 through N − 2, and

since we already know that columns 1 through 4 and column N are linearly independent

of all other columns, we see that column N − 1 is also linearly independent of all other

columns.

Similarly, there is only one path of length two from x5 to x3, and thus the (3, 5) entry
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in matrix W2 will be w45w34. The other nodes that have a path of length two to node

x3 are nodes x1, x2, x3 and x4, and those are the only entries that will be nonzero in the

third row of matrix W2. Thus, entries (9, 6), (9, 7), · · · , (9, N) in the observability matrix

will be identically zero, and entry (9, 5) will be w45w34. This means that the fifth column

of the observability matrix will be linearly independent of columns 6 through N , and since

we already know that columns 1 through 4 and column N of the observability matrix are

linearly independent of all other columns, we see that column 5 is also linearly independent

of all other columns.

At this point we have shown that columns 1, 2, 3, 4, 5, N − 1 and N are all guaranteed

to be linearly independent of each other and all other columns in the observability matrix.

We can continue this reasoning to show that each additional set of rows of the form C2W
k

causes two new columns of the observability matrix to be linearly independent of all other

columns. At k = ⌊N
2 ⌋ − 1, the rows C2W

⌊N
2
⌋−1 will cause the final two columns (one

column if N is even) to become linearly independent of all other columns, thereby causing

the matrix O2,⌊N
2
⌋−1 to have rank N over F.

Remark 2.4 Note that the diameter of the ring network is ⌊N
2 ⌋, and so this is the minimum

possible time required for any protocol to disseminate the initial values to all the nodes.

Theorem 2.3 indicates that linear iterative strategies achieve this minimum bound in ring

networks even when the nodes operate on values from fields of arbitrary size (including the

binary field F2 = {0, 1}). It is also of interest to note that one can form a spanning forest

rooted at {xi} ∪ Ni where the size of the largest tree is equal to Di = ⌊N
2 ⌋, and this is the

minimal size over all possible spanning forests. Thus, the number of time-steps required

to disseminate information in ring networks provided by the above theorem agrees with the

result in Theorem 2.2 (which was provided in Section 2.1 and which we will prove in the

next section).

Example 2 Consider a ring network with N = 5 nodes, operating over the binary field

F2 = {0, 1}. Choosing all weights for the linear iteration to be the nonzero element “1”, we

obtain the weight matrix

W =





1 1 0 0 1

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

1 0 0 1 1




.

Consider node x1 in the network; the values that this node receives at each time-step are
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given by

yi[k] =




1 0 0 0 0

0 1 0 0 0

0 0 0 0 1





︸ ︷︷ ︸
C1

x[k] .

The observability matrix for this node is given by

O1,⌊N
2
⌋−1 =





1 0 0 0 0

0 1 0 0 0

0 0 0 0 1

1 1 0 0 1

1 1 1 0 0

1 0 0 1 1





,

which has rank 5 over the field F2. Thus, we can find a matrix Γ1 satisfying Γ1O1,2 = I5 as

Γ1 =





1 0 0 0 0 0

0 1 0 0 0 0

1 1 0 0 1 0

1 0 1 0 0 1

0 0 1 0 0 0





and provide this matrix to node x1. The procedure can be repeated for all other nodes in the

network.

Now suppose that the initial values of the nodes are x[0] =
[
1 0 0 1 1

]′
. After

one iteration, the values of the nodes are x[1] = Wx[0] =
[
0 1 1 0 1

]′
(note that all

operations are being performed in the binary field). The values seen by node x1 over these

two time-steps are y1[0] = C1x[0] =
[
1 0 1

]′
and y1[1] = C1x[1] =

[
0 1 1

]′
. Node x1

can now obtain the entire set of initial values as x[0] = Γ1

[
y′

1[0] y′
1[1]
]′

, and can therefore

calculate any desired function of those values. The same holds true for any other node

in the network, which also implies that the nodes can reach consensus (if desired) on any

function of the initial values after two time-steps.

While Theorem 2.3 shows that fields of arbitrary size can be used to disseminate infor-

mation in ring networks, the same conclusion cannot be drawn for more general networks.

For example, consider the star network shown in Figure 2.6. For this network, one can ver-

ify that for any choice of weights from the binary field F2, the observability matrix for node

x1 will not be of full column rank, and thus node x1 cannot obtain the initial values of all

nodes via a linear iterative strategy; one requires a field of size at least 3 in order to enable

x1 to obtain the values. While it is difficult to explicitly characterize the minimum field
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size required for any arbitrary network, we will now derive a lower bound on the probability

that weights chosen at random from the field Fq (of sufficiently large size q) will maximize

the rank of the observability matrix for every node in the network.

x1x2

x3

x4

x5

Figure 2.6: Star Network.

2.3.2 Weight Matrix Design for Arbitrary Networks

Recall from Section 2.2 that choosing W to maximize the set of calculable functions for

any node xi in an arbitrary network essentially amounts to maximizing the rank of the

observability matrix for xi. To design a weight matrix that achieves this, recall the set

Si = {xj | There exists a path from xj to xi in G} ∪ {xi}

(originally defined in Theorem 2.1), and let S̄i denote its complement (G is the graph of

the network). Let xSi
[k] denote the vector that contains the values of the nodes in Si, and

let xS̄i
[k] denote the vector of values for the remaining nodes. Without loss of generality,

assume that the vector x[k] in (2.2) has the form x[k] =
[
x′
Si

[k] x′
S̄i

[k]
]′

(the vector can

always be arranged in this form by an appropriate permutation of the node indices). Since

there is no path from any node in S̄i to node xi (and hence no path from any node in S̄i to

any node in Si), Equation (2.2) takes the form

[
xSi

[k + 1]

xS̄i
[k + 1]

]
=

[
Wi,Si

0

Wi,SiS̄i
Wi,S̄i

][
xSi

[k]

xS̄i
[k]

]

yi[k] =
[
Ci,Si

0
] [xSi

[k]

xS̄i
[k]

]

. (2.6)

The outputs seen by node xi over the first Li +1 time-steps of the linear iteration are given

by





yi[0]

yi[1]
...

yi[Li]




=





Ci,Si
0

Ci,Si
Wi,Si

0
...

...

Ci,Si
WLi

i,Si
0





[
xSi

[0]

xS̄i
[0]

]

=





Ci,Si

Ci,Si
Wi,Si

...

Ci,Si
WLi

i,Si




xSi

[0] . (2.7)
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This shows that node xi receives no information about any node in the set S̄i, regardless of

the choice of weight matrix, and therefore cannot calculate any function of the node values

from that set.3 Furthermore, the matrix multiplying xSi
[0] is the observability matrix for

the pair (Wi,Si
,Ci,Si

). Thus, maximizing the rank of the observability matrix for node xi

is equivalent to maximizing the rank of the observability matrix for the pair (Wi,Si
,Ci,Si

).

To choose a set of weights that accomplishes this, we first note that matrix Wi,Si

is a structured matrix (since each entry is either identically zero, or an independent free

parameter from the field F; see the Appendix and Section 1.5.1 for a discussion of structured

systems). We can now use the result on structured system observability over finite fields

(Theorem A.3 in Section A.2) to prove the key result in Theorem 2.1 (introduced at the

end of Section 2.1).

Proof: [Theorem 2.1] From (2.7), we see that the output available to node xi after

Li +1 time-steps is simply the observability matrix for the pair (Wi,Si
,Ci,Si

) multiplied by

the vector xSi
[0]. To prove the theorem, we have to show that the pair (Wi,Si

,Ci,Si
) will

be observable with a certain probability if the weights for the linear iteration are chosen

independently and uniformly from the field Fq. To accomplish this, we examine the graph

H associated with the matrix Wi,Si
. In this case, H is obtained as follows:

1. Take the subgraph of G induced by the nodes in Si.

2. In this subgraph, add a self-loop to every node to correspond to the free parameters

wjj on the diagonal of the matrix Wi,Si
.

Every node in H has a path to node xi (by definition of the set Si), and furthermore, every

node has a self-loop, which satisfies the conditions in Theorem A.3. This implies that, with

probability at least 1 − 1
q
(Di − 1)(|Si| − degi −

Di

2 ), the observability matrix multiplying

xSi
[0] in (2.7) will have full column rank and the observability index will be at most Di.

Node xi can therefore recover the vector xSi
[0] from the outputs of the system over at most

Di time-steps.

Remark 2.5 Note that the probability bound obtained in the above theorem is potentially

quite loose because of several conservative assumptions in the proof of Theorem A.3. For

example, that proof uses the Schwartz-Zippel lemma to bound the probability of a given poly-

nomial being zero after a random choice of parameters; while this lemma is quite convenient

to state and use, the probability bound can be tightened by using more precise measures of

the probability of a given polynomial being nonzero with random choices of parameters (such

as the bound derived in [55]). The actual size of the field required might be much smaller

than that specified by Theorem A.3 (as we saw for undirected ring networks earlier in this

section). The main contribution of the above result is to show that there always exists a

3Note that this is not surprising, since there is no path in the network from any node in the set S̄i to
node xi.
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finite field of sufficiently large size over which linear iterative strategies can be applied, and

furthermore, to show that (with high probability) node xi can recover all initial values after

at most Di time-steps.

Theorem 2.1 indicates that node xi can calculate any function of the initial values of

nodes that have a path to node xi, since it can reconstruct those initial values after running

the linear iteration for a finite number of time-steps. Note that this is the most general

result that can be obtained for a given (time-invariant) network, since if a node xj does not

have a path to node xi in the network, it will be impossible for node xi to calculate any

function of node xj ’s value (regardless of the protocol). Since the above theorem holds for

any node xi, we can now prove Theorem 2.2 (also provided in Section 2.1).

Proof: [Theorem 2.2] Let Oi denote the observability matrix for node xi after choosing

the weight matrix as specified in the statement of Theorem 2.2. Note from the proof of

Theorem 2.1 that the probability that the observability matrix for any node xi is not full

column rank is upper bounded by 1
q
(Di − 1)(|Si| − degi −

Di

2 ). Thus the probability that at

least one node xi cannot obtain the initial value of some node that has a path to it in the

network is upper bounded by

Pr

[
N⋃

i=1

{rank(Oi) < |Si|}

]

≤
N∑

i=1

Pr[rank(Oi) < |Si|] ≤
N∑

i=1

1

q
(Di − 1)(|Si| − degi −

Di

2
) ,

where we have used the union bound to obtain the first inequality. The probability that

every node xi ∈ X can obtain the initial values of all nodes in Si is thus given by

Pr

[
N⋂

i=1

{rank(Oi) = |Si|}

]

= 1 − Pr

[
N⋃

i=1

{rank(Oi) < |Si|}

]

≥ 1 −
N∑

1=1

1

q
(Di − 1)(|Si| − degi −

Di

2
) .

Finally, note that if the observability matrix is of rank |Si| for some pair (W,Ci), then it will

achieve this rank after at most Di time-steps with probability 1− 1
q
(Di−1)(|Si|−degi −

Di

2 )

(as discussed in Theorem 2.1). One can easily show (by following the same reasoning as

above) that the observability index for every node xi will be at most Di with probability

at least 1 −
∑N

1=1
1
q
(Di − 1)(|Si| − degi −

Di

2 ). This concludes the proof of the theorem.

For the special case when all nodes are required to reach consensus (i.e., they are all

required to calculate the same function of the initial values), the above results produce the

following corollary.

Corollary 2.2 Define the set S = ∩N
i=1Si, where

Si = {xj | There exists a path from xj to xi in G} ∪ {xi} .
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In other words, S is the set of nodes that have a path to all nodes in the system. For each

xi ∈ X , consider a subgraph Hi of G that is a Si-spanning forest rooted at {xi}∪Ni, with the

property that the size of the largest tree of the forest is minimal over all Si-spanning forests

rooted at {xi} ∪ Ni. Let Di denote the size of the largest tree of Hi, and let D = maxi Di.

Suppose that the weights for the linear iteration are chosen randomly (independently and

uniformly) from a field Fq of size q ≥
∑N

i=1(Di−1)(|Si|−degi −
Di

2 ). Then, with probability

at least 1− 1
q

∑N
i=1(Di − 1)(|Si|−degi −

Di

2 ), all nodes can reach consensus on any function

of the initial values of nodes in S after running the linear iteration for at most D time-steps.

Corollary 2.2 indicates that the nodes can reach consensus after a finite number of

iterations as long as the network has at least one node that has a path to every other

node. If the network is strongly connected (i.e., there is a path from every node to every

other node), the nodes can reach consensus on any arbitrary function of the initial values.

This result is more general than those currently existing in the literature (for time-invariant

networks), which typically focus on the nodes reaching asymptotic consensus on a real-valued

linear function of the initial values (e.g., see [6, 7, 22], and the discussion in Chapter 1).

2.4 Decentralized Calculation of Observability Matrices

In the previous sections, we saw that if the weight matrix is chosen appropriately, the

observability matrix for each node will contain enough information for that node to calculate

any desired function of the initial values. Specifically, there will exist a matrix Γi satisfying

(2.4) for each node xi, and node xi can use this matrix to calculate Qx[0] from (2.5).

If required, it can then calculate more general (nonlinear) functions of Qx[0]. However,

finding Γi requires knowledge of the observability matrix Oi,νi−1. If the global topology of

the graph and all of the weights are known a priori, then Γi can be calculated from the

matrix Oi,νi−1 and conveyed to node xi. Note that in graphs with time-invariant topologies,

Γi only has to be computed once for each node xi. However, in practice, it may be the case

that there is no opportunity to calculate the Γi’s a priori, and therefore it will be necessary

for the nodes to calculate these matrices using only local information. In this section, we

show how each node xi can calculate Γi in a decentralized manner. To accomplish this, we

will assume that the nodes know N (or an upper bound for N). We will also assume that

each node has a unique identifier, and that the nodes know their position in an appropriate

ordering of the identifiers (e.g., the node with the j–th smallest identifier takes its position

to be j). We assume without loss of generality that the vector x[k] is consistent with this

ordering (i.e., xi[k] is the value of the node whose position is i–th in the ordering).

As noted in the previous section, if the nodes choose their own weights independently

and uniformly from a field of appropriately large size, the observability matrix for each node
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will be of maximum possible rank with high probability. Specifically, from Corollary 2.1, if

the nodes choose their own weights from a field of size q ≥ N2(N−1)
2 , then the observability

matrix for each node will be of maximum rank with probability at least 1 − N2(N−1)
2q

. If

the nodes are told beforehand to choose q of a certain form (say q = 2m, for some m, and

with a certain primitive polynomial for each m) to ensure a certain probability of success,

the nodes will be able to choose the field Fq based on N . Once the weights are chosen

(randomly) from this field, suppose the nodes perform N runs of the linear iteration, each

for N − 1 time-steps. For the j–th run, node xj sets its initial condition to be “1”, and

all other nodes set their initial conditions to be zero. In other words, if x∗,j [k] denotes

the vector of node values during the k–th time-step of the j–th run, the nodes calculate

x∗,j[k + 1] = Wx∗,j [k], 0 ≤ k ≤ N − 2, 1 ≤ j ≤ N , where x∗,j [0] = ej,N . Suppose that

for each of the N runs, node xi stores the values it sees over the first N − degi time-steps

(since each node knows that Di ≤ N − degi). Each node xi then has access to the matrix

Ψi,L =





yi,1[0] yi,2[0] · · · yi,N [0]

yi,1[1] yi,2[1] · · · yi,N [1]
...

...
. . .

...

yi,1[L] yi,2[L] · · · yi,N [L]




, (2.8)

for any 0 ≤ L ≤ N − degi −1, where yi,j[k] = Cix∗,j [k]. Using (2.3), the above matrix can

be written as

Ψi,L = Oi,L

[
x∗,1[0] x∗,2[0] · · · x∗,N [0]

]
,

and since x∗,j[0] = ej,N , we see that Ψi,L = Oi,L. Node xi now has access to its observability

matrix, and can find the matrix Γi and the smallest integer Li such that ΓiOi,Li
= Q (for

the desired matrix Q).4 For future initial conditions x[0], node xi can perform function

calculation in the network by running the linear iteration (1.1) for Li + 1 time-steps to

obtain the values yi[0],yi[1], . . . ,yi[Li]. It can then immediately obtain Qx[0] from (2.5),

and use this to calculate any function g(Qx[0]) (note that g can be a completely arbitrary

function of all initial values if Q = IN ).

It is important to note that the above discovery algorithm only needs to be run once (in

time-invariant networks) in order for the nodes to obtain the Γi matrices. After they have

obtained these matrices, they can use them to perform function calculation for arbitrary sets

of initial conditions. In other words, the cost of discovering the Γi matrices will be amortized

over the number of times they are used by the nodes to perform function calculation. A full

description of the algorithm (including the initialization phase) can be found in Figure 2.7

and Figure 2.8.

4Note that this integer Li will be no greater than the quantity Di − 1 defined in Corollary 2.1 with

probability at least 1 − N2(N−1)
2q

.
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Initialization Phase: Calculation of Network Parameters

INPUT: Network G, with N nodes x1, x2, . . . , xN , each with an ID and an
associated function gi : FN → Fri .

1: Each node determines the smallest field of the specified type (e.g., F2m for some
m and an associated primitive polynomial) such that the observability matrix for
each node is guaranteed to have maximum rank with probability at least equal
to some pre-specified amount (say, 95%). Each node xi independently chooses a
set of weights wij for the nodes in its neighborhood, and a weight wii for itself,
from a uniform distribution on this field.

2: for j = 1 to N
3: xj[0] = 1, xi[0] = 0 for all i 6= j.
4: for k = 0 to N-2
5: Each node xi updates its value as

xi[k + 1] = wiixi[k] +
∑

l∈Ni

wilxl[k].

6: Each node xi stores yi,j [k] = Cix[k].
7: end for
8: end for
9: Each node xi forms the matrix Ψi,Li

in (2.8) and finds a value Li and a matrix
Γi satisfying ΓiΨi,Li

= Qi, for an appropriate matrix Qi which would allow node
xi to calculate gi(x1[0], x2[0], . . . , xN [0]).

10: All nodes use a simple distributed protocol to determine max1≤i≤N Li.

OUTPUT: Γi, Li and weights wij for each node xi, and max1≤i≤N Li.

Figure 2.7: The initialization phase of the protocol. This phase is used by the nodes
to distributively determine the necessary information about the network in order to later
perform distributed function calculation.

Remark 2.6 If the nodes only know an upper bound for N , the observability matrix ob-

tained by each node will have one or more columns that are entirely zero. This is because

there will be some runs of the linear iteration where all nodes set their initial values to be

zero, under the assumption that some (nonexistent) node will be setting its value to 1. In

such cases, the nodes can simply drop these zero columns from their observability matrices,

and continue as normal.

Remark 2.7 Note that the protocol described above for finding the observability matrix

requires each node xi to store (degi +1)×N × (N − degi) values, because each output vector

yi,j[k] has degi +1 components, there are N − degi outputs stored per run, and there are

N runs in total. However, the observability index νi for node xi will most likely be upper

bounded by Di (which may be much smaller than N − degi), and so node xi may be storing

more values than required (since after time-step νi, the rows of the observability matrix

are linear combinations of the previous rows). This problem can be easily circumvented by

having the nodes run the N linear iterations in parallel, as opposed to serially. In this

38



Calculating Functions of Arbitrary Initial Conditions

INPUT: Network G, with N nodes x1, x2, . . . , xN , each with an (arbitrary)
initial value xi[0] and an associated function gi : FN → Fri . Each node xi knows
Γi, Li, weights wij and max1≤j≤N Lj .

1: for k = 0 to max1≤j≤N Lj

2: Each node xi updates its value as

xi[k + 1] = wiixi[k] +
∑

l∈Ni

wilxl[k].

3: Each node xi stores yi[k] = Cix[k].
4: if k == Li for some i then
5: node xi calculates

Γi





yi[0]
yi[1]

...
yi[Li]




= Qix[0] ,

which it uses to calculate gi(x1[0], x2[0], . . . , xN [0]).
6: end if
7: end for

OUTPUT: gi(x1[0], x2[0], . . . , xN [0]) for each node xi.

Figure 2.8: The protocol to perform distributed function calculation via linear iterations.
The inputs to this protocol can be obtained by running the initialization phase (given in
Figure 2.7), or can be calculated by a centralized entity and provided to each node xi.

way, the nodes construct the (observability) matrix Ψi,L in (2.8) row-by-row, as opposed

to column-by-column. If node xi finds that the new rows of the observability matrix do

not increase its rank, or if the existing rows of the observability matrix already contain

the desired matrix Q, node xi can stop storing values. Note, however, that all nodes still

have to complete N − 1 time-steps of each run in order to ensure that other nodes have

an opportunity to find their observability matrices. This slight modification of the protocol

would require each node to store at most (degi +1) × N × νi values.

The communication cost incurred by the above protocol for discovering the observability

matrix can be characterized as follows. Since each node transmits a single value on each

outgoing edge at each time-step, and since there are N − 1 time-steps per run, with N runs

in total, each node xi will have to transmit N(N −1)out- degi messages in order to run this

protocol. Summing over all nodes in the network, there will be
∑N

i=1 N(N − 1)out- degi =

N(N − 1)|E| messages transmitted in total (since
∑N

i=1 out- degi is equal to the number of

edges in the graph [28]). Note that in wireless networks, a single transmission by node xi

will be equivalent to communicating a value along each outgoing edge of node xi (since all

neighbors of node xi will receive the message after just one transmission), and thus each
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node would only have to transmit N(N − 1) messages in order to run the protocol, for a

total of N2(N − 1) messages in the network.

Remark 2.8 It may be the case that the number of time-steps required by each node to

calculate its desired function will vary from node to node (i.e., the value of Li might be

different for different i’s). There are several different ways to handle this. One option is

to have the nodes run the linear iteration for a full N − 1 time-steps, even though they can

calculate their desired function after Li + 1 time-steps (similar to what was suggested in

Remark 2.7). However, this could cause the linear iteration to run for more time-steps than

necessary (i.e., for N −1 time-steps, instead of maxi Li +1 time-steps). To get around this,

one can have the nodes calculate the maximum of all the Li’s after they have calculated their

Γi matrices. This can be done via a simple protocol where each node starts by broadcasting

its own value of Li, and then subsequently maintains and broadcasts only the largest value

it receives from a neighbor. After at most N time-steps, all nodes will have the maximum

value of Li [11], and then the nodes can run subsequent linear iterations for maxi Li + 1

time-steps.

2.5 Comparison to Previous Results on Linear Iterative

Strategies

As discussed in Chapter 1, the vast majority of the existing literature on linear iterative

strategies has focused on their ability to produce asymptotic consensus on a linear function

(typically the average) of the initial values. The topic of finite-time consensus via linear

iterations has received only limited attention in the literature. Specifically, it was briefly

discussed by Kingston and Beard in [56], but the method described in that paper requires the

network to be fully connected (i.e., every node needs to be directly connected to every other

node) for at least one time-step, which is a very strict condition. Finite-time consensus was

also studied for continuous-time systems in [57]. The approach in that paper was to have

the nodes evolve according to the gradient of a suitably defined function of their values. The

resulting protocol, which is nonlinear, does not directly translate to discrete-time systems,

and the author of [57] only considered a restricted class of possible consensus values. In

contrast to the above works, our method can be used in networks with arbitrary topologies,

achieves finite-time consensus in discrete-time systems by running a simple linear iteration,

and allows the consensus value to be any function of the node values. In fact, our method

allows the nodes to calculate arbitrary (and different) functions of the initial values, and

thus is much more general than allowing the nodes to simply reach consensus.

Another benefit of the method developed in this chapter is that it allows linear iterative

strategies to be performed over finite fields. This is an important feature for many practical

applications, such as in networks that contain bandwidth restrictions in the transmission
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channels between nodes, or in networks with nodes that are limited in the precision of the

computations that they perform. The topic of quantized consensus (where the values in the

network are quantized to lie in some discrete set) has recently started to receive attention

in the control literature [26, 58, 59, 60, 61]. For example, the authors of [26] propose

a gossip-based protocol to reach quantized consensus on the average of the initial values

(which are assumed to be integers). In their protocol, each node periodically chooses one

of its neighbors at random; these two nodes then either bring their values as close together

as possible (while keeping the sum of the two values constant), or swap their values if the

difference of their values is equal to 1. The analysis in [26] revealed that this strategy will

eventually cause the values of all nodes in the network to be within 1 of the average of

the initial values. The expected convergence time of this (nonlinear) scheme is finite, but

difficult to characterize explicitly; for fully connected networks, the authors of [26] show

that the expected convergence time is lower bounded by N(N−1)
2 (where N is the number

of nodes in the network) and upper bounded by O(N3). Other works have also studied

ways to obtain consensus by incorporating quantization into variants of a linear iterative

strategy, where nodes update their values as a linear combination of quantized versions of

their neighbors’ values [59, 60, 61].

The topic of information dissemination (as opposed to consensus) via a gossip algorithm

with random network coding has also been investigated in [19, 62]. In these schemes, every

node in the network periodically sends a random linear combination of the messages that

it has previously received to a randomly chosen neighbor. The analysis of such a protocol

(for complete graphs in [19] and for more general graphs in [62]) is complex due to the

probabilistic nature of the algorithm, but the authors of these works provide bounds on

the expected value of the number of gossip rounds required in order for all of the nodes to

obtain all of the information.

In comparison to the above works that focus on consensus and gossip-based information

dissemination, our approach has several benefits. First, our work provides an algorithm for

disseminating information where multiple nodes in the network are allowed to simultane-

ously exchange information (rather than a gossip-based algorithm where only two random

nodes exchange information at each round). Thus, our analysis provides a guaranteed up-

per bound (no greater than the number of nodes in the network, and most likely equal to

the size of the largest tree in a spanning forest of the graph) on the number of time-steps

required for every node to obtain the initial values of the other nodes. In ring networks,

our results show that no other protocol can disseminate information faster than the linear

iterative strategy, and that this can be accomplished by using as few as two quantization

levels (i.e., by performing operations over the binary field F2). This is in contrast to the

work on quantized consensus and gossip-based network coding, where the expected conver-

gence time can be much larger than the number of nodes in the network (as described above

and in [26, 60, 19, 62]). Second, our approach allows the nodes to obtain all of the initial

41



values in a strongly connected network, and thus allows them to calculate any function of

the initial values; in contrast, the other works on quantized consensus only focus on having

all nodes calculate the same function (typically an approximation to the average of the

initial values) [26, 59, 60, 61]. Third, our protocol only requires the use of linear operations

at every step, unlike the above quantized consensus protocols that incorporate nonlinear

quantization operations.

2.6 Example

Consider the network introduced at the beginning of the chapter in Figure 2.3. The objective

in this network is for every node to obtain the initial value of every other node. The nodes

do not know the entire topology, and there is no centralized decision maker to calculate the

Γi matrices for each node. However, suppose that all nodes know that there are N = 5

nodes in the system.

The first step is for the nodes to choose their weights. Since the graph is strongly

connected, Corollary 2.1 indicates that if the nodes independently pick weights from a

uniform distribution on a field Fq of size q ≥ N2(N−1)
2 , then the observability matrix for

every node will have rank N with probability at least 1− N2(N−1)
2q

. Suppose that the nodes

agree beforehand that the field size should be q = 2m for the smallest m that ensures at

least a 95% chance of success (i.e., 1− N2(N−1)
2(2m) ≥ 0.95). In this case, the nodes use m = 10

with primitive polynomial5 α10 + α3 + 1, which produces a probability of success at least

95.12%. Each node then chooses its weights independently and uniformly from the field

F210 , which produces the weight matrix

W =





282 509 0 981 0

695 981 260 0 0

0 348 517 0 833

0 0 715 152 249

0 0 0 263 950




.

Note that each entry of the above weight matrix is the decimal representation of the appro-

priate field element. For example, the quantity “282” is used to represent the field element

α8 + α4 + α3 + α, where α is a root of the primitive polynomial α10 + α3 + 1.

Next, the nodes use the protocol described in Section 2.4 to discover their observability

matrices. Specifically, they run N = 5 different linear iterations, with initial condition

x∗,j[0] = ej,5 for the j–th linear iteration. As discussed in Remark 2.7, we will have the

nodes run the N different linear iterations in parallel, so that they compute the observability

5This is needed to ensure that all nodes have a consistent representation of the field elements; to perform
the calculations for this example, we use the gf command in MATLAB, which produces a Galois field with
the specified primitive polynomial.
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matrix row-by-row. For instance, consider node x4 in Figure 2.3. The matrix C4 in (2.2)

is given by

C4 =




0 0 1 0 0

0 0 0 1 0

0 0 0 0 1



 .

After running the N = 5 different linear iterations for 3 time-steps each, node x4 has access

to the matrix




y4,1[0] y4,2[0] y4,3[0] y4,4[0] y4,5[0]

y4,1[1] y4,2[1] y4,3[1] y4,4[1] y4,5[1]

y4,1[2] y4,2[2] y4,3[2] y4,4[2] y4,5[2]



 =





0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 348 517 0 833

0 0 715 152 249

0 0 0 263 950

526 972 661 908 420

0 15 45 1009 169

0 0 577 322 254





,

where y4,j [k] is the output seen by node x4 at time-step k of the j–th run. At this point,

node x4 finds that this matrix is of full column rank, and so it does not need to store any

further values. However, it continues to perform the linear iterations for 1 more time-step

(for a total of N − 1 = 4 time-steps), so that the observability matrix for every node in the

system will be of full column rank with at least a probability of 95%.

After all N runs are complete, each node xi has access to its observability matrix, and

calculates the matrix Γi satisfying ΓiOi,Li
= I5. For example, node x4 obtains

Γ4 =





630 735 444 480 570 301 484 286 777

191 858 314 817 850 694 0 826 898

811 664 73 314 96 534 0 384 88

664 517 290 974 815 860 0 489 736

73 290 752 675 872 377 0 543 244




.

We omit the values of the Γi matrices for the other nodes in the interest of space. In this

example, it is found that L1 = 1, L2 = 1, L3 = 1, L4 = 2, L5 = 3; one can readily verify

that Li = Di − 1 (where Di is the size of the largest tree in the optimal spanning forest

rooted at {xi} ∪ Ni). At this point, the nodes find maxi Li = 3 via the protocol discussed

in Remark 2.8, and so they all agree to stop running subsequent linear iterations after

maxi Li + 1 = 4 time-steps.

Now that each node xi has access to Γi, it can use this matrix to reconstruct any

arbitrary set of initial values. Suppose that on the next run, the initial values on the
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nodes are given by x[0] =
[
426 50 923 966 502

]′
. In order to disseminate these values,

the nodes run the linear iteration for four time-steps. The values of the nodes over those

time-steps are given by

[
x[0] x[1] x[2] x[3]

]
=





426 471 498 575

50 871 945 971

923 755 876 714

966 539 310 770

502 916 618 10




.

Using the outputs of the system y4[0] = C4x[0],y4[1] = C4x[1],y4[2] = C4x[2] and y4[3] =

C4x[3], node x4 can now reconstruct the initial values as

Γ4




y4[0]

y4[1]

y4[2]



 =
[
426 50 923 966 502

]′
.

It can then use these values to calculate any desired function of the initial values. All other

nodes obtain the initial values in the same manner, and the linear iterative strategy stops

after 4 time-steps.

2.7 Summary

We showed that in any given time-invariant connected network, if the weights for the linear

iteration are chosen randomly (independently and uniformly) from a field of sufficiently

large size, then with some nonzero probability (that increases with the size of the field),

every node can obtain the initial values of any other node in the network. Furthermore,

with the same probability, the number of time-steps required by any node to recover these

values is upper bounded by the size of the largest tree in any spanning forest rooted at that

node and its neighbors. Finally, we showed that it is not necessary for the entire network

topology to be known a priori in order to use our scheme, but that it is possible for the

nodes to obtain the necessary information about the network by running the linear iteration

with several different initial conditions.

In the next chapters, we will further extend these results to networks where commu-

nications between nodes are corrupted by noise (Chapter 3), where some nodes act in a

malicious or faulty manner (Chapter 4), or where a set of nodes have to transmit streams

of data through the network (Chapter 5).
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CHAPTER 3

DISTRIBUTED CALCULATION OF

LINEAR FUNCTIONS IN NOISY

NETWORKS

3.1 Introduction

In the previous chapter, we showed that linear iterative strategies allow any node in con-

nected time-invariant networks to calculate any arbitrary function of the initial node values

in a finite number of time-steps (upper bounded by the size of the network). In this chapter,

we extend these results on finite-time function calculation to the case where each node only

obtains a noisy (or uncertain) measurement of its neighbors’ values. While noisy transmis-

sions between nodes in networks can often be handled by utilizing source or channel coding,

the model that we consider here applies to situations where coding is not available, or where

nodes directly sense the values of their neighbors, and their sensing or measurement capa-

bilities are subject to noise [63]. Due to the noise model and techniques that we consider

in this chapter, we will assume throughout that the field under consideration is the field of

real numbers. Using only the first order statistics of the noise, we show that each node can

obtain an unbiased estimate of any desired linear function of the initial values as a linear

combination of the noisy values it receives from its neighbors during the linear iteration,

along with its own values. Furthermore, this can be achieved after running the linear it-

eration for a finite number of steps with almost any choice of real-valued weight matrix.

If the second order statistics of the noise are also known (perhaps only after running the

linear iteration), we show how each node can refine its estimate of the linear function by

choosing this linear combination of the noisy values in a way that minimizes the variance

of the estimation error.

The special case of asymptotic consensus on a linear combination of the initial node

values via noisy linear iterations has only recently started to receive attention (e.g., see

[63, 58, 64, 65]). For example, it was shown in [64] that if the linear iteration is affected

by additive noise at each time-step, the reliance on asymptotic convergence can cause the

nodes to be driven arbitrarily far away from the desired consensus value. Other works have

focused on addressing this issue by using predictive coding techniques [58], by using time-

varying weight matrices [63], or by considering second-order recursions (where the value of

each node at the next time-step depends not only on the values of the nodes at the current

time-step, but on the values during the previous time-step as well) [65]; however, unlike the
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method that we develop in this chapter, all of these previous works only allow each node

to calculate an unbiased1 estimate of the consensus value asymptotically (i.e., they do not

obtain an unbiased estimate in a finite number of time-steps).

The rest of the chapter is organized as follows. In Section 3.2, we introduce the noise

model and discuss why asymptotic consensus schemes perform poorly in noise. In Sec-

tion 3.3, we show how linear iterative schemes can be used to allow each node to obtain a

minimum-variance unbiased estimate of the function in a finite number of time-steps. We

provide an example in Section 3.4, and we finish with our conclusions in Section 3.5.

3.2 The Noise Model

In the rest of the chapter, we will extend the results from Chapter 2 to the case where the

network is operating in the presence of noise. We will first introduce the noise model, and

then show that each node in the system can use the above techniques to obtain an unbiased

estimate of any desired linear function2 of the initial values in a finite number of time-steps.

Consider the noise-free linear iteration considered in Equation (2.2) of Chapter 2:

x[k + 1] = Wx[k]

yi[k] = Cix[k], 1 ≤ i ≤ N ,

where x ∈ R
N and W is an N ×N weight matrix conforming to the network topology (i.e.,

wij is zero if (xj, xi) /∈ E). To simplify the development, we will assume (without loss of

generality) in this chapter that the rows of Ci are ordered such that the first row of each Ci

corresponds to node xi’s own value in the state vector x[k] (i.e., the i–th element of the first

row of Ci is 1, and all other entries in that row are zero). Suppose that the values that each

node xi receives (or senses) from its neighbors are corrupted by noise (i.e., there is a noise

component associated with each exchange of values between two neighboring nodes). Let

ni[k] denote the degi ×1 vector containing the noise that affects the values received by node

xi at time-step k. For each 1 ≤ i ≤ N , let D̂i denote the (degi +1)× (degi) matrix given by

D̂i =
[

0
Idegi

]
; i.e., the first row of D̂i has all entries equal to zero, and the remaining rows

form the degi × degi identity matrix. The noisy values that node xi receives at time-step k

are then given by yi[k] = Cix[k] + D̂ini[k]. Note that the reason for setting the top row of

1An estimate Θ̂ of a parameter Θ is said to be unbiased if the expected value of Θ̂ is equal to Θ [66].
2We will focus on linear functions in the rest of the chapter because, as we will see, unbiased estimates

of such functions can be obtained as a linear combination of the values seen by each node over the linear
iteration, thereby maintaining the implementation benefits of the linear iterative scheme. A special case
of this result is that each node can also obtain an unbiased estimate of each initial node value via the
linear iteration; if desired, it can potentially use these estimates to construct unbiased estimates of more
complicated nonlinear functions as well. However, the exact form of such estimates will depend on the
function to be calculated (and might require additional knowledge of the noise properties beyond simply the
first order statistics) [66], whereas unbiased estimates of linear functions can be obtained simply by taking
linear combinations of the unbiased estimates of each initial value.
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D̂i equal to zero is to model the fact that node xi has noise-free access to its own value. If

we define

n[k] ≡
[
n′

1[k] n′
2[k] · · · n′

N [k]
]′

,

Di ≡
[
0 · · · 0 D̂i 0 · · · 0

]
,

where each Di matrix has
∑i−1

j=1 degj columns of zeros, followed by the matrix D̂i, followed

by
∑N

j=i+1 degj columns of zeros, the output seen by node xi then becomes yi[k] = Cix[k]+

Din[k].

Now consider the update equation. Recall that each node uses the values that it receives

from its neighbors to update its own value. In particular, node xi multiplies the value that

it receives from node xj by the weight wij . Let w̄i denote the 1× degi vector that contains

the weights corresponding to the neighbors of node xi. The update for node xi is then given

by

xi[k + 1] =
[
wii w̄i

]
yi[k]

=
[
wii w̄i

]
(Cix[k] + Din[k])

= wiixi[k] +
∑

xj∈Ni

wijxj [k] +
[
0 · · · 0 w̄i 0 · · · 0

]
n[k] .

Defining the matrix

B ≡





w̄1 0 · · · 0

0 w̄2 · · · 0
...

...
. . .

...

0 0 · · · w̄N




, (3.1)

one obtains the noisy linear iteration model

x[k + 1] = Wx[k] + Bn[k]

yi[k] = Cix[k] + Din[k], 1 ≤ i ≤ N . (3.2)

Note that the noise vector n[k] in this case has dimension
(∑N

j=1 degj

)
×1 (since

∑N
j=1 degj

is equal to the number of edges in the graph [28], and since each edge corresponds to a noisy

transmission, one requires a noise term at each time-step for every edge in the graph).

Remark 3.1 Note that the noise model in (3.2) can also handle the case where noise only

affects the update equation for each node, but does not affect the exchange of values between

nodes, simply by setting B to be the N ×N identity matrix, and choosing each Di to be the

zero matrix. Note that in this case, the noise vector n[k] will only have N components.

In [64], the authors considered the problem of asymptotic consensus in the presence of
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update noise via a linear iteration of the form x[k + 1] = Wx[k] + n[k], where n[k] is zero

mean white noise with covariance matrix E[n[k]n′[k]] = IN , and W is a symmetric matrix

providing asymptotic consensus to 1
N

1′x[0]. They showed that as k → ∞, E[xi[k]] →
1
N

1′x[0] for 1 ≤ i ≤ N , but the variance of the node values xi[k] from the value 1
N

1′x[0]

increases without bound. This phenomenon is essentially due to the fact that any weight

matrix that provides asymptotic consensus must necessarily have a (marginally stable)

eigenvalue at 1 (from Theorem 1.1), and thus the components of the noise that excite this

mode of the system will accumulate and cause the values of the nodes to evolve according

to a random walk. However, the authors of [64] also examined the error between the node

values and the average of the node values at each time-step. In other words, the authors

examined the quantity x[k] − 1
N

11′x[k], and showed that the variance of this quantity

remains bounded and reaches a steady state value as k → ∞. Furthermore, they showed

that the weight matrix that minimizes this variance can be obtained by solving a convex

optimization problem. However, even though the variance of the distance between the

node values remains bounded, the variance of each node value from the intended value
1
N

1′x[0] can be arbitrarily large. As mentioned in Section 3.1, other works have focused on

addressing this issue in various ways, but with the common element of obtaining convergence

in an asymptotic number of time-steps.

In the next section, we provide a solution to the problem of finite-time unbiased function

calculation by using the results on finite-time function calculation described in the previous

chapter. In particular, we show that in strongly connected networks and with almost any

choice of real-valued weight matrix W (subject to the constraint that wij = 0 if xj /∈ Ni),

each node can obtain an unbiased estimate of any linear function of x[0] after running the

linear iteration for a finite number of time-steps. Furthermore, if the second order statistics

of the noise are known, we show how each node can minimize the variance of its estimate

of the function (for a given choice of weight matrix W).

Remark 3.2 In this chapter, we will assume that the network topology is fixed, and that

the corresponding weight matrix W is also fixed and chosen a priori. As we will see in

the next section, given an appropriate weight matrix W, each node can obtain an unbiased

estimate of its desired linear function simply by knowing the first order statistics of the

noise (and not necessarily the second order statistics). If the second order statistics are also

known (perhaps only after running the linear iteration), we will show that each node can

refine its estimate of its linear function by taking an appropriate linear combination of the

values it sees over the course of the linear iteration. Note that this assumption of a fixed

and known topology is also made in much of the existing literature on distributed consensus

in the presence of noise (e.g., see [58, 64]). As described in Chapter 2.4, it is possible for

the nodes to calculate their observability matrices (and the gains Γi) in a distributed manner

when the network is noise-free, but the extension of such techniques to noisy networks is an
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open question and an avenue for future research. Along the same lines, one can investigate

the extension of our techniques to handle noisy function calculation in time-varying graphs.

As discussed in Chapter 1.3, one method to do this could be for nodes that become aware of

changes in graph topology to inform the rest of the network, similar to what is proposed in

[9]. Another option would be to treat dropped or added links as faults in the network, and

utilize the techniques for fault-tolerant function calculation proposed in the next chapter.

3.3 Unbiased Minimum-Variance Estimation

We start by showing that each node can obtain an unbiased estimate of its desired linear

function in a finite number of time-steps, and then describe how to minimize the variance

of these estimates.

3.3.1 Unbiased Estimation

Consider the noisy system model given by (3.2). The output seen by node xi over Li + 1

time-steps is given by





yi[0]

yi[1]

yi[2]
...

yi[Li]





︸ ︷︷ ︸
yi[0:Li]

=





Ci

CiW

CiW
2

...

CiW
Li





︸ ︷︷ ︸
Oi,Li

x[0] +





Di 0 · · · 0

CiB Di · · · 0

CiWB CiB · · · 0
...

...
. . .

...

CiW
Li−1B CiW

Li−2B · · · Di





︸ ︷︷ ︸
Mi,Li





n[0]

n[1]
...

n[Li]





︸ ︷︷ ︸
n[0:Li]

. (3.3)

We will assume here that the noise is zero mean (i.e., E[n[k]] = 0 for all k); this assumption

can be easily relaxed, but we adopt it for simplicity. Suppose each node xi wants to calculate

an unbiased estimate of the function c′ix[0], for some vector c′i. We will find a gain Γi and

the smallest integer Li for each node xi so that the quantity Γiyi[0 : Li] is an unbiased

estimate of c′ix[0]. To this end, we use (3.3) to examine the estimation error

ǫi ≡ Γiyi[0 : Li] − c′ix[0]

=
(
ΓiOi,Li

− c′i
)
x[0] + ΓiMi,Li

n[0 : Li] . (3.4)

The estimate Γiyi[0 : Li] will be unbiased (i.e., E[ǫi] = 0) for any x[0] if and only if matrix

Γi satisfies

ΓiOi,Li
= c′i . (3.5)

In other words, the vector c′i must be in the row-space of the matrix Oi,Li
. Following the

notation in Theorem 2.1, let Si denote the set of all nodes that have a path to node xi in

the network. As long as all nonzero entries of c′i are in columns corresponding to nodes
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in Si, Theorem 2.1 indicates that for almost any3 real-valued choice of weight matrix W,

c′i will be in the row space of Oi,Li
, for some 0 ≤ Li < Di ≤ |Si| − degi (where Di is the

size of the largest tree in an optimal spanning forest of the network). Assuming that W is

chosen appropriately, one can find the smallest Li for which the vector c′i is in the row-space

of the matrix Oi,Li
, and this will also be the smallest number of time-steps required for

unbiased estimation by node xi (for that choice of W). The above discussion, along with

Theorem 2.1, immediately leads to the following theorem.

Theorem 3.1 Let G denote the graph of the network. Define the set

Si = {xj | There exists a path from xj to xi in G} ∪ {xi} .

Consider a subgraph H of G that is a Si-spanning forest rooted at {xi}∪Ni, with the property

that the size of the largest tree in H is minimal over all possible Si-spanning forests rooted at

{xi} ∪Ni. Let Di denote the size of the largest tree of H. Then, for almost any real-valued

choice of weight matrix W, node xi can obtain an unbiased estimate of any linear function

of the values {xj [0] | xj ∈ Si} after running the linear iteration (3.2) for Li +1 time-steps,

for some 0 ≤ Li < Di.

Remark 3.3 Note that since we are only interested in calculating a linear function of the

initial values and not necessarily the initial values themselves, it may be the case that the

observability matrix for node xi contains the vector c′ before it becomes full column rank,

in which case node xi would be able to calculate c′x[0] in less than Di time-steps.

Note that for a given W, there may be multiple choices of Γi satisfying (3.5). This leads

us to ask the question: If the second order statistics of the noise are also known (perhaps

a posteriori), can one obtain a better estimate of the linear function by choosing the gain

Γi appropriately? We will address this question in the following section.

3.3.2 Minimizing the Variance of the Estimate

In order to minimize the mean square error of each node’s estimate of its linear function,

suppose that the covariance of the noise is known (or obtained over the course of the linear

iteration), and given by E[n[k]n′[j]] = Qkj, for some positive semi-definite matrix Qkj.

Note that we are not assuming any constraints on the second order statistics (e.g., the noise

does not have to be stationary, and can be colored). Examining the estimation error given

by (3.4), we note that after satisfying the unbiased condition (3.5), the expression for the

3In this context, the phrase “almost any” indicates that the set of weights for which the property does
not hold has Lebesgue measure zero. In other words, if the weights are chosen independently from some
uniform distribution on the field of real numbers, the property will hold with probability 1.
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variance of the error is given by

σi ≡ E
[
ǫiǫ

′
i

]

= ΓiMi,Li
E
[
n[0 : Li]n[0 : Li]

′
]
M′

i,Li
Γ′

i

= ΓiMi,Li





Q00 Q01 · · · Q0Li

Q10 Q11 · · · Q1Li

...
...

. . .
...

QLi0 QLi1 · · · QLiLi





︸ ︷︷ ︸
ΠLi

M′
i,Li

Γ′
i . (3.6)

Our objective in this section will be to find the matrix Γi that minimizes the error variance in

(3.6) (for a given weight matrix W and delay Li), while maintaining unbiased estimation.

To achieve this, we will parameterize the gain Γi, and use the remaining freedom after

satisfying (3.5) to minimize the expression in (3.6).

Suppose Li is chosen as the smallest integer for which (3.5) has a solution (this will be the

smallest delay required for unbiased estimation by node xi with the given weight matrix W).

Let the singular value decomposition of the matrix Oi,Li
be given by Oi,Li

= Ui

[
Λi 0
0 0

]
V′

i,

where Ui and Vi are unitary matrices, and Λi is a diagonal matrix with positive entries.

Furthermore, rank(Λi) = rank(Oi,Li
) [27]. Substituting this into (3.5), we get

ΓiUi

[
Λi 0

0 0

]
= c′iVi . (3.7)

Clearly, since c′i is in the row-space of Oi,Li
, it must be the case that

c′iVi =
[
a′

i 0
]

(3.8)

for some vector a′
i with rank(Oi,Li

) entries. Define the matrix

Γ̂i ≡ ΓiUi , (3.9)

and partition it as Γ̂i =
[
Γ̂i1 Γ̂i2

]
, where Γ̂i1 has rank(Oi,Li

) columns. Equation (3.7) then

becomes
[
Γ̂i1 Γ̂i2

] [
Λi 0
0 0

]
=
[
a′

i 0
]
. From this equation, it is apparent that

Γ̂i1 = a′
iΛ

−1
i , (3.10)

and Γ̂i2 is completely unconstrained. In other words, Γ̂i2 represents the freedom in the gain

Γi after satisfying the unbiased constraint given by (3.5).

To minimize the variance of the estimation error, we substitute the above parameteri-
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zation of the gain Γi into (3.6) to obtain

σi =
[
Γ̂i1 Γ̂i2

]
U′

iMi,Li
ΠLi

M′
i,Li

Ui

[
Γ̂i1 Γ̂i2

]′
.

Define [
Φi

Ψi

]
≡ U′

iMi,Li
, (3.11)

where Φi has rank(Oi,Li
) rows. Using (3.10), the variance of the error becomes

σi =
(
a′

iΛ
−1
i Φi + Γ̂i2Ψi

)
ΠLi

(
a′

iΛ
−1
i Φi + Γ̂i2Ψi

)′

= a′
iΛ

−1
i ΦiΠLi

Φ′
iΛ

−1
i ai + a′

iΛ
−1
i ΦiΠLi

Ψ′
iΓ̂

′
i2

+ Γ̂i2ΨiΠLi
Φ′

iΛ
−1
i ai + Γ̂i2ΨiΠLi

Ψ′
iΓ̂

′
i2 .

To minimize the above expression, we take the gradient with respect to Γ̂i2 and set it equal

to zero, which produces

Γ̂i2 = −a′
iΛ

−1
i ΦiΠLi

Ψ′
i

(
ΨiΠLi

Ψ′
i

)†
,

where the notation (·)† indicates the pseudo-inverse of a matrix [67]. From (3.9) and (3.10),

we now obtain the optimal gain for node xi as

Γi = a′
iΛ

−1
i

[
Irank(Oi,Li

) −ΦiΠLi
Ψ′

i (ΨiΠLi
Ψ′

i)
†
]
U′

i . (3.12)

The variance of the optimal estimate can now be obtained from (3.6).

Remark 3.4 In the above derivation, we took Li to be the smallest delay for which unbiased

estimation is possible by node xi. If one increases Li past this minimum value, node xi

can potentially reduce the variance of its estimate (since it is obtaining more information

about the initial state). The variance of the estimate will be a nonincreasing function of

the delay Li, and thus the tradeoff between delay and variance can be taken as a design

parameter for a given graph. The gain Γi and the variance σi for any value of Li (above the

minimum required for unbiased estimation) can be obtained by following the above procedure.

A quantitative characterization of the relationship between delay and variance will be the

subject of future research.

Remark 3.5 It may be the case that some nodes can obtain an unbiased estimate of their

desired functions faster than others (i.e., there may exist nodes xi and xj such that Li < Lj).

In such cases, one can have all nodes run the linear iteration for max1≤j≤N Lj + 1 time-

steps, so that every node receives enough information to obtain an unbiased estimate. Each

node xi can either calculate the function c′ix[0] after the first Li + 1 time-steps of the linear
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iteration (i.e., with minimum delay), or it can use the outputs over all max1≤j≤N Lj + 1

time-steps (which could reduce the variance of its estimate).

3.4 Example

x1 x2

x3

x4x5

x6

Figure 3.1: Ring with 6 nodes. Each transmission is corrupted by zero-mean white noise
with unit variance.

Consider the ring network with N = 6 nodes in Figure 3.1. The transmissions between

nodes are assumed to be corrupted by zero-mean white noise with unit variance. The

objective in this system is for each node to calculate an unbiased estimate of the average

of the initial values (i.e., each node must calculate an unbiased estimate of 1
61

′x[0]). To

accomplish this, recall from Section 2.3.1 that the observability matrix for every node will

have rank N after ⌊N
2 ⌋ = 3 time-steps as long as all weights are chosen to be nonzero entries

of any field. In this case, we operate with the field of real numbers and choose all of the

weights to be “1”, which produces the weight matrix

W =





1 1 0 0 0 1

1 1 1 0 0 0

0 1 1 1 0 0

0 0 1 1 1 0

0 0 0 1 1 1

1 0 0 0 1 1





. (3.13)

One can verify that the above weight matrix allows every node to calculate the average.

For example, node x1 in Figure 3.1 receives values from nodes x2 and x6, and has access to

its own value, which means that

C1 =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1



 .

53



The observability matrix for node x1 is given by

O1,2 =




C1

C1W

C1W
2



 =





1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

1 1 0 0 0 1

1 1 1 0 0 0

1 0 0 0 1 1

3 2 1 0 1 2

2 3 2 1 0 1

2 1 0 1 2 3





,

which has rank 6. Since the row-space of this matrix contains the vector c′ = 1
61

′, node x1

can calculate an unbiased estimate of the average after three time-steps (i.e., after it sees

the outputs y1[0], y1[1] and y1[2]). The same analysis holds for all nodes in the network.

Our task is to choose the gain Γi for each node xi satisfying the unbiased condition

(3.5), while minimizing the variance of the estimation error. Recall that the transmissions

between nodes are assumed to be corrupted by zero-mean white noise with unit variance.

To determine the optimal gain matrix Γi for each node xi, we have to first construct the

noisy system model in (3.2). For example, consider node x1 in Figure 3.1. Since the values

received by node x1 from its neighbors are corrupted by noise, the output seen by node x1

at time-step k is given by

y1[k] = C1x[k] +




0 0

1 0

0 1





︸ ︷︷ ︸
D̂1

n1[k] ,

where n1[k] contains the additive noise on the links from node x2 and node x6 to node x1 at

time-step k. The outputs seen by all the other nodes can be obtained in a similar manner.

We can group the noise vectors seen by each node into the single noise vector

n[k] =
[
n′

1[k] n′
2[k] n′

3[k] n′
4[k] n′

5[k] n′
6[k]
]′

,

which has 12 entries, since there are six bidirectional links in the graph. Note that n[k]

is white noise with E [n[k]] = 0 and E [n[k]n′[k]] = I12 (by assumption in this example).

With this notation, the output for node x1 is given by

y1[k] = C1x[k] +
[
D̂1 0 0 0 0 0

]

︸ ︷︷ ︸
D1

n[k] .
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Since each node multiplies the values that it receives from its neighbors by “1” when it

updates its value, the state update equation is given by the first equation in (3.2), where

the matrix B is obtained from (3.1) as

B =





1 1 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 1 1





.

We now have to find the gain Γ1 for node x1 satisfying (3.5), while minimizing the

error variance in (3.6). To do this, we first find the singular value decomposition of O1,2 as

O1,2 = U1

[
Λ1
0

]
V′

1, where Λ1 = diag(7.403, 3.244, 1.414, 0.945, 0.689, 0.554). We omit the

values of U1 and V1 in the interest of space. From the above decomposition, we obtain the

vector a′
1 in (3.8) as

a′
1 =

1

6
1′V1 =

[
−0.371 0 −0.087 −0.146 0 0.0123

]
.

We also obtain the matrices Φi and Ψi from (3.11) (again, these values are omitted in

the interest of space). Substituting these values into the expression for the optimal gain

in (3.12), with Π2 ≡ E [n[0 : 2]n′[0 : 2]] = I36 (since the noise is white with unit variance),

we obtain Γ1 = 1
60

[
−2 −2 −2 −6 2 2 −2 5 5

]
. The mean-square error for the

estimate of the average obtained by node x1 is calculated by substituting the above gain

into (3.6), and is found to be σ1 = 0.0972. The above procedure can be repeated to obtain

the optimal gains for all nodes, and in this example the minimum mean-square error for all

nodes (with the weight matrix (3.13)) is the same (i.e., σi = 0.0972 for all i).

Once the optimal gains are calculated and provided to each node, suppose that the

initial values of the nodes are given by

x[0] =
[
0.8372 −5.3279 3.6267 4.4384 −2.7324 8.9546

]′
,

which has a mean of 1.6328. The nodes run the linear iteration given by (3.2) for three

time-steps with x[0] as given above, and driven by zero-mean white noise with unit variance.

An example of the outputs seen by node x1 during the three time-steps with a particular
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sampling of noise vectors n[0],n[1] and n[2] is given by

y1[0] =
[

0.8372 −5.7605 7.2890
]′

,

y1[1] =
[

2.3658 −1.0393 9.7817
]′

,

y1[2] =
[

11.1081 3.9822 24.3226
]′

.

Node x1 then obtains a minimum-variance unbiased estimate of the average as

Γ1

[
y1[0]

′ y1[1]
′ y1[2]

′
]′

= 1.9644.

The other nodes follow the same procedure, and the values calculated by nodes x2, x3, x4, x5

and x6 (in this sample run) are 1.8009, 1.4784, 1.78888, 1.8473 and 1.8395, respectively.

To verify empirically that the variance of the estimation error at each node xi is indeed

σi = 0.0972, we perform 1000 runs of the linear iteration; for each run, the initial value of

each node is chosen as an independent random variable uniformly distributed in the interval

[−5, 5], and the linear iteration is performed for 3 time-steps while being driven by white

noise with unit variance. Let xj[0] denote the vector of initial values during the j–th run,

and let yj
i [k] denote the values seen by node xi during the k–th time-step of the j–th run.

At the end of the j–th run, each node xi calculates an estimate of the average of the initial

conditions as Γi

[
yj

i [0]
′ yj

i [1]
′ yj

i [2]
′
]′

, where Γi is the optimal gain matrix calculated

above for each node xi. The estimation error during the j–th run for the i–th node is

given by ǫj
i ≡ Γi

[
yj

i [0]
′ yj

i [1]
′ yj

i [2]
′
]′
− 1

61
′xj [0]. After all 1000 runs are completed, we

calculate an empirical mean square error for each node xi as σ̂i = 1
1000

∑1000
j=1

(
ǫj
i

)2
, and

these mean square errors are found to be

[
σ̂1 σ̂2 σ̂3 σ̂4 σ̂5 σ̂6

]
=
[
0.0965 0.0907 0.0998 0.0901 0.1020 0.0986

]
.

As expected, the empirical mean square errors are found to be close to the theoretical value

of 0.0972, which was calculated above via equation (3.6).

Remark 3.6 It is worth considering what happens to the variance of the estimation error

if the nodes perform the linear iteration for more time-steps than necessary. As noted in

Remark 3.4, the variance will be a nonincreasing function of the delay Li. In the above

example, we noted that with the weight matrix W given in (3.13), the nodes had to run the

linear iteration for at least Li + 1 = 3 time-steps in order to obtain unbiased estimation,

and the corresponding minimum mean square error was σi = 0.0972 for every i. Now

suppose that we allow the nodes to run the linear iteration for 4 time-steps instead of 3

(i.e., we take Li = 3 for each node xi). Repeating the procedure in Section 3.3.2, we find

that the minimum mean square error drops to σi = 0.0478 for each node xi. In other words,
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allowing the nodes to run the linear iteration for one more time-step provides them with

enough information to reduce the variance of their estimation error from 0.0972 to 0.0478.

By repeating this analysis for values of Li between 2 and 10, we obtain the graph shown in

Figure 3.2. This graph shows that, for the weight matrix W in (3.13), the minimum mean

square error asymptotically approaches a value of 0.0415 as the delay Li increases (and in

fact, after Li = 5, there is very little reduction in the variance of the error). A quantitative

relationship between the delay Li and the variance σi will be left to future research.
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Figure 3.2: Variance of estimation error (σi) versus the delay Li. Note that the delay Li is
taken to be the same for every node xi, and this causes the variance of the estimation error
for each node xi to also be the same (for this example).

3.5 Summary

We studied the problem of distributively calculating linear functions in networks operat-

ing in the presence of noise. In particular, we analyzed a linear iterative strategy where

each node updates its value as a linear combination of its own value and the noisy trans-

missions of its neighbors. In the study of traditional linear iterative schemes that rely on

asymptotic convergence, it has been shown that the presence of noise can drive the node

values arbitrarily far away from the desired function. To solve this problem, we utilized our

framework on finite-time function calculation via linear iterations. Specifically, for a given

set of update weights, we showed that it is possible to calculate a set of gains for each node

that allows it to obtain a minimum-variance unbiased estimate of the function after running

the linear iteration for a finite number of time-steps with almost any choice of real-valued

weight matrix.
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CHAPTER 4

DISTRIBUTED FUNCTION

CALCULATION IN THE PRESENCE

OF MALICIOUS AGENTS

4.1 Introduction

In Chapter 2, we showed that in connected networks with time-invariant topologies, the

nodes can calculate any desired function of the initial values with high probability after

running a linear iteration with random weights from a field of sufficiently large size. Fur-

thermore, we showed that only a finite number of time-steps (upper bounded by the size of

the network) are required in order to achieve this. In this chapter, we extend those results

to address the problem of function calculation in the presence of faulty or malicious nodes.

Specifically, we allow for the possibility that some nodes in the network update their values

at each time-step in an arbitrary manner, instead of following the predefined strategy of

using a weighted linear combination of their neighbors’ (and own) values. Such arbitrary

updates can occur, for example, if some nodes in the network are compromised by a mali-

cious attacker whose objective is to disrupt the operation of the network [11], or they might

be the result of hardware malfunctions which cause the nodes to incorrectly calculate their

update value [68] (note that the former case is more challenging to handle than the latter

case). Due to the increasingly prevalent use of sensor networks and multi-agent systems in

life- and mission-critical applications [1, 69, 70], it is imperative to analyze any proposed

network protocols to determine their limitations with regard to nodes that behave in such

erroneous or unexpected ways. The robustness of various existing information dissemina-

tion schemes to this type of faulty behavior has been investigated in the literature (e.g.,

see [10]); however, a similar analysis of the susceptibility of linear iterative strategies to

malicious or incorrect behavior by a subset of nodes has received scant attention, and this

is the contribution of this chapter. Specifically, we ask (and answer) the following ques-

tions. With the only constraint being that malicious nodes cannot send different values to

different neighbors (such as in a wireless network), how many nodes have to be malicious in

order to disrupt the linear iterative strategy? How should these malicious nodes be chosen

in the network, and how should they update their values at each time-step in order to pre-

vent other nodes from calculating certain functions? Is it possible to defend linear iterative

strategies against such malicious behavior? If so, what is an appropriate decoding strategy

for the nodes to follow?
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We answer the above questions by showing that the graph connectivity is the deter-

mining factor for the ability of linear iterative strategies to tolerate malicious (or faulty)

agents. Specifically, if a given node xi has 2f or fewer vertex-disjoint paths from some other

node xj in the network, then we show that it is possible for only f nodes to maliciously

update their values in a way such that xi cannot obtain sufficient information to calcu-

late any function that involves node xj ’s value, regardless of the number of time-steps for

which the linear iteration is run. Our analysis is constructive, in that it provides a specific

choice of malicious nodes, along with a strategy for the malicious nodes to follow; as we will

show, the linear iterative protocol will require the malicious nodes to update their values

in certain specific and clever ways in order to disrupt the network. This is in contrast to

other information distribution strategies (such as flooding) where the malicious nodes have

a clear-cut and simple method to prevent certain nodes from calculating functions or from

obtaining certain information about the values of other nodes [10, 11, 71].

Conversely, we also show that if a given node has at least 2f +1 node-disjoint paths from

any other node in the network, it can work around up to f misbehaving nodes to correctly

calculate any arbitrary function of the initial node values. Furthermore, we show that this

can be achieved after running the linear iteration with almost any set of real-valued weights

for a finite number of time-steps (upper bounded by the number of nodes in the network).

To derive our results, we build upon the function calculation protocol from Chapter 2,

and exploit concepts from classical linear system theory (such as strong observability and

invariant zeros of linear systems) to overcome malicious or faulty nodes. Once again, our

analysis provides a specific decoding strategy for the nodes to follow in order to overcome

malicious behavior. Together, these results serve to narrow the gap between linear iterative

schemes and existing fault-tolerant consensus protocols in the literature (such as those

described in [11]), and show (perhaps surprisingly) that simple linear-iterative schemes are

as powerful as any other protocol in terms of the number of malicious nodes they can

handle under the wireless broadcast model (i.e., they impose the same constraints on the

underlying network topology).

Remark 4.1 The concept of strong observability of linear systems (see Section 1.5) will

play a key role in our derivations. As mentioned in Section 1.5, Theorem 1.3 provides a

convenient test for strong observability in terms of the invariant zeros of linear systems

over the field of complex numbers, but this test does not transfer to finite fields (as shown

by the counterexample in that chapter). While we were able to derive direct proofs of the

properties of structural observability and structural invertibility over finite fields in the Ap-

pendix, we do not currently have a similar proof for structural strong observability. For this

reason, our analysis in this chapter will focus on linear iterative strategies with real-valued

transmissions and updates (over the field of complex numbers), and this will allow us to

leverage Theorem 1.3 to derive strategies that are robust to malicious nodes. An extension
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of these results (with an accompanying proof of structural strong observability over finite

fields) remains an avenue for future research.

The rest of the chapter is organized as follows. In Section 4.2, we briefly describe existing

work that deals with the robustness of information dissemination strategies (including linear

iterative strategies) to faulty behavior by certain nodes. In Section 4.3, we formulate the

fault model and introduce the main results of the chapter. In Section 4.4, we show how

to choose a set of malicious nodes and provide a strategy for them to follow in order to

prevent other nodes in the network from calculating their desired functions. In Section 4.5,

we show how to defend the linear iterative strategy against a fixed number of malicious nodes

(provided that the connectivity of the network satisfies certain conditions). We conclude

the chapter in Section 4.6.

4.2 Previous Results on Fault-Tolerant Function

Calculation

The problem of transmitting information over networks (and specifically, reaching consen-

sus) in the presence of faulty or malicious nodes has been studied thoroughly over the past

several decades (e.g., see [10, 11] and the references therein). It is known in the literature

that if there are only 2f independent paths between two nodes in a network, then f mali-

cious nodes (with the capability to act in an arbitrary and coordinated manner) can prevent

at least one of the nodes from receiving any information about the other (regardless of the

protocol). The intuition behind this requirement is simple: If there are only 2f independent

paths between the two nodes, then a set of malicious nodes on f of the paths could collude

to pretend that the transmitted value was something other than the true value, and the

receiving node would not know whether to believe the f malicious nodes, or the f nodes

transmitting the true value on the other f independent paths [10, 11, 71].

The computer science community in particular has extensively investigated scenarios

where malicious nodes are allowed to behave in a completely arbitrary manner, and have

the ability to send different values to different neighbors; such behavior is referred to as

Byzantine. In such cases, there are various algorithms to reach consensus in the presence of

f Byzantine nodes provided that (i) the number of nodes in the network is at least 3f + 1

and (2) the connectivity of the network is at least 2f + 1 [11, 72, 73]. The requirement

that fewer than one-third of the nodes be Byzantine is due to the fact that Byzantine nodes

are allowed to send different (and conflicting) messages to their neighbors: thus, in order

for the non-Byzantine nodes to have a consistent representation of the values transmitted

in the network, each of them needs to be reassured by a set of at least f + 1 other nodes

about the values that were transmitted by the Byzantine nodes. The requirement that

the connectivity of the network be at least 2f + 1 is in order to allow nodes to securely
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communicate their values to each other. Specifically, if node xi wants to send a message to

node xj, it can simply send this message along 2f +1 different paths, and xj would take the

value that appears on at least f+1 of the paths to be the true value. Note that this condition

is not sufficient to reach consensus on its own when Byzantine nodes are allowed to send

differing values to different nodes, since a non-Byzantine node still would not be able to

tell what information was communicated to the other nodes in the network. Under both of

these conditions, one method to solve the problem is to use a flooding protocol, where every

node in the network simply forwards any value that it receives from a neighbor to all of its

other neighbors, annotated with the path that the message followed through the network.

With such a protocol, all of the non-Byzantine nodes in the network can parse the messages

that they receive in order to come to an agreement about the values that were transmitted

[11]. Along the same lines, researchers have also developed algorithms to reliably broadcast

values in radio networks (where each transmission by a node is heard by all of its neighbors)

that contain malicious nodes. For example, the authors of [31, 32] characterized bounds on

the maximum number of nodes that can be malicious in the neighborhood of any given node

(in grid networks) before reliable broadcast becomes impossible, and provided protocols to

achieve these bounds.

However, as mentioned in the previous section, the vulnerability of linear iterative func-

tion calculation schemes to malicious behavior has not received much attention in the

literature. For example, what happens if some nodes update their values to be something

other than the predefined weighted combination of their neighbors’ and own values? In [24],

it was shown that if a node (called a leader) in the network does not update its value at

each time-step (i.e., it maintains a constant value), then a particular class of linear iterative

strategies (where each node updates its value to be a convex combination of its neighbor-

hood values) will cause all other nodes to asymptotically converge to the value of the leader

(i.e., they behave as followers). While this may be acceptable behavior when the network

has a legitimate leader, it also seems to indicate that a simple asymptotic consensus scheme

can be easily disrupted by just a single malicious node. A similar analysis was done in

[74], where it was argued that since the asymptotic consensus scheme can be disrupted by

a single node that maintains a constant value, it can also be disrupted by a single node

that updates its values arbitrarily (since maintaining a constant value is a special case of

arbitrary updates). Both of these works only considered a straightforward application of

the linear iteration for asymptotic consensus (whereby each node simply updates its value

as a weighted linear combination of its own current value and those of its neighbors, ad

infinitum), without making more explicit use of the information available to the nodes via

the iteration.

The problem was revisited by Pasqualetti et al. [75] for the specific case where all nodes

have to reach agreement (not necessarily on any specific function of the initial values), and

where the malicious nodes do not behave in a completely arbitrary manner (specifically,

61



the additive errors introduced by the malicious nodes in that setting are not allowed to

asymptotically decay faster than a certain rate). Under these special conditions, Pasqualetti

et al. showed that if every node in the system uses the information it receives from the

linear iteration to try and estimate the malicious updates injected into the network (via

an unknown input observer), then a graph connectivity of 2f is sufficient to detect and

isolate up to 2f − 1 malicious nodes, and have the other nodes reach agreement. In other

words, Pasqualetti et al. showed that at least 2f nodes would have to be malicious (if

they acted in a constrained manner) in a graph with connectivity 2f in order to prevent

the other nodes from reaching agreement. This result shows that linear iterative strategies

actually have some degree of robustness against malicious nodes if one uses the information

available to each node appropriately. It is also worth noting that although this result seems

to contradict the intuition that only f malicious nodes should be required to disrupt a

network with connectivity 2f , this discrepancy arises due to the fact that the malicious

nodes are assumed to act in a restricted manner in this analysis.

Based on the above discussion, the fundamental question that we examine in this chapter

is the following: How should f malicious nodes behave in a network of 2f connectivity in

order to disrupt the linear iterative strategy? Note that this question is easy to answer

for certain other protocols. For example, suppose that the f malicious nodes are chosen

to be one-half of a vertex cut of size 2f between nodes xj and xi. Then in the flooding

protocol described above, the malicious nodes can prevent node xi from discovering node

xj’s true value by simply changing xj’s value in any message that they pass through to

node xi (this is easy to achieve, since the flooding protocol simply requires each node to

forward any message that it receives). Node xi would then receive f messages indicating

that node xj has a certain value, and f messages indicating that node xj has a different

value, and would therefore not know which set to believe. However, this strategy will not

work when the nodes in the network follow a linear iterative protocol because in this case,

the messages that the malicious nodes receive and transmit are not simply the explicit value

of node xj, but are instead messages containing linear combinations of node xj’s value and

the values of many other nodes in the network. Furthermore, the value of node xj will

pass through the malicious nodes multiple times in many different linear combinations due

to cycles in the network and the memory inherent in the linear iterative strategy. It will

become apparent from our development that the mechanics of the linear iterative strategy

will force the malicious nodes to update their values in a clever (and nontrivial) manner in

order to avoid detection and prevent function calculation in the network. Furthermore, our

result applies regardless of how each node analyzes the information that it receives from

the linear iteration, of the choice of weights for the linear iteration, and of the number of

time-steps for which the iteration is run. In other words, our results apply to any linear

iterative strategy with constant weights.1 As we will show, our strategy for the malicious

1A similar analysis can be performed for linear iterative strategies with time-varying weights, but we will
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nodes does not require them to send different information to different neighbors in order to

disrupt the network, and can therefore be applied in networks with the wireless broadcast

model (where transmissions by each node are heard by all of its neighbors).

Despite the above (negative) result, we also show that the linear iterative strategy is

actually robust to arbitrary malicious behavior on the part of a fixed number of nodes

(under the wireless broadcast model) if the connectivity of the network is sufficiently high.

Specifically, we show that if the network contains at least 2f + 1 paths from any node to a

given node xi, then f malicious nodes cannot prevent xi from calculating any function of the

initial values when the linear iterative strategy is used, even if they update their values in

a completely arbitrary and coordinated manner. Since any distributed function calculation

strategy requires a connectivity of at least 2f + 1 in order to tolerate up to f malicious

nodes (as described above and in [71]), our results show that linear iterative strategies are

as powerful as any other strategy for overcoming malicious behavior, under the condition

that the malicious nodes cannot send conflicting values to different neighbors.2

4.3 Modeling Malicious Behavior and Main Results

Suppose the objective in the system is for node xi to calculate gi(x1[0], x2[0], . . . , xN [0]), for

some function gi : R
N → R

ri (note that different nodes can calculate different functions).

When there are no malicious nodes in the network, we saw in Chapter 2 that this can

be accomplished by having the nodes run the linear iteration x[k + 1] = Wx[k] with

almost any real-valued weight matrix W (conforming to the network topology) for a finite

number of time-steps. Suppose, however, that instead of simply updating their values as a

predetermined linear combination of the values in their neighborhood, some nodes update

their values incorrectly; for example, node xl updates its value at each time-step as

xl[k + 1] = wllxl[k] +
∑

xj∈Nl

wljxj[k] + ul[k] , (4.1)

where ul[k] is the additive error at time-step k.

Definition 4.1 Suppose all nodes run the linear iteration for T time-steps in order to

perform function calculation. Node xl is said to be malicious (or faulty) if ul[k] is nonzero

for at least one time-step k, 0 ≤ k ≤ T − 1.

Remark 4.2 Note that the fault model considered here is extremely general, and allows

node xl to update its value in a completely arbitrary manner (via appropriate choices of

the error ul[k] at each time-step). As such, this fault model is capable of encapsulating a

not treat this topic here in the interest of clarity.
2Note that dealing with f Byzantine nodes that can send different values to different neighbors would

require the network to have at least 3f + 1 nodes, which is not a constraint that we require in our setting.
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wide variety of faults, with the only restriction being that each malicious node sends the

same value to all of its neighbors. For example, suppose a node xl in the network exhibits

a stopping failure, whereby it stops transmitting information (so that the neighbors of node

xl simply receive the value zero from node xl at each time-step). This stopping failure can

be captured by our fault model by selecting the error ul[k] at each time-step to set node xl’s

state xl[k + 1] to zero. Another example of a fault is when the link from node xj to node

xl drops out at time-step k. One can capture these errors in our fault model by simply

selecting ul[k] to cancel out the term wljxj [k] in the update equation for node xl. Note

that we will have to assume an upper bound on the amount of time required to transmit

messages in order to deal with these cases, since otherwise, the receiving node would not

know whether the sending node/link has failed, or if the message is simply delayed [11].

Also note that if these errors are not accidental, but intentional, the corresponding node

will be called malicious. More generally, one could have multiple faulty and/or malicious

nodes (the latter could be coordinating their actions to disrupt the network). In the rest of

the chapter, we will be using the terms faulty and malicious interchangeably. We will also

assume that malicious nodes are omniscient, and know the network topology along with the

weights that are being used by the nodes in the network. They are also allowed to know

all of the initial values in the network (they will not require these initial values in order to

disrupt the network, however, as we will show in the next section).

Let F = {xi1 , xi2 , . . . , xif } denote the set of nodes that are malicious during a run of

the linear iteration. Combining (4.1) with (1.1), the linear iteration can then be modeled

as

x[k + 1] = Wx[k] +
[
ei1,N ei2,N · · · eif ,N

]

︸ ︷︷ ︸
BF





ui1 [k]

ui2 [k]
...

uif [k]





︸ ︷︷ ︸
uF [k]

yi[k] = Cix[k], 1 ≤ i ≤ N . (4.2)

Recall that el,N denotes a vector of length N with a single nonzero entry with value 1 in its

l–th position, and that the vector yi[k] denotes the set of outputs (or node values) seen by

node xi during time-step k of the linear iteration (the matrix Ci is a (degi +1)×N matrix

with a single 1 in each row capturing the positions of the state-vector x[k] that are available

to node xi). The set of all values seen by node xi during the first L + 1 time-steps of the
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linear iteration (for any nonnegative integer L) is given by





yi[0]

yi[1]

yi[2]
...

yi[L]





︸ ︷︷ ︸
yi[0:L]

=





Ci

CiW

CiW
2

...

CiW
L





︸ ︷︷ ︸
Oi,L

x[0] +





0 0 · · · 0

CiBF 0 · · · 0

CiWBF CiBF · · · 0
...

...
. . .

...

CiW
L−1BF CiW

L−2BF · · · CiBF





︸ ︷︷ ︸
MF

i,L





uF [0]

uF [1]

uF [2]
...

uF [L − 1]





︸ ︷︷ ︸
uF [0:L−1]

.

(4.3)

The matrices Oi,L and MF
i,L will characterize the ability of node xi to calculate the required

function of the initial values; we will call MF
i,L the invertibility matrix3 for the triplet

(W,BF ,Ci); note that a matrix of this form also appeared in Equation (3.3) in Chapter 3

due to noise in the network. While the characteristics of this matrix were not important

in that context, it will turn out to be crucial when analyzing the susceptibility of linear

iterative strategies to malicious behavior (as we will see in this chapter and the next). In our

development, we will use the fact that matrices Oi,L and MF
i,L can be expressed recursively

as

Oi,L =

[
Ci

Oi,L−1W

]

, MF
i,L =

[
0 0

Oi,L−1BF MF
i,L−1

]

, (4.4)

where Oi,0 = Ci and MF
i,0 is the empty matrix (with zero columns). We will also call upon

the following simple lemma.

Lemma 4.1 Let F1 and F2 denote two subsets of X , and define F = F1 ∪ F2. Then, the

column space of MF
i,L is the same as the column space of

[
MF1

i,L MF2
i,L

]
for any nonnegative

integer L.

Proof: Let

F1 = {xi1 , xi2 , . . . , xi|F1|
}, F2 = {xj1, xj2 , . . . , xj|F2|

}, F = {xl1 , xl2 , . . . , xl|F|
},

so that

BF1 =
[
ei1,N · · · ei|F1|

,N

]
, BF2 =

[
ej1,N · · · ej|F2|

,N

]
,BF =

[
el1,N · · · el|F|,N

]
.

3This terminology is due to the fact that matrices of the form MF
i,L arise in the study of dynamic system

inversion, where the objective is to recover a set of unknown inputs from the output of a linear system [43];
see the discussion in Section 1.5. We will discuss the topic of dynamic system inversion in more detail in
Chapter 5.
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Since F = F1 ∪ F2, we have range (Oi,LBF ) = range
(
Oi,L

[
BF1 BF2

])
for any L ≥ 0

(this is easily seen from the structure of BF1 ,BF2 and BF ), and from this, we obtain

range
(
MF

i,L

)
= range









0 · · · 0

CiBF · · · 0

CiWBF · · · 0
...

. . .
...

CiW
L−1BF · · · CiBF









= range









0 · · · 0

Ci

[
BF1 BF2

]
· · · 0

CiW
[
BF1 BF2

]
· · · 0

...
. . .

...

CiW
L−1

[
BF1 BF2

]
· · · Ci

[
BF1 BF2

]









= range
([

MF1
i,L MF2

i,L

])
.

Our goal in this chapter will be to study the robustness of linear-iterative strategies

to malicious or faulty behavior by a subset of nodes in the network. Specifically, over the

remainder of the chapter, we demonstrate the following key results.

Theorem 4.1 Given a fixed network described by a graph G = {X , E}, let κij denote the

size of the smallest ij-cut between vertices xi and xj. If κij ≤ 2f for some positive integer

f , then there exists a set F = {xi1 , xi2 , . . . , xif } of f malicious nodes along with a sequence

of malicious updates ui1 [k], ui2 [k], . . . , uif [k], k = 0, 1, . . ., for each malicious node such that

the values seen by node xi during the linear iteration do not provide it with any information

about the initial value of node xj.

Theorem 4.2 Given a fixed network described by a graph G = {X , E}, let f denote the

maximum number of malicious or faulty nodes that are to be tolerated in the network, and

let κij denote the size of the smallest ij-cut between any two vertices xi and xj. Define

T = {xi | κij ≥ 2f + 1 for all xj ∈ X} .

Then, with almost any choice of real-valued weight matrix (with wij = 0 if xj /∈ Ni), every

node in T can uniquely determine all of the initial values in the network after running

the linear iteration for at most N time-steps, regardless of the updates applied by up to f

malicious or faulty nodes.

Together, these theorems can be encapsulated into the following result.
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Theorem 4.3 Given a fixed network described by a graph G = {X , E}, let κij denote the

size of the smallest ij-cut between any two vertices xi and xj. Then, node xi can uniquely

determine all initial values in the network via a linear iterative strategy, regardless of the

update strategies used by up to f malicious nodes, if and only if xi has 2f + 1 vertex-

disjoint paths from every other node in the network. If this condition is satisfied, node xi

can accomplish this by running the linear iteration with almost any choice of real-valued

weight matrix (with wij = 0 if xj /∈ Ni) for at most N time-steps.

Note that when we talk about tolerating a set F of faulty or malicious nodes, our focus

is on eliminating the effect of the term uF [k] in Equation (4.2). However, a set of malicious

nodes can obviously try to influence the result of a computation by changing their own

initial values. Of course, if all initial values are equally valid, then it will be impossible

for any protocol to detect this type of malicious behavior, since any initial value that a

malicious node chooses for itself is a legitimate value that could also have been chosen by

a node that is functioning correctly. On the other hand, if there is a statistical distribution

on the initial values, techniques that exploit these relationships among the initial values can

potentially be used to identify outliers due to malicious nodes and eliminate their influence

on the system [76, 77, 78]. Similarly, if the nodes in the network are assumed to be rational

and are trying to maximize some objective function that depends on the initial values in

the network, one can potentially design a mechanism for the network that incentivizes all

nodes to report their values truthfully [79]. We will not discuss the issue of verifying initial

values further in our work because of its philosophically different nature, and because of

the fact that our problem formulation remains valid in cases where malicious nodes do not

contribute initial values (i.e., they function as routers – the functions calculated in the

network do not depend on the initial values of these nodes). Instead, our goal is to avoid

the more pernicious case where malicious nodes spread confusion about the initial values of

non-malicious nodes; the following scenarios illustrate cases where this issue is of primary

importance.

Scenario 1: Distributed Voting. Consider a distributed system consisting of agents that

are trying to vote on a course of action. In our framework, the vote of each agent can be

modeled by setting that agent’s initial value to be 1 for ‘yes’ and 0 for ‘no’. The agents

wish to reach consensus on the majority vote in a distributed manner (i.e., by exchanging

their values via other agents in the network). In this scenario, both 0 and 1 are equally

valid votes for every agent, and so it is not important whether malicious agents change their

own initial value (i.e., their vote). What is important, however, is to ensure that votes are

not changed as they are passed through other agents in the network; in other words, the

malicious nodes should not be able to affect the result of the majority vote other than by

choosing their own vote for the course of action.
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Scenario 2: Distributed Auction. Consider a distributed system consisting of agents that

are participating in an auction. In our framework, the initial value of each agent represents

its bid for the object that is being auctioned. The agents wish to pass their bids through

the network (via the other agents) to the auctioneer. There is a large amount of work

in the economics literature dealing with formulating incentives for the individual agents

that will cause them to truthfully report their bid (i.e., their initial value). For example,

one prominent mechanism is the so-called Vickrey second-price auction, whereby the object

goes to the agent who makes the highest bid, but that agent only has to pay the value of

the second-highest bid. One can show that, under this mechanism, no agent can gain by

misreporting their bid [80], and thus there is no need to consider the problem of malicious

nodes changing their own initial value (or bid). However, in a distributed setting, there is

still the problem of malicious agents colluding and changing the values of bids that they

are passing to the auctioneer. In such cases, one requires a method to disseminate the bids

correctly through the network in order to facilitate the Vickrey auction.

The model for malicious behavior that we have introduced in this section can readily

capture the malevolent behavior represented in the above scenarios. Theorems 4.1 and 4.2

thus demonstrate that linear iterative strategies can be used to disseminate information in

these (and other) scenarios, provided that the topology of the distributed system contains

sufficiently many node-disjoint paths between nodes in the system.

4.4 Attacking Linear Iterative Strategies with Malicious

Nodes

In this section, we derive a lower bound on the connectivity of any node xi in order for it

to calculate an arbitrary function of the node values in the presence of faulty or malicious

nodes via a linear iterative strategy (by the end of the section, we will have obtained the

proof of Theorem 4.1). We start by establishing a relationship between the column space

of the invertibility matrices and the column space of the observability matrix for certain

nodes in the network. We will use the following terminology in our discussion.

Definition 4.2 Let R = {xi1 , xi2 , . . . , xi|R|
} denote a set of nodes in the network, and let

xi be any node in the network. The columns of the observability matrix Oi,L corresponding

to nodes in R are given by Oi,L

[
ei1,N ei2,N · · · ei|R|,N

]
.

Consider node xi in the network G, and let node xj be any other node in the network that

is not a neighbor of node xi. Let F1 = {xl1 , xl2 , . . . , xl|F1|
} and F2 = {xh1, xh2 , . . . , xh|F2|

}

denote disjoint sets of vertices such that F1∪F2 forms an ij-cut of G. Let H denote the set

of all nodes that have a path to node xi in the graph induced by X \ (F1 ∪ F2) (including

node xi), and let H̄ = X \ (H ∪ F1 ∪ F2).
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Theorem 4.4 For any nonnegative integer L, the columns of the observability matrix Oi,L

corresponding to the nodes in set H̄ can be written as a linear combination of the columns

in the matrices MF1
i,L and MF2

i,L.

Proof: Let xH[k] denote the vector of values of nodes in set H, xF1 [k] denote the

vector of values of nodes in set F1, xF2 [k] denote the vector of values of nodes in set F2,

and xH̄[k] denote the vector of values of nodes in set H̄. Note that xi[k] is contained in

xH[k], xj[k] is contained in xH̄[k], and that the sets H,F1,F2, and H̄ are disjoint (they

actually form a partition of the set of nodes X ). Assume without loss of generality that the

vector x[k] in (4.2) is of the form

x[k] =
[
x′
H[k] x′

F1
[k] x′

F2
[k] x′

H̄
[k]
]′

(it can always be put into this form via an appropriate permutation of the node indices).

Then, since no node in set H has an incoming edge from any node in set H̄ (otherwise, there

would be a path from a node in H̄ to node xi), the weight matrix for the linear iteration

must necessarily have the form

W =





W11 W12 W13 0

W21 W22 W23 W24

W31 W32 W33 W34

W41 W42 W43 W44




. (4.5)

The Ci matrix in (4.2) for node xi must be of the form Ci =
[
Ci,1 Ci,2 Ci,3 0

]
, again be-

cause node xi has no neighbors in set H̄. Furthermore, from the definition of the matrix BF

in (4.2), note that this ordering of nodes implies that we can write BF1 =
[
0 I|F1| 0 0

]′
,

BF2 =
[
0 0 I|F2| 0

]′
.

Let n denote the number of nodes in set H̄ (i.e., xH̄[k] ∈ R
n). For any nonnegative

integer L, the set of columns of the observability matrix Oi,L corresponding to xH̄[k] is given

by Oi,L

[
0
0
0
In

]
. Using the recursive definition of Oi,L in (4.4), and the fact that Ci

[
0
0
0
In

]
= 0,

we obtain

Oi,L





0

0

0

In




=

[
Ci

Oi,L−1W

]




0

0

0

In




=

[
0

Oi,L−1

]
W





0

0

0

In




=

[
0

Oi,L−1

]




0

W24

W34

W44




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=

[
0

Oi,L−1

]

BF1W24 +

[
0

Oi,L−1

]

BF2W34 +

[
0

Oi,L−1

]




0

0

0

In




W44 .

Applying the above procedure recursively for the matrix
[

0
Oi,L−1

] [ 0
0
0
In

]
, we obtain

Oi,L





0

0

0

In




=

[
0

Oi,L−1

]
BF1W24 +

[
0

Oi,L−1

]
BF2W34 +

[
0

Oi,L−2

]
BF1W24W44

+

[
0

Oi,L−2

]

BF2W34W44 +

[
0

Oi,L−2

]




0

0

0

In




W2

44.

Continuing the above procedure recursively for matrices of the form
[

0
Oi,L−α

] [ 0
0
0
In

]
, 2 ≤

α ≤ L, we obtain (after some algebra)

Oi,L





0

0

0

In




=

[
0

Oi,L−1BF1

]

W24 +

[
0

Oi,L−2BF1

]

W24W44 +

[
0

Oi,L−3BF1

]

W24W
2
44 + · · ·

+

[
0

Oi,1BF1

]

W24W
L−2
44 +

[
0

Oi,0BF1

]

W24W
L−1
44

+

[
0

Oi,L−1BF2

]

W34 +

[
0

Oi,L−2BF2

]

W34W44 +

[
0

Oi,L−3BF2

]

W34W
2
44 + · · ·

+

[
0

Oi,1BF2

]

W34W
L−2
44 +

[
0

Oi,0BF2

]

W34W
L−1
44

= MF1
i,L





W24

W24W44

...

W24W
L−1
44




+ MF2

i,L





W34

W34W44

...

W34W
L−1
44




. (4.6)

In the last step above, we have used the recursive definition of the matrices MF1
i,L and MF2

i,L

from Equation (4.4). This concludes the proof of the theorem.
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Note that the above theorem applies to any decomposition of a vertex-cut into sets

F1 and F2 (including the case where F1 is the entire vertex cut and F2 = ∅, if desired).

By framing the theorem in this general manner, we will later have freedom to choose the

sets F1 and F2 as part of an appropriate vertex-cut in order to demonstrate how a set of

malicious nodes can disrupt the linear iterative strategy. Specifically, expression (4.6) will

allow us to show how a certain set of nodes F1 (or F2) can maliciously update their values

so that some node xi cannot obtain any information about the initial values of some other

nodes in the network. This is precisely the subject of the following lemma.

Lemma 4.2 If nodes in set F1 are malicious, it is possible for them to update their values

in such a way that the values seen by node xi (over any number of time-steps of the linear

iteration) are indistinguishable from the values seen by node xi when nodes in set F2 are

malicious. Furthermore, these indistinguishable faults make it impossible for node xi to

determine the initial values of nodes in the set H̄.

Proof: As in the proof of Theorem 4.4, let xH[k],xF1 [k], xF2 [k], and xH̄[k] denote the

vector of values of nodes in sets H, F1, F2, and H̄, respectively, and assume (without loss

of generality) that the vector x[k] in (4.2) is of the form

x[k] =
[
x′
H[k] x′

F1
[k] x′

F2
[k] x′

H̄
[k]
]′

.

Let n be the number of nodes in set H̄ and let a,b ∈ R
n be arbitrary vectors. We will

now show that the values seen by node xi when nodes in F1 are malicious and xH̄[0] = a

will be indistinguishable from the values seen by node xi when nodes in F2 are malicious

and xH̄[0] = b. This will imply that node xi cannot determine whether the initial values

of nodes in H̄ are given by vector a or vector b.

To this end, suppose the nodes in set F1 are malicious. From (4.3), the values seen by

node xi over L + 1 time-steps are given by

yi[0 : L] = Oi,Lx[0] + MF1
i,LuF1 [0 : L − 1].

From Theorem 4.4 (specifically, Equation (4.6)), this expression can be written as

yi[0 : L] = Oi,L





xH[0]

xF1 [0]

xF2 [0]

0




+




MF1

i,L





W24

W24W44

...

W24W
L−1
44




+ MF2

i,L





W34

W34W44

...

W34W
L−1
44








xH̄[0]

+ MF1
i,LuF1 [0 : L − 1]. (4.7)
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Suppose xH̄[0] = a, and that nodes in F1 update their values at each time-step k with the

error values uF1 [k] = W24W
k
44(b − a), producing the error vector

uF1 [0 : L − 1] =





W24

W24W44

...

W24W
L−1
44




(b − a) . (4.8)

Substituting this into the expression for yi[0 : L] (with xH̄[0] = a), the values seen by node

xi under this fault scenario are given by

yi[0 : L] = Oi,L





xH[0]

xF1 [0]

xF2 [0]

0




+ MF1

i,L





W24

W24W44

...

W24W
L−1
44




b + MF2

i,L





W34

W34W44

...

W34W
L−1
44




a . (4.9)

Now suppose that nodes in F2 are malicious (instead of nodes in F1). Again, from (4.3)

and Theorem 4.4, the values seen by node xi over L + 1 time-steps will be given by

yi[0 : L] = Oi,L





xH[0]

xF1 [0]

xF2 [0]

0




+




MF1

i,L





W24

W24W44

...

W24W
L−1
44




+ MF2

i,L





W34

W34W44

...

W34W
L−1
44








xH̄[0]

+ MF2
i,LuF2 [0 : L − 1]. (4.10)

If xH̄[0] = b, and nodes in F2 update their values at each time-step k with the error values

uF2 [k] = W34W
k
44(a − b), the error vector uF2 [0 : L − 1] will have the form

uF2 [0 : L − 1] =





W34

W34W44

...

W34W
L−1
44




(a − b) .

Substituting this into Equation (4.10) with xH̄[0] = b, one can verify that the set of values

seen by node xi under this fault scenario will be identical to the expression in (4.9), and

thus the values received by node xi when xH̄[0] = a and the nodes in F1 are malicious will

be indistinguishable from the values seen by node xi when xH̄[0] = b and the nodes in F2

are malicious. Since this holds for all nonnegative integers L, this fault scenario makes it

impossible for node xi (and in fact, any node in set H) to obtain the initial values of node

xj (or any other node in set H̄).
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Remark 4.3 Equation (4.8) provides the additive errors for nodes in set F1 to use in

updating their values in order to disrupt the linear iterative strategy; note that these nodes

do not actually need to know the initial values of the nodes in set H̄ (taken to be a in

the above exposition) in order to apply this strategy. If they simply choose any random

vector ā, and update their values at each time-step as uF1 [k] = W24W
k
44ā, then they are

effectively applying the update (4.8) with b = a + ā, without knowing the value of a. The

same reasoning holds if nodes in set F2 are malicious.

Remark 4.4 Note also that the above strategies for the malicious nodes apply regardless of

the choice of weight matrix. This means that the observability properties of the system are

irrelevant when considering the ability of malicious nodes to disrupt the network. Indeed,

if the system is unobservable from node xi, the malicious nodes will have to do less work

in order to disrupt the network since node xi will already be unable to determine the initial

values of certain other nodes in the network (even when there are no faults).

We are now ready to prove Theorem 4.1 (provided at the end of Section 4.3).

Proof: In Lemma 4.2, we saw that if the union of the disjoint sets of vertices

F1 = {xl1 , xl2 , . . . , xl|S1|
}, F2 = {xh1 , xh2, . . . , xh|S2|

}

forms an ij-cut, then node xi cannot distinguish a particular set of errors by nodes in F1

from another set of errors by nodes in F2. Furthermore, these errors make it impossible for

node xi to obtain any information about the initial value of node xj . Choose F1 and F2 such

that |F1| = ⌊
κij

2 ⌋ and |F2| = ⌈
κij

2 ⌉. Since κij ≤ 2f , we have ⌊
κij

2 ⌋ ≤ f and ⌈
κij

2 ⌉ ≤ f , and

so F1 and F2 are both legitimate sets of malicious nodes (if one is interested in tolerating

a maximum of f malicious nodes in the system). Thus, if κij ≤ 2f , it is possible for a

particular set of f malicious nodes to update their values in such a way that node xi cannot

obtain any information about node xj’s value.

Remark 4.5 Clearly, the above theorem can easily be modified to show that errors by a

set F1 of f + t malicious nodes would be indistinguishable from errors by a set F2 of f − t

malicious nodes, for any 0 ≤ t ≤ f . The reason for focusing on the case t = 0 is that we

are interested in dealing with a maximum number of malicious nodes in the network. In

other words, if we know that a malicious attacker can only target at most f nodes (e.g., due

to the costs incurred by attacking a node), then we can disregard all cases where more than

f nodes are potentially malicious. Thus, even though we can show that a set F1 of f − t

malicious nodes can masquerade as a set F2 of f + t malicious nodes, the latter case can be

discounted because of the fact that f + t nodes are not likely to be malicious, and so we can

potentially identify the set F1. On the other hand, when t = 0, F1 and F2 are equally valid

(and likely) sets of f malicious nodes, and thus we cannot discount one over the other.
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4.4.1 Example

x1

x2

x3

x4

x5

x6

x7

x8

Figure 4.1: Network considered in [75]. Node x6 is malicious, and will try to prevent node
x5 from calculating the average of the initial values.

Consider the network shown in Figure 4.1; this is the same network considered in [75].

The objective in this network is for all nodes to calculate the average of the initial values

via a linear iterative strategy.

Absence of Malicious Nodes

The weights for the linear iteration are taken to be wij = 1
3 if xj ∈ Ni ∪ {xi}, and 0

otherwise; these weights are the so-called Metropolis-Hastings weights for this network, and

as shown in [22, 64, 75], they allow the nodes to reach asymptotic consensus on the average

when there are no malicious nodes. We will now demonstrate an instance of finite-time

consensus using these weights, and then show how a single malicious node can disrupt the

linear iteration.

For brevity, consider node x5 in the network. At each time-step, node x5 has access to

its own value and the values of nodes x1 and x6; the matrix C5 (which encapsulates the

values that node x5 receives at each time-step) is thus given by

C5 =




1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0



 .

The first step is to find the smallest number of time-steps required by node x5 to calculate

the average. This is equivalent to finding the smallest nonnegative integer L5 such that the

row-space of the observability matrix O5,L5 contains the vector 1
8

[
1 1 · · · 1

]
. One can

verify that this condition is not satisfied for the matrices O5,0 = C5 and O5,1 =
[

C5
C5W

]
.
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However, with L5 = 2, the observability matrix for node x5 is given by

O5,2 =




C5

C5W

C5W
2



 =





1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0
1
3 0 0 1

3
1
3 0 0 0

1
3 0 0 0 1

3
1
3 0 0

0 1
3 0 0 0 1

3
1
3 0

2
9 0 1

9
2
9

2
9

1
9 0 1

9
2
9

1
9 0 1

9
2
9

2
9

1
9 0

1
9

2
9

1
9 0 0 2

9
2
9

1
9





,

and one can verify that the row-space of this matrix contains the vector 1
81

′. In particular,

we can find a matrix Γ5 solving Γ5O5,2 = 1
81

′ as

Γ5 =
1

8

[
−1 0 0 3 0 −3 0 0 9

]
.

This means that node x5 can calculate the average of all initial values after L5 + 1 = 3

iterations. A similar analysis is performed for each node in the network, and in this example,

it is found that every node in the network can calculate the average after three iterations.

Now suppose that each node xi is provided with the matrix Γi, and that the initial

values of the nodes are

x[0] =
[

3 −1 4 −4 7 11 −3 0
]′

.

The nodes run the linear iteration with the Metropolis-Hastings weights specified above, and

at each time-step k, node x5 receives the values y5[k] = C5x[k]. For this instance of initial

values, the values received by node x5 over the first three iterations are y5[0] =
[
3 7 11

]′
,

y5[1] =
[
2 7 2.33

]′
and y5[2] =

[
3 3.78 2.33

]′
. Node x5 can now calculate the average

as

Γ5




y5[0]

y5[1]

y5[2]



 = 2.125.

All of the other nodes calculate their averages in the same way, and thus the system reaches

consensus on the average after three iterations. One can also verify that after an infinite

number of iterations, the values of all the nodes converge to 2.125 (this is consistent with the

fact that the choice of weights for the linear iteration allows the nodes to reach asymptotic

consensus on the average).
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Disrupting Function Calculation with One Malicious Node

We will now investigate what happens when some node in the network does not follow the

linear iterative protocol. Consider node x5 in the network, and note that minj κ5j = 2; in

other words, there are some nodes that can be disconnected from node x5 by the removal

of only two nodes (e.g., by removing nodes x1 and x6, node x5 receives no information from

any of the other nodes). Suppose that node x6 is malicious in this network, and updates

its values at each time-step as

x6[k + 1] =
1

3
x2[k] +

1

3
x6[k] +

1

3
x7[k] + u6[k] , (4.11)

where u6[k] is the additive error at time-step k. It was shown in [75] that if u6[k] is constant

for all k, then node x5 can detect the fact that node x6 is faulty and remove it from the

network. However, according to our results in this chapter, if node x6 chooses its error terms

cleverly at each time-step, then it will forever evade identification by node x5 and prevent it

from calculating the average of all the values. We now provide the exact malicious update

u6[k] at each time-step k for node x6 to apply in order to disrupt the network in the above

manner.

Define the sets H = {x5}, F1 = {x6}, F2 = {x1} and H̄ = {x2, x3, x4, x7, x8} (recall

that the set F1 ∪ F2 acts as a vertex cut, disconnecting the node in H from the nodes in

H̄). Next, as specified in Theorem 4.4, reorder the nodes so that the nodes in H come first

in the ordering, followed by F1, F2 and H̄; in accordance with Equation (4.5), the weight

matrix W for this ordering has the form

W =





W11 W12 W13 0

W21 W22 W23 W24

W31 W32 W33 W34

W41 W42 W43 W44




=

1

3





1 1 1 0 0 0 0 0

0 1 0 1 0 0 1 0

1 0 1 0 0 1 0 0

0 1 1 1 0 0 0 0

0 0 0 1 1 0 1 0

0 0 0 0 1 1 0 1

0 0 0 0 1 0 1 1

1 0 0 0 0 1 0 1





.

Now, according to Lemma 4.2, if node x6 updates its values at each time-step with the

additive error u6[k] = W24W
k
44(b − xH̄[0]) (where xH̄[0] is the vector of initial values of

nodes in H̄ and b is any arbitrary vector), then node x5 will never be able to determine

whether the initial values of the nodes in H̄ are in fact xH̄[0] or b, and whether node x6 is

malicious or node x1 is malicious.
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For example, suppose again that the initial values of the nodes are

x[0] =
[

3 −1 4 −4 7 11 −3 0
]′

.

Since H̄ = {x2, x3, x4, x7, x8}, we have xH̄[0] =
[
−1 4 −4 −3 0

]′
. Node x6 would

like to pretend that the initial values of the nodes in H̄ are actually given by the vector

b =
[
5 −3 −2 −1 3

]′
. Thus, at each time-step, node x6 updates its value as

x6[k + 1] =
1

3
x2[k] +

1

3
x6[k] +

1

3
x7[k] + W24W

k
44(b− xH̄[0])

=
1

3
x2[k] +

1

3
x6[k] +

1

3
x7[k] +

1

3k+1

[
1 0 0 1 0

]





1 0 0 0 0

1 1 0 1 0

0 1 1 0 1

0 1 0 1 1

0 0 1 0 1





k 



6

−7

2

2

3




.

Since node x5 receives the values y5[k] =
[
x1[k] x5[k] x6[k]

]′
at each time-step k, the

explicit values seen by node x5 over the linear iteration are given by

y5[0] =




3

7

11



 , y5[1] =




2

7

5



 , y5[2] =




3

4.67

3.67



 , y5[3] =




2.67

3.78

3



 , · · · .

One can verify that these are exactly the same values seen by node x5 when the initial

values of nodes in H̄ are given by the vector b and node x1 is malicious, with additive

error u1[k] = W34W
k
44(xH̄[0] − b). In other words node x5 cannot distinguish the case

when node x6 is faulty from the case where node x1 is faulty (with different initial values

in the network). As discussed in Theorem 4.1, node x6 can continue to update its values

erroneously so that node x5 can never resolve this ambiguity, regardless of the number of

time-steps for which the linear iteration is run, and thus x5 cannot correctly calculate the

average of all the values in the network. It is of interest to note that this malicious behavior

by node x6 cannot be detected by the scheme in [75], where the asymptotic behavior of

the malicious updates is used to detect and isolate malicious nodes. In this example, the

additive error term u6[k] asymptotically decays to zero (and thus its asymptotic behavior

cannot be used to deduce that node x6 was malicious). Also note that despite the fact

that the malicious behavior by node x6 disappears asymptotically, its effect on the network

remains; in this example, if the nodes continue to run the linear iteration, their values will

all converge to the value 2.6875, which is different from the true average (2.1250) of the

initial values.
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4.5 Defending Linear Iterative Strategies Against Malicious

Behavior

In the last section, we showed that when κij ≤ 2f for some i and j, it is possible to find

two sets of vertices F1 and F2 (each with cardinality f or less) such that node xi cannot

distinguish the case when nodes in F1 are malicious from the case when nodes in F2 are

malicious. As a consequence, node xi could not determine the initial value of node xj,

and therefore could not calculate the desired function of the initial values. In this section,

we will show that if κij ≥ 2f + 1 for all j, it will be impossible for any set of f or fewer

malicious nodes to prevent node xi from calculating any function of the initial values in the

system in this way. We start our development with the following theorem, which provides

a procedure for node xi to calculate functions in the presence of malicious or faulty nodes.

After the proof of the theorem, we will state the assumptions that we are making about

the information that is available a priori to each node.

Theorem 4.5 Suppose that there exists an integer L and a weight matrix W such that,

for all possible sets J of 2f nodes, the matrices Oi,L and MJ
i,L for node xi satisfy

rank
([

Oi,L MJ
i,L

])
= N + rank

(
MJ

i,L

)
. (4.12)

Then, if the nodes run the linear iteration for L + 1 time-steps with the weight matrix W,

node xi can calculate any arbitrary function of the initial values x1[0], x2[0], . . . , xN [0], even

when up to f nodes are malicious.

Proof: Let W be a weight matrix that satisfies the conditions in the above theorem,

and let the nodes run the linear iteration for L + 1 time-steps. Suppose that the malicious

nodes during the linear iteration are a subset of the set F = {xj1, xj2 , . . . , xjf
}. From (4.3),

the values seen by node xi over L + 1 time-steps are given by

yi[0 : L] = Oi,Lx[0] + MF
i,LuF [0 : L − 1] . (4.13)

Let F1,F2, . . . ,F(N
f ) denote all possible sets of f nodes, and let MF1

i,L,MF2
i,L, . . . ,M

F(N
f )

i,L

denote the corresponding invertibility matrices. With these matrices in hand,4 suppose

node xi finds the first j ∈ {1, 2, . . . ,
(
N
f

)
} such that the vector yi[0 : L] is in the column

space of the matrices Oi,L and M
Fj

i,L. This means that node xi can find vectors x̄ and

uFj
[0 : L− 1] such that Oi,Lx̄+M

Fj

i,LuFj
[0 : L− 1] = yi[0 : L]. Equating this to (4.13) and

4Note from Equation (4.3) and Equation (4.4) that the columns of the invertibility matrix M
Fj

i,L are
simply a subset of the columns of Oi,0,Oi,1, . . . ,Oi,L−1. In other words, node xi can obtain the invertibility
matrices simply from the knowledge of the matrix Oi,L, and therefore does not necessarily need to store the
invertibility matrices for every possible set of f nodes.
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rearranging, we have

Oi,L(x[0] − x̄) + MF
i,LuF [0 : L − 1] −M

Fj

i,LuFj
[0 : L − 1] = 0 .

Letting J = F ∪Fj , we note from Lemma 4.1 that the above expression can be written as

Oi,L(x[0] − x̄) + MJ
i,LuJ [0 : L − 1] = 0 ,

for some appropriately defined vector uJ [0 : L−1]. From Equation (4.12) in the statement

of the theorem, the observability matrix is assumed to be of full column rank, and all its

columns are linearly independent of the columns of the invertibility matrix MJ
i,L (since the

set J has 2f or fewer nodes). This means that x̄ = x[0] in the above expression, and thus

node xi has recovered the entire initial value vector x[0], despite the efforts of the nodes in

F . This concludes the proof of the theorem.

Remark 4.6 Note that in order to apply the procedure described in the above theorem,

node xi needs to know its observability matrix Oi,L for some sufficiently large L (upper

bounded by the size of the network, as we will show later in this section). It is sufficient

(but not necessary) for node xi to know the weight matrix W in order for it to obtain the

observability matrix. This assumption of some (or full) knowledge of the network topology

via the observability matrix (or the weight matrix) is similar to the assumptions made

by much of the literature on fault-tolerant distributed systems [10, 11, 72, 73], and we

will adopt it here to demonstrate the resilience of linear iterative strategies. As described

in Chapter 2, it is possible for the nodes in the network to distributively determine their

observability matrices when there are no faulty or malicious nodes; the extension of this

result to faulty/malicious networks is an area for future research. Note also that node xi

does not necessarily need to know precisely how many nodes were malicious during the linear

iteration; it only needs to know that the number of malicious nodes is upper bounded by f .

If node xi does not know the value of f a priori, but does know the network topology (e.g.,

via the weight matrix W), it can determine the maximum number of malicious nodes that it

can tolerate by calculating the size of the minimum vertex-cut between itself and any other

node xj , and then make the assumption that the actual number of malicious nodes does not

exceed this maximum value.

Remark 4.7 It is worth noting that checking up to
(
N
f

)
possibilities when trying to deter-

mine the possible sets of malicious nodes is equivalent to the brute force method of deter-

mining up to f errors in an N -dimensional real number codeword with distance 2f + 1.

In the coding theory literature, there exist efficient ways of performing this check for both

structured and random real number codes (e.g., see [81] and the references therein), and one

can potentially exploit those results to streamline the procedure in the proof of Theorem 4.5

(this is left as an avenue for future research).
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Remark 4.8 Note that if transmissions between nodes are corrupted by noise (as in Chap-

ter 3), then the vector yi[0 : L] might not fall strictly within the column space of the matrices

Oi,L and M
Fj

i,L for any j. One potential method to handle this situation (if the magnitude

of the noise is sufficiently “small”) is to find the set Fj to minimize the smallest singular

value of the matrix
[
yi[0 : L] Oi,L M

Fj

i,L

]
. Clearly the line between noise and malicious

errors becomes blurred as the magnitude of the noise increases, which makes it harder to

detect and isolate malicious behavior. This issue has been investigated in the context of real

number error correcting codes in [81], and we will leave connections to such work for future

research.

In the sequel, we will show that when κij ≥ 2f +1 for all j, one can find a weight matrix

W and an integer L so that all columns of the observability matrix Oi,L will be linearly

independent of each other, and of the columns in MJ
i,L, where J is any set of up to 2f

nodes (i.e., Equation (4.12) will be satisfied). From Theorem 4.5, node xi will therefore be

able to obtain all initial values from the outputs that it sees during the course of the linear

iteration, and can calculate any arbitrary function of those values. To find such a weight

matrix, recall from Section 1.5 that condition (4.12) is equivalent to strong observability of

the linear system (W,BJ ,Ci,0) (strong observability means that knowledge of the outputs

of the system over a certain length of time suffices to uniquely determine the initial state,

regardless of the inputs to the system). Furthermore, Theorem 1.3 indicated that strong

observability of a linear system over the field of complex numbers is equivalent to the system

having no invariant zeros. This indicates that if we can choose the weight matrix W so

that the set (W,BJ ,Ci,0) has no invariant zeros for all possible sets J of 2f nodes, then

the rank condition in equation (4.12) of Theorem 4.5 will be satisfied with L = N − 1;

therefore, node xi will be able to calculate any desired function of the initial values, even in

the presence of up to f malicious or faulty nodes. In fact, our development will reveal that

one can choose W so that multiple nodes in the system can simultaneously calculate any

desired functions of the initial values (e.g., they can reach consensus, or calculate different

functions of the initial values, all with the same weight matrix W).

4.5.1 Invariant Zeros

Let xi be any given node in the network, let J = {xi1 , xi2 , . . . , xi2f
} denote any set of 2f

nodes (possibly containing xi), and let J̄ = X \ J . Further partition the sets J and J̄ as

follows (an illustration of these sets is shown in Figure 4.2):

• JN = J ∩ (Ni ∪ {xi}). This set contains all nodes in set J that are neighbors of node

xi (or node xi itself).

• JN̄ = J \ JN . This set contains all nodes in set J that are not neighbors of node xi

(nor node xi itself).
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xi

J̄N

J̄N̄

JN

JN̄

J

J̄

Figure 4.2: A sample partition of the vertex set. The black node is xi, the gray nodes are
Ni (the neighbors of node xi), and the white nodes are all the other nodes.

• J̄N = J̄ ∩ (Ni ∪ {xi}). This set contains all nodes in set J̄ that are neighbors of node

xi (or node xi itself).

• J̄N̄ = J̄ \ J̄N . This set contains all nodes in set J̄ that are not neighbors of node xi

(nor node xi itself).

Note that these sets partition the entire set of nodes. For any choice of weights for the

linear iteration, and for any subsets A ⊆ X and B ⊆ X , let WA denote the square weight

matrix corresponding to interconnections within the set A, and let WA,B denote the weight

matrix corresponding to connections from nodes in set A to nodes in set B.

Lemma 4.3 For any set J of 2f nodes, the invariant zeros of the set (W,BJ ,Ci,0) are

exactly the invariant zeros of the set (WJ̄N̄
,WJN̄ ,J̄N̄

,WJ̄N̄ ,J̄N
,WJN̄ ,J̄N

).

Proof: The matrix pencil for the set (W,BJ ,Ci,0) is given by P(z) =
[

W−zIN BJ
Ci 0

]
.

Without loss of generality, we can assume that W is of the form

W =





WJ̄N̄
WJ̄N ,J̄N̄

WJN̄ ,J̄N̄
WJN ,J̄N̄

WJ̄N̄ ,J̄N
WJ̄N

WJN̄ ,J̄N
WJN ,J̄N

WJ̄N̄ ,JN̄
WJ̄N ,JN̄

WJN̄
WJN ,JN̄

WJ̄N̄ ,JN
WJ̄N ,JN

WJN̄ ,JN WJN




,

and that BJ and Ci have the form

BJ =





0 0

0 0

I|JN̄ | 0

0 I|JN |




, Ci =

[
0 I|J̄N | 0 0

0 0 0 I|JN |

]
,
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since BJ contains a single 1 in each row corresponding to a node in J , and Ci measures

nodes that are neighbors of node xi, or node xi itself; the above forms are obtained simply

by an appropriate renumbering of the nodes.5 The pencil P(z) can be written as

P(z) =





WJ̄N̄
− zI|J̄N̄ | WJ̄N ,J̄N̄

WJN̄ ,J̄N̄
WJN ,J̄N̄

0 0

WJ̄N̄ ,J̄N
WJ̄N

− zI|J̄N | WJN̄ ,J̄N
WJN ,J̄N

0 0

WJ̄N̄ ,JN̄
WJ̄N ,JN̄

WJN̄
− zI|JN̄ | WJN ,JN̄

I|JN̄ | 0

WJ̄N̄ ,JN
WJ̄N ,JN

WJN̄ ,JN WJN − zI|JN | 0 I|JN |

0 I|J̄N | 0 0 0 0

0 0 0 I|JN | 0 0





.

From this expression, we see that

rank(P(z)) = |JN̄ | + |JN | + |J̄N | + |JN | + rank

([
WJ̄N̄

− zI|J̄N̄ | WJN̄ ,J̄N̄

WJ̄N̄ ,J̄N
WJN̄ ,J̄N

])

,

and so the invariant zeros of the set (W,BJ ,Ci,0) are exactly the invariant zeros of the

set (WJ̄N̄
,WJN̄ ,J̄N̄

,WJ̄N̄ ,J̄N
,WJN̄ ,J̄N

).

This lemma, along with Theorem 1.3, reveals that in order to ensure that the rank

condition (4.12) in Theorem 4.5 is satisfied for node xi, we can focus on the problem of

choosing the weights so that the set

(WJ̄N̄
,WJN̄ ,J̄N̄

,WJ̄N̄ ,J̄N
,WJN̄ ,J̄N

)

will have no invariant zeros for any set J of 2f nodes. To choose a set of weights that

accomplishes this, we will once again use techniques from control theory pertaining to

linear structured systems. Recall from Section 1.5.1 that a linear system with a given

zero/nonzero structure will have the same number of invariant zeros for almost any real-

valued choice of free parameters. The exact number of invariant zeros can be obtained

by examining the graph of the system, as specified in Theorems 1.6 and 1.7. To ap-

ply these results to the problem of determining the number of invariant zeros of the set

(WJ̄N̄
,WJN̄ ,J̄N̄

,WJ̄N̄ ,J̄N
,WJN̄ ,J̄N

), we note that all matrices in this set are essentially

structured matrices (since all of the weights in the above matrices can be chosen arbitrarily

and independently). In particular, the nodes in set J̄N̄ act as the state vertices for the

structured system, the nodes in the set JN̄ act as the input vertices, and the nodes in the

set J̄N act as the output vertices. Recall that the above results on structured systems

assumed that the number of outputs is larger than (or equal to) the number of inputs. The

5Note that this does not affect the invariant zeros of the system, since this renumbering of the nodes
simply corresponds to pre– and post–multiplying the original matrix pencil by appropriate permutation
matrices. Since permutation matrices are nonsingular, the rank of the new pencil matrix will be the same
as the rank of the original matrix pencil for all values of z.
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following lemma shows that this property does in fact hold for the sets J̄N and JN̄ if the

in-degree of node xi is sufficiently high.

Lemma 4.4 If degi ≥ 2f + 1, then for any set J of 2f nodes, |J̄N | > |JN̄ |.

Proof: First, note from the definition of J̄N and JN that |J̄N | + |JN | = degi +1

(since the sets J and J̄ partition the vertex set of the graph, and therefore contain all

neighbors of node xi, along with node xi itself). Furthermore |JN | + |JN̄ | = 2f (since

those two sets partition the set J ). Thus, |J̄N | = degi +1 − |JN | = degi +1 − 2f + |JN̄ |.

Since degi ≥ 2f + 1, this expression becomes |J̄N | ≥ |JN̄ | + 2 > |JN̄ |, thereby proving the

lemma.

Note that if κij ≥ 2f +1 for every j, and there is at least one node that is not a neighbor

of node xi, then degi must necessarily be no smaller than 2f + 1 (since otherwise, there

would not be 2f +1 vertex disjoint paths from any node xj to node xi). We can now use the

above results on structured systems to prove the following lemma for the linear iteration

in (4.2); the lemma will be used in conjunction with Lemma 4.3 and Theorem 1.3 to show

that node xi can uniquely determine the initial values x[0] after running the linear iteration

for at most N time-steps, even with up to f malicious nodes.

Lemma 4.5 Consider node xi in the network G, and suppose that κij ≥ 2f + 1 for all

j. Then for almost any real-valued choice of weights (with wij = 0 if xj /∈ Ni), the set

(WJ̄N̄
,WJN̄ ,J̄N̄

,WJ̄N̄ ,J̄N
,WJN̄ ,J̄N

) will have no invariant zeros for any set J of 2f nodes.

Proof: The matrix pencil for the set (WJ̄N̄
,WJN̄ ,J̄N̄

,WJ̄N̄ ,J̄N
,WJN̄ ,J̄N

) is

P(z) =

[
WJ̄N̄

− zI|J̄N̄ | WJN̄ ,J̄N̄

WJ̄N̄ ,J̄N
WJN̄ ,J̄N

]

.

We will show that this pencil has full normal-rank even after the deletion of an arbitrary

row, and then use Theorem 1.7 to prove the lemma.

We start by constructing the graph H associated with the set

(WJ̄N̄
,WJN̄ ,J̄N̄

,WJ̄N̄ ,J̄N
,WJN̄ ,J̄N

).

For this set of matrices, note that the state vertices in the graph H are given by the set J̄N̄ ,

the input vertices are given by the set JN̄ , and the output vertices are given by the set J̄N .

In particular, H can be obtained by first taking the graph of the network G and removing

all incoming edges to nodes in JN̄ (since the nodes in JN̄ are treated as inputs), and

removing all outgoing edges from nodes in J̄N (since those nodes are treated as outputs).

Furthermore, remove all nodes that are in the set JN and their incident edges (since these
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nodes do not appear anywhere in the matrix pencil), and add a set of self loops to every

state vertex to correspond to the nonzero entries on the diagonal of the weight matrix WJ̄N̄
.

We will now examine what happens when we remove a single row from P(z). Suppose

we remove one of the rows of P(z) corresponding to a vertex v ∈ J̄N̄ (i.e., one of the top

|J̄N̄ | rows of P(z)), and denote the resulting matrix by P̄(z). The generic rank of P̄(z)

can be found by examining the associated graph, which we will denote by H̄. Note that

H̄ is obtained from H simply by removing all incoming edges to vertex v in H, since we

removed the row corresponding to v from P(z); however, all outgoing edges from v are

still left in the graph (since the column corresponding to vertex v is left in matrix P̄(z)).

Thus, we see that vertex v can be treated as an input vertex in H̄, leaving |J̄N̄ | − 1 state

vertices (corresponding to the set J̄N̄ \{v}). Now, note that the set J ∪{v} has cardinality

2f + 1, and thus Lemma 1.1 indicates that there is a linking of size 2f + 1 from J ∪ {v} to

{xi} ∪ Ni in G. In this linking, consider the paths starting at vertices in the set JN̄ ∪ {v};

none of these paths passes through the vertices in JN (since these vertices are the start

vertices of other paths in the linking). Graph G thus contains a linking from JN̄ ∪ {v}

to J̄N , where each path in the linking only passes through vertices in the set J̄N̄ , and

therefore this linking also exists in the graph H̄. According to Theorem 1.6, P̄(z) has

generic normal-rank equal to the number of state vertices in H̄ (equal to |J̄N̄ | − 1) plus the

maximal size of a linking from the inputs to the outputs (equal to |JN̄ ∪{v}|), for a total of

|J̄N̄ |−1+ |JN̄ ∪{v}| = |J̄N̄ |+ |JN̄ |. The pencil P̄(z) thus has generically full normal-rank.

Now, suppose that we remove a row of P(z) corresponding to a vertex v ∈ J̄N (i.e.,

one of the bottom |J̄N | rows of P(z)), and again denote the resulting matrix by P̄(z). The

associated graph H̄ is obtained by simply removing vertex v from H. Since κij ≥ 2f + 1

for every j in graph G, Lemma 1.1 indicates that there will be a linking of size 2f + 1 from

the set J ∪ {v} to the set {xi} ∪Ni in G. In particular, there will be a linking of size |JN̄ |

from the set JN̄ to the set J̄N \{v}, and none of the paths in this linking would go through

any of the vertices in the set JN ∪ {v} (since these vertices are the start vertices of other

paths in the linking). The linking from the set JN̄ to the set J̄N \ {v} will therefore also

exist in graph H̄, and once again, Theorem 1.6 indicates that the matrix pencil will have

generically full normal-rank equal to |J̄N̄ | + |JN̄ |.

We have thus shown that P(z) will have generically full normal-rank even after the

deletion of an arbitrary row. From Theorem 1.7, the number of invariant zeros of P(z)

is equal to |J̄N̄ | minus the maximal number of vertices in J̄N̄ contained in the disjoint

union of a size |JN̄ | linking from JN̄ to J̄N , a cycle family in J̄N̄ , and a J̄N -topped path

family. If we simply take all the self-loops in H (corresponding to the nonzero weights on

the diagonal of the weight matrix WJ̄N̄
), we will have a set of disjoint cycles that covers all

|J̄N̄ | vertices in J̄N̄ . Thus, the matrix pencil P(z) will generically have no invariant zeros,

thereby proving the lemma.
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With the above lemma in hand, it is a simple matter to prove Theorem 4.2 (provided

at the end of Section 4.3).

Proof: [Theorem 4.2] If node xi is in set T , then from Lemmas 4.3 and 4.5, we see

that for almost any choice of weight matrix W, and for any set J of cardinality 2f , the set

(W,BJ ,Ci,0) will have no invariant zeros. Furthermore, since the set of weights for which

this property does not hold has measure zero, it will hold generically for all nodes in set T .

From Theorem 1.3, we see that rank
([

Oi,N−1 MJ
i,N−1

])
= N + rank

(
MJ

i,N−1

)
, for all

xi ∈ T , and all sets J of 2f nodes. Thus, Theorem 4.5 indicates that every node in T can

calculate any arbitrary function of the initial values after running the linear iteration for at

most N time-steps.

4.5.2 Identifying the Malicious Nodes

Note that although the procedure described in the proof of Theorem 4.5 allows a given

node xi to determine the entire set of initial values, it does not necessarily require node xi

to determine the actual set of malicious nodes. Instead, node xi is only required to find

a candidate set Fj of malicious nodes, and then write the values that it has received over

the past L + 1 time-steps as a linear combination of the columns in the invertibility matrix

for the candidate set and the observability matrix. In many cases, this candidate set will

be the actual set of malicious nodes, but there can also be cases where the two sets are

different. As a trivial example, consider the case of a network where two nodes xi and xj

are separated by distance D, and suppose that node xi requires L+1 time-steps in order to

calculate the initial values of all nodes via the linear iteration. Now suppose that node xj is

malicious, but only commits its first additive error during one of the last D − 1 time-steps.

This additive error will not propagate to node xi before time-step L, and thus node xi

will not be aware that node xj has acted maliciously. In other words, as far as node xi is

concerned, the case where node xj is malicious during the last D−1 time-steps of the linear

iteration is indistinguishable from the case where node xj behaves completely correctly for

all time-steps. Note that this fact does not hamper node xi from correctly obtaining the

initial values of all the nodes. However, there may be applications when it is desirable for

nodes to distributively identify the exact set of malicious nodes (e.g., in order to remove

them from the network). The following theorem indicates that if node xi examines the

values that it receives from the linear iteration over a larger number of time-steps than that

required purely for function calculation, it can determine the exact set of nodes that were

malicious during the initial stages of the iteration.

Theorem 4.6 Suppose node xi can calculate the entire set of initial values after running

the linear iteration for Li + 1 time-steps, despite the actions of up to f malicious nodes

(i.e., there is a weight matrix W that satisfies Equation (4.12) with L = Li). Let F be the

set of nodes that are malicious during the course of the linear iteration (with cardinality f
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or lower). Then, for any nonnegative integer L̄, after Li + 1 + L̄ time-steps of the linear

iteration, node xi can uniquely identify the nodes in set F that were malicious during the

first L̄ time-steps of the iteration.

Proof: Note that the theorem holds trivially for L̄ = 0, and so we focus on the case

of L̄ ≥ 1 in the rest of the proof. The values seen by node xi over Li + 1 + L̄ time-steps of

the linear iteration are

yi[0 : Li + L̄] = Oi,Li+L̄x[0] + MF
i,Li+L̄

uF [0 : Li + L̄ − 1] .

As in the proof of Theorem 4.5, node xi finds the first set Fj of f nodes such that

yi[0 : Li + L̄] = Oi,Li+L̄x̄ + M
Fj

i,Li+L̄
uFj

[0 : Li + L̄ − 1] , (4.14)

for some vectors x̄ and uFj
[0 : Li + L̄ − 1]. Equating the two expressions, we obtain

Oi,Li+L̄(x̄ − x[0]) + M
Fj

i,Li+L̄
uFj

[0 : Li + L̄ − 1] −MF
i,Li+L̄

uF [0 : Li + L̄ − 1] = 0 .

Using the definition of M
Fj

i,Li+L̄
and MF

i,Li+L̄
in Equation (4.3), the above expression can

be written as

0 = Oi,Li+L̄(x̄ − x[0]) +

Li+L̄−1∑

k=0

[
0(k+1)(degi +1)×N

Oi,Li+L̄−1−k

]

BFj
uFj

[k]

−
Li+L̄−1∑

k=0

[
0(k+1)(degi +1)×N

Oi,Li+L̄−1−k

]
BFuF [k]

= Oi,Li+L̄(x̄ − x[0]) +

Li+L̄−1∑

k=0

[
0(k+1)(degi +1)×N

Oi,Li+L̄−1−k

] [
BFj

BF

] [ uFj
[k]

−uF [k]

]
,

where the subscripts on the zero matrices indicate their sizes. Let J be the set obtained

by concatenating the sets Fj and F (note that J has at most 2f elements, possibly with

duplications). Defining BJ ≡
[
BFj

BF

]
and uJ [k] ≡

[
u′
Fj

[k] −u′
F [k]

]′
, we obtain6

Oi,Li+L̄(x̄ − x[0]) + MJ
i,Li+L̄

uJ [0 : Li + L̄ − 1] = 0 .

Now, note that since Equation (4.12) is satisfied for L = Li, it will also be satisfied for

any L ≥ Li. In particular, this means that x̄ = x[0] in the above equation, and using the

6Note that the invertibility matrix MJ
i,Li+L̄

has the same form as in Equation (4.3), even though the set

J here has (possibly) duplicated entries. In particular, if Equation (4.12) is satisfied for L = Li when J has
no duplicated entries, it will also be satisfied for L = Li when J has duplicated entries (since duplicated
entries in J simply mean that certain columns of the matrix MJ

i,Li
are duplicated).
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recursive definition of the invertibility matrix in Equation (4.4), we obtain

MJ
i,Li+L̄

uJ [0 : Li + L̄ − 1] =

[
0 0

Oi,Li+L̄−1BJ MJ
i,Li+L̄−1

]

uJ [0 : Li + L̄− 1] = 0 . (4.15)

The matrix BJ simply selects the columns of the matrix Oi,Li+L̄−1 corresponding to the

nodes in J . Since Equation (4.12) is satisfied for any L ≥ Li, the first |J | columns of

MJ
i,Li+L̄

will be linearly independent of all the other columns of MJ
i,Li+L̄

. This means that

[
0

Oi,Li+L̄−1

]

BJuJ [0] = 0,

and since the matrix Oi,Li+L̄−1 is full column rank for any L̄ ≥ 1, we have BJuJ [0] = 0.

Repeating this reasoning recursively for the matrices MJ
i,Li+L̄−1

,MJ
i,Li+L̄−2

, . . . ,MJ
i,Li+1

(in Equation (4.15)), we obtain BJ uJ [k] = 0 for k = 0, 1, . . . , L̄ − 1. Now, using the

definitions of BJ and uJ [k] from earlier in the proof, we can write

BJ uJ [k] ≡
[
BFj

BF

] [ uFj
[k]

−uF [k]

]
= 0, k = 0, 1, . . . , L̄ − 1 .

Thus, if some entry of the vector uF [k] has some nonzero value a (corresponding to a

malicious update by a node in F during time-step k), then the only way to eliminate the

column of BF selected by that entry will be for that same column to appear in the matrix

BFj
(which requires the malicious node to be in the set Fj), and the corresponding entry

of the vector uFj
[k] to also have value a. This means that in order for the above equation

to be satisfied, all nodes in FF that are malicious during the first L̄ time-steps must be

contained in Fj , and the corresponding entries in uFj
[0 : L̄− 1] must be equal to the errors

caused by those nodes. Furthermore, all entries in uFj
[0 : L̄− 1] corresponding to nodes in

Fj \ F must be zero, since otherwise, the corresponding columns of the matrix BFj
could

not be canceled out. Thus, the candidate set Fj that node xi finds in order to satisfy

Equation (4.14) contains all nodes that are malicious during the first L̄ time-steps, and the

corresponding entries in uFj
[0 : L̄ − 1] contain the errors caused by those nodes.

4.5.3 Summary of the Protocol

We now summarize the steps needed to apply our fault-tolerant function calculation protocol

to a given network G. We split the protocol into a network design phase (a procedure used

once during the initialization of the network) and the distributed function calculation phase

(used repeatedly during the operation of the network).
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Network Design

1. Let T represent the set of nodes in the network that are required to perform function

calculation. Let f denote the maximum number of malicious or faulty nodes in the

network, and suppose that the nodes in set T would like to identify all nodes that are

malicious during the first L̄ time-steps of the linear iteration, for some nonnegative

integer L̄.

2. If κij ≥ 2f + 1 for all j ∈ {1, 2, . . . , N}, node xi is guaranteed to be able to calculate

any arbitrary function, even when there are up to f malicious/faulty nodes (as shown

in Theorem 4.2). Furthermore, in this latter case, node xi can uniquely identify the

nodes that were malicious during the first L̄ time-steps of the protocol (assuming that

the iteration will execute for a sufficiently large number of time-steps, as shown in

Theorem 4.6). In the remainder of the procedure, we will assume that κij ≥ 2f + 1

holds for each xi ∈ T and for all j ∈ {1, 2, . . . , N}.

3. Choose a set of independent random weights for each edge in the network, and also

as self-weights for each node. For example, these weights could be chosen as indepen-

dent and identically distributed (i.i.d.) Gaussian random variables, or i.i.d. random

variables drawn from a uniform distribution on some interval. This produces a weight

matrix W.

4. For each xi ∈ T , verify that the following condition (given as Equation (4.12) in our

development) is satisfied for some integer Li and for all possible sets J of 2f nodes:

rank
([

Oi,Li
MJ

i,Li

])
= N + rank

(
MJ

i,Li

)
.

Note that this will be satisfied with probability 1 for some Li ≤ N − 1. Let Lmax =

maxi Li. Then each node xi ∈ T is guaranteed to be able to calculate its function after

at most Li+1 time-steps, and all nodes in T are guaranteed to be able to calculate their

desired functions after at most Lmax + 1 time-steps (note that Li ≤ Lmax ≤ N − 1).

Furthermore, each node xi ∈ T is guaranteed to be able to uniquely identify the

nodes that were malicious during the first L̄ time-steps of the linear iteration after

at most Li + L̄ + 1 time-steps. Note that if we require node xi to identify the nodes

that were malicious during any of the first Li + 1 time-steps (i.e., those nodes that

were potentially trying to influence the result of node xi’s calculation), then node xi

should choose L̄ = Li + 1. More generally, if all nodes run the linear iteration for

2(Lmax + 1) time-steps, every node in T can calculate its function and identify any

nodes that were trying to affect its calculation (since this corresponds to running the

linear iteration for Lmax + 1 + L̄ time-steps, with L̄ = Lmax + 1).

5. Provide each node xi ∈ T with the integers Li and Lmax, the local weights wij,
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xj ∈ ({xi} ∪ Ni), along with matrix7 Oi,Li+L̄, which node xi can use to generate the

matrices M
Fj

i,Li+L̄
for all possible sets Fj of f nodes.

Performing Function Calculation

1. Let x[0] denote the vector of initial values in the network.

2. At each time-step k, each node xi in the network updates its value as

xi[k + 1] = wiixi[k] +
∑

xj∈Ni

wijxj[k] + ui[k] ,

where ui[k] is nonzero if node xi is faulty/malicious and commits an error at time-step

k. The nodes perform these updates for Lmax + 1 + L̄ time-steps, and we suppose

that there are f or fewer malicious or faulty nodes during these time-steps.

3. After Li + 1 + L̄ time-steps, node xi has access to the values

yi[0 : Li + L̄] =
[
y′

i[0] · · · y′
i[Li + L̄]

]′
,

where yi[k] = Cix[k] (the matrix Ci selects the portions of x[k] that correspond to

neighbors of node xi, along with node xi itself).

4. Each node xi ∈ T finds the first set Fj of f nodes such that yi[0 : Li + L̄] is in the

column space of Oi,Li+L̄ and M
Fj

i,Li+L̄
.

5. Node xi concludes that Fj is a candidate set of malicious/faulty nodes. It then obtains

all initial values in the network by finding a pair of vectors x̄ and uFj
[0 : Li + L̄ − 1]

such that yi[0 : Li + L̄] = Oi,Li+L̄x̄ + M
Fj

i,Li+L̄
uFj

[0 : Li + L̄ − 1]; from Theorem 4.5,

it will be the case that x̄ = x[0]. Node xi can then calculate any function of the

initial values. Furthermore, from Theorem 4.6, the set Fj will contain (as a subset)

all nodes that were malicious during the first L̄ time-steps of the linear iteration, and

the entries of the vector uFj
[0 : L̄−1] will contain the exact errors committed by those

malicious nodes (all the entries of uFj
[0 : L̄ − 1] corresponding to correctly behaving

nodes in Fj will be equal to zero).

6. After Lmax + 1 + L̄ time-steps, all nodes in T will have calculated their desired

functions and identified the malicious nodes in the above manner, and the protocol

ends.
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x1

x2
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x4
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x6

Figure 4.3: Node x1 needs to calculate the sum of squares of all initial values in the network,
even if one node in the network is malicious.

4.5.4 Example

Consider the network shown in Figure 4.3. The objective in this network is for node x1 to

calculate the function g(x1[0], x2[0], x3[0], x4[0], x5[0], x6[0]) =
∑6

j=1 x2
j [0], even if there is

up to f = 1 malicious node in the network.

Network Design

Examining the network, we see that there are three internally vertex disjoint paths from

node x5 to node x1, and also from node x6 to node x1. Since all other nodes are neighbors

of node x1, we have that κ1j ≥ 3 for all j, and so Theorem 4.2 indicates that node x1 can

calculate the desired function after running the linear iteration (with almost any choice of

weights) for at most N = 6 time-steps, despite the presence of up to 1 malicious node.

For this example, we will take each of the edge and self weights to be i.i.d. random vari-

ables chosen from the set8 {−5,−4,−3,−2,−1, 1, 2, 3, 4, 5} with equal probabilities. These

weights produce the weight matrix

W =





−3 1 −1 3 0 0

1 2 −1 1 1 0

0 0 1 0 0 2

0 4 0 2 2 5

0 2 0 0 −1 5

0 0 1 3 −4 −4





.

7Alternatively, each node could be provided with the weight matrix W, which is sufficient information
to obtain the desired matrices.

8In general, the result in Theorem 4.2 will hold with high probability if one chooses the weights for the
linear iteration from a continuous distribution over the real numbers (such as a Gaussian distribution). For
this pedagogical example, however, it will suffice to consider a distribution on a small set of integers; this
makes the presentation of the numerical values more concise.
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Since node x1 has access to its own value, as well as those of its neighbors (nodes x2, x3 and

x4) at each time-step, the matrix C1 is given by C1 =

[
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

]
. With the above weight

matrix, one can verify that Equation (4.12) is satisfied with i = 1 and L = L1 = 2 for all

sets J of 2f = 2 nodes, where Oi,Li
and MJ

i,Li
are defined in Equation (4.3). In particular,

the matrix O1,2 is given by O1,2 =

[
C1

C1W

C1W
2

]
(the exact numerical values are omitted in

the interest of space), and the invertibility matrices for each candidate set Fj = {xj} (for

1 ≤ j ≤ 6) of a single faulty node are summarized by

[
MF1

1,2 MF2
1,2 MF3

1,2 MF4
1,2 MF5

1,2 MF6
1,2

]
=





0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

−3 1 1 0 −1 0 3 0 0 0 0 0

1 0 2 1 −1 0 1 0 1 0 0 0

0 0 0 0 1 1 0 0 0 0 2 0

0 0 4 0 0 0 2 1 2 0 5 0





. (4.16)

We make the above matrices available to node x1, and at this point, node x1 has all the

information it needs to be able to calculate the function
∑6

j=1 x2
j [0] (or indeed, any arbitrary

function of the initial values) after L1 + 1 = 3 time-steps of the linear iteration, even in the

presence of one malicious node.

Performing Function Calculation

Suppose that the initial values of the nodes are x[0] =
[

3 −1 4 −4 7 11
]′

. In order

for node x1 to calculate the function
∑6

j=1 x2
j [0], the nodes run the linear iteration with the

weight matrix provided above. Suppose that node x4 is malicious, and at time-steps 1 and

2, it updates its value as x4[1] = 4x2[0] + 2x4[0] + 2x5[0] + 5x6[0] − 8 and x4[2] = 4x2[0] +

2x4[0] + 2x5[0] + 5x6[0]− 12, i.e., during the first time-step, it commits an additive error of

u4[0] = −8, and during the second time-step, it commits an additive error of u4[1] = −12.

All other nodes follow the predefined (correct) strategy of updating their values according

to the weighted average specified by the weight matrix W. The values of all nodes over the

first three time-steps of the linear iteration are given by x[0] =
[
3 −1 4 −4 7 11

]′
,
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x[1] =
[
−26 0 26 49 46 −80

]′
, and x[2] =

[
199 43 −134 −222 −446 309

]′
.

Since the values seen by node x1 at time-step k are given by y1[k] = C1x[k], the set of all

values seen by node x1 over the three time-steps of the linear iteration are

y1[0 : 2] =




C1x[0]

C1x[1]

C1x[2]



 =
[

3 −1 4 −4 −26 0 26 49 199 43 −134 −222
]′

.

Node x1 can now use these values to calculate the vector of initial values, despite the efforts

of the malicious node. As discussed in Theorem 4.5, node x1 finds the first set Fj for which

y1[0 : 2] is in the column space of O1,2 and M
Fj

1,2; using the matrices in (4.16), node x1 finds

that this is the case for j = 4. It now finds vectors x̄ and uF4 [0 : 1] such that yi[0 : 2] =

O1,2x̄ + MF4
1,2uF4 [0 : 1] as x̄ =

[
3 −1 4 −4 7 11

]′
and uF4 [0 : 1] =

[
−8 −12

]′
.

Node x1 now has access to x[0] = x̄, and can calculate the function
∑6

j=1 x2
j [0] to obtain

the value 212.

Note that in this example, the candidate set Fj found by node x1 does, in fact, contain

the actual malicious node x4. This will not be true in general; if we want node x1 to be

guaranteed to locate any node that is malicious during the first L̄ time-steps of the iteration,

we should have node x1 repeat the above procedure after Li + L̄ + 1 = 3 + L̄ time-steps of

the linear iteration, as described in Theorem 4.6. The numerical details are very similar to

those in the above example, and are omitted here.

4.6 Summary

In this chapter, we considered the problem of using linear iterative strategies for distributed

function calculation with a set of malicious agents that have the potential to update their

values in an arbitrary and coordinated manner (with the only restriction being that they

cannot send conflicting values to different neighbors). We showed that the ability of linear

iterative strategies to tolerate such malicious behavior is completely determined by the

topology of the network. Specifically, if there exists a pair of nodes xi and xj such that

κij ≤ 2f , then we showed that it is possible for a particular set of f malicious nodes to

coordinate to update their values in such a way that node xi cannot correctly determine the

value of node xj, and thus cannot calculate any function that involves that value, regardless

of the number of time-steps for which the linear iteration is run. Conversely, we showed

that it is possible for a given node xi to calculate any arbitrary function in the presence of

up to f malfunctioning or malicious nodes as long as the size of the smallest ij-cut with any

other node xj is at least 2f + 1. For all nodes that satisfy the connectivity requirements,

we showed that they can calculate their desired functions after running the linear iteration

with almost any real-valued choice of weights for at most N time-steps. Furthermore, under
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these connectivity requirements, any node that is malicious or faulty during the first part

of the linear iteration can be uniquely identified by the other nodes in the network if they

run the linear iteration for more time-steps than that required to simply perform function

calculation.
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CHAPTER 5

A STATE-SPACE FRAMEWORK FOR

LINEAR NETWORK CODING

5.1 Introduction

In the previous chapters, we considered scenarios where each node has a single initial value,

and developed a linear iterative strategy to disseminate these values (or perhaps functions

of these values) throughout the network. In this chapter, we consider a slightly different

(but still common) scenario in distributed systems and networks, where a subset of nodes

in the network receive a stream of information (i.e., a new value at each time-step), and the

requirement is to transmit these streams to a set of sink nodes. The traditional approach

to this type of information dissemination in networks has been to treat data packets as

distinct entities, and to route them through the network without performing intermediate

operations on the packets (e.g., see the discussion in [82]). In recent years, however, the

concept of network coding has generated a great deal of interest as it discards the notion

of treating packets as individual elements, and instead allows intermediate nodes in the

network to mathematically combine several packets into a single packet for transmission

[9, 82, 83, 84, 85, 86]. It has been shown that, for certain networks, network coding can

be used to achieve the transmission capacity of the network even when traditional store-

and-forward approaches fail [83]. Of particular interest are linear network codes, where

the packet transmitted by each node is a simple linear combination of the packets that it

receives; such codes have been shown to be sufficient for achieving the transmission capacity

for the multisource multicast problem (where every sink has to receive all of the data from

all of the source nodes) [9].

Recently, researchers have started to examine the susceptibility of linear network codes

to malicious or faulty behavior by a subset of the nodes [34, 35, 36, 37, 38, 39, 40]. Due

to the fact that packets are combined at each node, a maliciously injected packet has

the potential to corrupt all of the information that is received by the sink nodes, thereby

preventing them from correctly recovering any of the source data. Various methods have

been developed in an attempt to counteract such behavior, including the use of hashes

or secret keys (under the assumption of computationally bounded attackers) [34, 36], or

the introduction of redundancy to the source data in the form of an error-correcting code

whose distance properties ensure robustness against a fixed number of attackers [35, 37,
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38, 39, 40]. In particular, under the wired communication model (where each node can

send a different value to each of its neighbors), it was shown in [37, 87, 88] that if the

minimum size of an edge-cut between any source and any sink has capacity κ, and there

are f (computationally unbounded) malicious attackers in the network, then the maximum

rate at which information can be transmitted from the source to the sink is κ − 2f .

In this chapter, we extend the linear iterative strategies from the previous chapters to

develop a control- and linear system-theoretic framework for designing linear network codes

that are tolerant to faulty/malicious behavior under the wireless broadcast model (where

each node transmits the same information to all of its neighbors [89]). Unlike some of the

existing work on network coding with Byzantine adversaries, we assume that the network

has a fixed structure, and that the sink nodes know the weights for the linear network code.

The latter assumption will play a key role when malicious nodes are present and enables us

to obtain a recursive algorithm which can recover the transmitted streams of information

with a known bound on the delay. Specifically, using results from dynamic system inversion,

structured system theory, and fault diagnosis schemes, we show that linear network codes

(in fixed, known networks) can make use of redundancy in the network topology in order to

safely transmit streams of information despite the presence of malicious agents without the

need to pre-process the source data with error-correcting codes, hashes or cryptographic

schemes (as done in existing schemes). We also demonstrate that linear network codes also

allow the sink nodes to identify and locate all malicious nodes in a distributed manner as

long as the connectivity of the network is large enough. This is in contrast to previous work

on locating malicious nodes [39], which requires all nodes to send their received packets to a

central supervisor to isolate faulty behavior. Finally, the state-space model representation

of linear network codes that we develop in this chapter allows our techniques to be applied

to arbitrary networks (directed/undirected, cyclic/acyclic), under the wireless broadcast

communication model. Unlike existing work on network codes for cyclic networks, our ap-

proach does not require manipulation of matrices of rational functions, and instead focuses

entirely on numerical matrices, thereby potentially simplifying the analysis and design of

linear network codes (including convolutional codes). Our approach immediately allows us

to obtain an upper bound on the latency required by any sink node to decode the input

streams, and provides a systematic decoding procedure that can be applied at each sink

node. It is worth noting that the work in [85] also proposes a state-space model for convo-

lutional network codes that is similar to the model in this chapter; however, that work does

not fully make use of the capabilities of this model in order to design decoders for the sink

nodes, and furthermore, it does not consider the problem of malicious nodes in the network.

We will discuss the differences between our work and existing work in the network coding

literature in more detail later in the chapter, once we have had an opportunity to describe

our approach and results in more detail.
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5.2 Problem Formulation

Consider a network modeled by the directed graph G = {X , E}, where X = {x1, . . . , xN} is

the set of nodes in the system and E ⊆ X × X represents the communication constraints

in the network (i.e., directed edge (xj, xi) ∈ E if node xi can receive information directly

from node xj). Let S ⊆ X be a set of source nodes, and let T ⊆ X be a set of sink

nodes (note that S and T are not necessarily disjoint). Also, let F ⊂ X be a set of nodes

that act maliciously and transmit arbitrary values to the rest of the network (possibly by

conspiring with each other) instead of following the strategy that we specify. We will assume

that the sets S and F are disjoint (since otherwise, maliciously injected values would be

indistinguishable from the values that the source node receives at each time-step). Note

that the set F is unknown a priori to the nodes in the network.

At each time-step k, each source node xi ∈ S receives new information from an entity

external to the network; for example, if the network represents a set of sensors, this new

information could represent measurements of the environment made by sensor xi. We model

this information as a stream of elements from a field F, and the goal is for every source node

to transmit its stream to each sink node via the network; this is the so-called multisource

multicast problem (e.g., see [84]). In particular, at each time-step k, all nodes in the network

can transmit a value based on some strategy that adheres to the constraints imposed by the

network topology; let xi[k] denote the value transmitted by the i-th node at time-step k.

The scheme that we study in this chapter makes use of linear network coding;1 specifically,

the value transmitted by each node xi at time-step k + 1 is given by

xi[k + 1] =






wiixi[k] +
∑

xj∈Ni
wijxj[k] + si[k] if xi ∈ S,

wiixi[k] +
∑

xj∈Ni
wijxj[k] + fi[k] if xi ∈ F ,

wiixi[k] +
∑

xj∈Ni
wijxj[k] if xi /∈ S ∪ F ,

(5.1)

where the wij’s are a set of weights from the field F,2 si[k] is the new value (information)

obtained by xi at time-step k (if it is a source node), and fi[k] is an additive error3 committed

by node xi at time-step k (if it is a malicious node).

Definition 5.1 Node xi is said to be malicious (or faulty) during an interval k, k + 1, k +

1Note that linear network codes are essentially linear iterative strategies as defined in the earlier parts
of the thesis, with the exception being that we are interested in recovering a stream of data from a set
of designated sources, as opposed to a single initial value from every other node. In order to keep this
distinction clear, and to maintain consistency with the literature on network coding, we will refer to linear
iterative strategies as linear network codes in this chapter.

2The methodology for choosing the weights appropriately and the implications of this choice are discussed
later in the chapter.

3Note that this model allows a malicious node to update and transmit an arbitrary value by choosing the
error term fi[k] appropriately. It also allows multiple malicious nodes to update their values in a coordinated
and conspiratorial manner. Note that if a node xi ∈ F behaves normally at time-step k, we can simply set
fi[k] = 0.
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2, . . . , k + L if fi[l] is nonzero for some l ∈ {k, k + 1, k + 2, . . . , k + L}.

If we let S = {xi1 , xi2 , . . . , xi|S|
} denote the set of source nodes, F = {xj1 , xj2 , . . . , xj|F|

}

denote the set of malicious nodes, and aggregate the values transmitted by all nodes at time-

step k into the value vector x[k] =
[
x1[k] x2[k] · · · xN [k]

]′
, the transmission strategy

for the entire system can be represented as

x[k + 1] =





w11 w12 · · · w1N

w21 w22 · · · w2N

...
...

. . .
...

wN1 wN2 · · · wNN





︸ ︷︷ ︸
W

x[k] +
[
ei1,N ei2,N · · · ei|S|,N

]

︸ ︷︷ ︸
BS





si1 [k]

si2 [k]
...

si|S|
[k]





︸ ︷︷ ︸
s[k]

+
[
ej1,N ej2,N · · · ej|F|,N

]

︸ ︷︷ ︸
BF





fj1[k]

fj2[k]
...

fj|F|
[k]





︸ ︷︷ ︸
f [k]

= Wx[k] +
[
BS BF

]

︸ ︷︷ ︸
BS∪F

[
s[k]

f [k]

]

︸ ︷︷ ︸
u[k]

, (5.2)

for all nonnegative integers k. In the above equation, the weight wij = 0 if xj /∈ Ni (i.e., if

(xj , xi) /∈ E), and we take x[0] to be the vector of all zeros.4 Recall that the symbol ei,N

denotes a vector of length N with a single “1” in the i–th position and zeros elsewhere.

The weight matrix W uniquely specifies the linear network coding strategy that is used.

At each time-step k, sink node xi ∈ T has access to its own transmitted value as well as

the values transmitted by its neighbors. Letting yi[k] denote the transmitted values seen

by node xi during time-step k, we obtain the equation

yi[k] = Cix[k], (5.3)

where Ci is a (degi +1) × N matrix with a single “1” in each row capturing the positions

of the vector x[k] that are available to node xi (i.e., these positions correspond to node xi

and its neighbors). The values yi[k], k = 0, 1, . . ., will characterize the ability of node xi to

reconstruct the source streams despite the actions of the malicious nodes in F . In the next

section, we will discuss conditions on the network topology and ways to choose the weights

for each node so that each sink node in T can recover each of the values si[k], k = 0, 1, . . .,

4Note that the initial conditions are assumed to be known in this setting, as opposed to the previous
chapters where we were trying to recover the initial values.
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for all xi ∈ S (possibly with some delay), and can also identify and locate all malicious

nodes. Specifically, we will demonstrate the following key result in the sequel.

Theorem 5.1 Let G = {X , E} denote the graph of a fixed and known network with N nodes,

and let S denote the set of source nodes and T denote the set of sink nodes. Suppose that

for any set J of 2f nodes (disjoint from S), the network contains an (|S|+2f)–linking from

S ∪ J to {xi} ∪ Ni, for every xi ∈ T . Then, if the weights for the linear network code are

chosen independently and uniformly from the field Fq ( of size q ≥ |T |
(
N−|S|

2f

)
(N−|S|−2f)),

then with probability at least 1 − |T |
(
N−|S|

2f

)N−|S|−2f

q
, there exists a nonnegative integer

L ≤ N − |S| − 2f + 1 such that each sink node can uniquely determine the source streams

transmitted by every source node with a delay of at most L + 1 time-steps, as long as there

are no more than f malicious nodes (anywhere in the network) during any time interval

of length L. Furthermore, every sink node can uniquely determine the identities of the

malicious nodes in a purely distributed manner.

Remark 5.1 Note that if the connectivity of the network is at least |S| + 2f , then the

linking condition in the above theorem is guaranteed to be satisfied due to the Fan Lemma

(Lemma 1.1). Also, if the field under consideration has infinite size (such as the field of

real numbers), the above theorem indicates that almost any choice of weights will produce

a network code that allows the sink nodes to decode the source streams and identify the

malicious nodes (i.e., the set of weights for which the property does not hold has Lebesgue

measure zero). Finally, note that the set of f nodes that are malicious during some time

interval of length L need not be the same as the set of nodes that are malicious during

another time interval of length L. The only requirement is that no more than f nodes

commit additive errors during any L contiguous time-steps.

5.3 Decoding by Sink Nodes

To develop a robust decoding strategy for linear network codes, we start by making the

observation that the code representation given by Equations (5.2) and (5.3) together form a

linear system in state-space form [41]. This representation will provide us with a convenient

and compact method of analyzing the values seen by the sink nodes during the operation

of the network. Specifically, for any set Q = {xq1, xq2 , . . . , xq|Q|
} of nodes, let BQ =[

eq1,N eq2,N · · · eq|Q|,N

]
. Then the output of the system

x[k + 1] = Wx[k] + BQu[k]

y[k] = Cix[k]
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over L + 1 time-steps is given by





yi[k]

yi[k + 1]

yi[k + 2]
...

yi[k + L]





︸ ︷︷ ︸
yi[k:k+L]

=





Ci

CiW

CiW
2

...

CiW
L





︸ ︷︷ ︸
Oi,L

x[k]+





0 0 · · · 0

CiBQ 0 · · · 0

CiWBQ CiBQ · · · 0
...

...
. . .

...

CiW
L−1BQ CiW

L−2BQ · · · CiBQ





︸ ︷︷ ︸
MQ

i,L





u[k]

u[k + 1]

u[k + 2]
...

u[k + L − 1]





︸ ︷︷ ︸
u[k:k+L−1]

.

(5.4)

Recall from the previous chapters that when L = N − 1, the matrix Oi,L is called the

observability matrix, and the matrix MQ
i,L is called the invertibility matrix corresponding to

the set Q.

The following theorem provides a decoding procedure for the sink nodes to recover the

source streams and identify the malicious nodes for the linear network code defined by

equations (5.2) and (5.3), provided that a certain algebraic condition holds. We will later

relate this algebraic condition to conditions on the network topology and choices of weight

matrix W.

Theorem 5.2 Let G = {X , E} denote the graph of a fixed and known network with N

nodes, and let S denote the set of source nodes and T denote the set of sink nodes. Suppose

that there exists an integer L and a weight matrix W (with wij = 0 if xj /∈ Ni) such that,

for all possible sets J of up to 2f nodes (disjoint from S), the matrices Oi,L and MS∪J
i,L

(defined in Equation (5.4)) for sink node xi satisfy

rank
(
MS∪J

i,L

)
= |S| + |J | + rank

(
MS∪J

i,L−1

)
. (5.5)

Then, if the nodes perform linear network coding with the weight matrix W, node xi can

uniquely decode all of the source streams sj[k], ∀xj ∈ S, as long as no more than f nodes in

the network are malicious during any time interval of length L. Furthermore, all of these

malicious nodes can be uniquely identified by sink node xi.

Before proceeding with the proof of the above theorem, we provide a more detailed

explanation of condition (5.5). Specifically, note from (5.4) that the last (L−1)|Q| columns

of MQ
i,L have the form

[
0

MQ
i,L−1

]
, and thus have rank equal to the rank of MQ

i,L−1. Thus,

condition (5.5) means that the first |S| + |J | columns of MS∪J
i,L are linearly independent

of each other, and of all other columns in MS∪J
i,L . With this interpretation in hand, we are

now ready to continue with the proof of Theorem 5.2.

Proof: [Theorem 5.2] Let W be a weight matrix that satisfies the conditions in the

above theorem, and let the nodes run the linear iteration for L + 1 time-steps. Suppose

that the malicious nodes during the first L time-steps of the linear iteration are a subset of
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the set F̂ = {xl1 , xl2 , . . . , xlf } ⊆ F . From (5.2), (5.3) and (5.4), the values seen by node xi

over the first L + 1 time-steps are given by

yi[0 : L] = Oi,Lx[0] + MS∪F̂
i,L u[0 : L − 1] , (5.6)

where u[k] =
[
s′[k] f ′[k]

]′
(s[k] is the vector of values injected by the source nodes, and

f [k] is the vector of additive errors injected by the malicious nodes at time-step k). Note

that node xi knows the quantities yi[0 : L], Oi,Lx[0], and the set S, but it does not know

the set F̂ or the values u[0 : L − 1]. Node xi will try to find the nodes in the set F̂ (to

identify the malicious nodes) and the values s[k] based on the known quantities.

Let F̂1, F̂2, . . . , F̂(N−|S|
f ) denote all possible sets of f nodes (disjoint from S), and let

MS∪F̂1
i,L ,MS∪F̂2

i,L , . . . ,M
S∪F̂

(N−|S|
f )

i,L denote the invertibility matrices corresponding to these

possible sets of malicious nodes together with the source nodes. With these matrices in

hand, suppose node xi finds the first j ∈ {1, 2, . . . ,
(
N−|S|

f

)
} such that the vector

yi[0 : L] −Oi,Lx[0]

is in the column space of the matrix M
S∪F̂j

i,L . This means that node xi can find a vector

ū[0 : L − 1] such that

M
S∪F̂j

i,L ū[0 : L − 1] = yi[0 : L] −Oi,Lx[0].

The vector ū[0 : L − 1] is node xi’s estimate of the value of u[0 : L − 1] (note that

ū[k] =
[
s̄′[k] f̄ ′[k]

]′
contains estimates of the source input and the fault input at time-step

k). Substituting (5.6) into the above expression and rearranging, we have

MS∪F̂
i,L u[0 : L − 1] −M

S∪F̂j

i,L ū[0 : L − 1] = 0 .

Based on the form of the invertibility matrix in (5.4), the above equation can be written as





0 0 · · · 0

CiBS∪F̂ 0 · · · 0

CiWBS∪F̂ CiBS∪F̂ · · · 0
...

...
. . .

...

CiW
L−1BS∪F̂ CiW

L−2BS∪F̂ · · · CiBS∪F̂









u[0]

u[1]

u[2]
...

u[L − 1]





−
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



0 0 · · · 0

CiBS∪F̂j
0 · · · 0

CiWBS∪F̂j
CiBS∪F̂j

· · · 0
...

...
. . .

...

CiW
L−1BS∪F̂j

CiW
L−2BS∪F̂j

· · · CiBS∪F̂j









ū[0]

ū[1]

ū[2]
...

ū[L − 1]





= 0,

where BS∪F̂ =
[
BS BF̂

]
and BS∪F̂j

=
[
BS BF̂j

]
. Let {F̂ , F̂j} denote the set that

is obtained by concatenating sets F̂ and F̂j (i.e., it is the union of the two sets, with

duplications allowed). Then, the above expression can be written5 as





0 0 · · · 0

CiB{S,F̂ ,F̂j}
0 · · · 0

CiWB{S,F̂ ,F̂j}
CiB{S,F̂ ,F̂j}

· · · 0
...

...
. . .

...

CiW
L−1B{S,F̂ ,F̂j}

CiW
L−2B{S,F̂ ,F̂j}

· · · CiB{S,F̂ ,F̂j}





︸ ︷︷ ︸
M

{S,F̂,F̂j}

i,L





ũ[0]

ũ[1]

ũ[2]
...

ũ[L − 1]





= 0, (5.7)

where B{S,F̂ ,F̂j}
=
[
BS BF̂ BF̂j

]
and

ũ[k] =




s[k] − s̄[k]

f [k]

−f̄ [k]



 .

Now consider the matrix M
S∪F̂∪F̂j

i,L . Since F̂ ∪ F̂j has at most 2f nodes, Equation (5.5)

in the statement of the theorem indicates that the first |S| + |F̂ ∪ F̂j | columns of the

matrix M
S∪F̂∪F̂j

i,L are linearly independent of each other, and of all other columns of the

matrix. Now, note that the matrix M
{S,F̂,F̂j}
i,L is obtained from matrix M

S∪F̂∪F̂j

i,L simply

by duplicating certain columns (namely, the columns corresponding to nodes that appear

in both F̂ and F̂j). Consider a node xl ∈ F̂ . If xl /∈ F̂j , then the column corresponding to

xl within the first |S| + 2f columns of M
{S,F̂,F̂j}
i,L will be linearly independent of all other

columns in M
{S,F̂ ,F̂j}
i,L (since this column will also appear in the first |S|+ |F̂ ∪ F̂j| columns

of M
S∪F̂∪F̂j

i,L ). This means that Equation (5.7) will be satisfied only if fl[0] = 0. On the

other hand, if fl[0] 6= 0, the only way for Equation (5.7) to be satisfied is if xl ∈ F̂j and

f̄l[0] = fl[0]. In other words, if Equation (5.5) is satisfied, any malicious node that commits

an error during the first time-step will appear in set F̂j , and its additive error can be found

5Note that S ∪ F̂ = {S , F̂} since F̂ and S are disjoint (the same is true for S and F̂j). However, we

allow for the possibility that the sets F̂ and F̂j are not disjoint.

101



by sink node xi.

Next, note that the columns corresponding to nodes in S in M
{S,F̂,F̂j}
i,L will be linearly

independent of each other and of all other columns in that matrix (since these columns

appear in M
S∪F̂∪F̂j

i,L , and are not duplicated in {S, F̂ , F̂j}). This means that the only way

for Equation (5.7) to be satisfied is if s̄[0] = s[0]. Thus, sink node xi has also recovered the

source inputs injected into the network at time-step k = 0.

At this point, sink node xi knows s[0] and the identities of those nodes in F̂ that

committed errors during time-step 0, along with the exact values of their additive errors.

Node xi can then obtain the value of the transmitted values at time-step k = 1 as

x[1] = Wx[0] + BSs[0] + BF̂j
f̄ [0] .

Now, if we again let F̂ denote the set of f (or fewer) nodes that were malicious during the

interval k = 1, 2 . . . , L, then using the identity

yi[1 : L + 1] = Oi,Lx[1] + MS∪F̂
i,L u[1 : L] ,

node xi can repeat the above process to find the values of s[1] along with the identities of

the nodes that are malicious during time-step k = 1. Note that the set F̂ during this time

interval need not be the same as the set F̂ during the first L time-steps (but the nodes that

are malicious between time-steps k = 1 and k = L − 1 will be common to both sets). By

repeating the above procedure for all positive values of k, node xi can obtain the source

streams s[k] for all k, along with the identities of all malicious nodes and the errors that

they commit.

Remark 5.2 Note that node xi does not actually have to store all of the matrices M
S∪Fj

i,L

for every possible value of j. Specifically, note from the form of matrix BQ and the invert-

ibility matrix MQ
i,L in Equation (5.4) that the columns of this matrix can be obtained by

simply selecting certain columns of the observability matrix Oi,l, for 0 ≤ l ≤ L − 1. Thus,

node xi only needs to store the observability matrix Oi,L in order to generate all of the

required invertibility matrices.

Remark 5.3 Note that the decoding procedure in the above proof hinges on the fact that

the observability matrix (or more generally, the weight matrix) for the linear iteration is

known to the sink nodes. We will comment on this in further detail later in the chapter.

The above theorem provides a recursive decoding procedure for sink node xi provided

that condition (5.5) is true. We will now discuss ways to choose the weight matrix in

order to satisfy this condition; in the process, we will obtain the proof of the main theorem

(Theorem 5.1) of the chapter.
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5.3.1 Network Topology Conditions for Robust Linear Network Codes

To see how to choose a weight matrix W to satisfy condition (5.5) in Theorem 5.2, recall

from Section 1.5 that this condition simply means that the linear system (W,BS∪J ,Ci)

must be invertible for all possible sets J of 2f nodes (disjoint from S). To achieve this, we

will be using the results on structured invertibility over finite fields discussed in Section A.3.

Specifically, note that for any given set J , the tuple (W,BS∪J ,Ci) essentially defines a

structured linear system (since the entries in the weight matrix W are either zeros or

independent free parameters from the field F). With this observation, we are now in place

to prove Theorem 5.1 (given at the end of Section 5.2).

Proof: [Theorem 5.1] Consider any sink node xi and any set J of 2f nodes (disjoint

from S), and denote the graph of the system (W,BS∪J ,Ci) by Hi,J . Specifically, Hi,J is

obtained by taking the graph of the network G and adding |S| + 2f input vertices (each

with a single outgoing edge to a vertex in the set S ∪J ), and degi +1 output vertices (each

with a single incoming edge from {xi} ∪ Ni). Furthermore, add a self-loop to every state

vertex in Hi,J to correspond to the nonzero entries on the diagonal of the weight matrix

W.

From the statement of the theorem, note that graph G contains a linking of size |S|+2f

from S ∪ J to {xi} ∪ Ni, for any set J of 2f nodes (disjoint from S) and every xi ∈ T .

This linking also exists in the graph Hi,J , since G is a subgraph of Hi,J . Since every input

vertex in Hi,J connects to exactly one vertex in S ∪ J , and since every output vertex in

Hi,J connects to exactly one vertex in {xi} ∪Ni, the linking of size |S|+ 2f from S ∪J to

{xi} ∪Ni can be extended to a linking of size |S|+ 2f from the input vertices to the set of

output vertices.

Suppose we choose all of the free parameters in W (i.e., the weights) independently and

uniformly from the field Fq, and let φi,J denote the indicator function for the invertibility

of the system (W,BS∪J ,Ci) (i.e., φi,J = 1 if the system is invertible, and zero otherwise).

The graph Hi,J satisfies the conditions in Theorem A.5 (in Section A.3), and thus that

theorem implies that Pr[φi,J = 0] ≤ N−|S|−2f

q
. The probability that there is at least one

sink node or one set J for which the system (W,BS∪J ,Ci) is not invertible is given by

Pr




⋃

xi∈T ,

{J |J∩S=∅,|J |=2f}

(φi,J = 0)



 ≤
∑

xi∈T ,

{J |J∩S=∅,|J |=2f}

Pr [φi,J = 0]

≤ |T |

(
N − |S|

2f

)
N − |S| − 2f

q
.
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Thus, the probability that all such systems are invertible is given by

Pr




⋂

xi∈T ,
{J |J∩S=∅,|J |=2f}

(φi,J = 1)



 ≥ 1 − |T |

(
N − |S|

2f

)
N − |S| − 2f

q
.

Now, recall from the discussion on invertibility of linear systems (Theorem 1.2 in Section 1.5)

that if a linear system with matrices (A,B,C,D) is invertible, then the number of time-

steps required to do so will be less than N − nullity(D) + 1. In our case, the D matrix is

simply zero, and thus it has a nullspace of dimension equal to the number of inputs (which

is |S| + 2f). Thus, with probability at least 1 − |T |
(
N−|S|

2f

)N−|S|−2f

q
, the first |S| + 2f

columns of the matrix MS∪J
i,N−|S|−2f+1 will be linearly independent of each other and of all

other columns in MS∪J
i,N−|S|−2f+1 for all xi ∈ T and all sets J of 2f nodes (disjoint from S).

Thus, condition (5.5) in Theorem 5.2 is satisfied for every sink node xi ∈ T , and they can

uniquely determine the exact values of the source streams, along with the identities of the

malicious nodes.

Remark 5.4 Note from Theorem 5.1 that the ability to decode the source streams depends

solely on the existence of sufficiently large linkings in the network. This implies that the

self-weights on the diagonal of the weight matrix are not necessary in order to form an

invertible system (since they do not appear in the linking anyway). For this reason, the

self-weights can be set to zero, if desired.

5.4 Example

x1

x2

x3

x4

x5

Figure 5.1: Network for multisource multicast. Nodes x1 and x5 wish to exchange their
streams of information with each other. One of the intermediate nodes x2, x3 or x4 might
be malicious, but the identity of the malicious node is not known a priori.

Consider the undirected network in Figure 5.1. The set of source nodes in the network

is given by S = {x1, x5}, and those are also the sink nodes (i.e., T = S). In other words,

the objective in the network is for nodes x1 and x5 to exchange streams of information with
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each other via the intermediate nodes x2, x3 and x4. One of the intermediate nodes might

be malicious, but its identity is not known to the sink nodes a priori. For simplicity, we

will assume that the same node is malicious throughout the linear iteration (this simply

means that the set F̂ of malicious nodes during any time interval is equal to the set F of

malicious nodes over all time intervals).

In order for the nodes to be able to exchange streams of information and identify up

to f = 1 malicious node, Theorem 5.1 indicates that there must exist a linking of size

|S| + 2f = 4 from the set S ∪ J to node x1 and its neighbors, and also from S ∪ J

to node x5 and its neighbors. Here, J is any set of 2f = 2 nodes (different from x1

and x5). One can verify that both of these conditions are satisfied in this network. For

example, if J = {x2, x3}, we obtain a linking of size 4 from S ∪ J = {x1, x5, x2, x3} to

{x1}∪N1 = {x1, x2, x3, x4} via the following set of paths: {x1, x2, x3, x5x4}; note that some

of these paths have length zero. Thus, if the streams and weights take on values from the

field Fq (of sufficiently large size), nodes x1 and x5 will be able to recover each other’s streams

(and clearly their own streams). In particular, we have |T |
(
N−|S|

2f

)
(N−|S|−2f) = 6, and so if

we choose the weights randomly (independently and uniformly) from a field of size q ≥ 6, the

probability that the network code will allow x1 and x5 to exchange streams of information

and identify any malicious node in the network will be at least 1 − 6
q
. Suppose we choose

q = 128, which would produce a probability of success equal to 0.953; using MATLAB, we

generate a random set of weights from F27 (with primitive polynomial α7 + α3 + 1), which

produces the weight matrix

W =





0 12 20 18 0

115 0 0 0 4

16 0 0 0 107

115 0 0 0 118

0 122 101 121 0




;

note that the self-weights (on the diagonal of the weight matrix) can be set to zero without

loss of generality, as discussed in Remark 5.4. Each of the numbers in the above matrix is

the decimal representation of the appropriate field element (e.g., the entry “12” represents

the element α3 + α2, where α satisfies α7 + α3 + 1 = 0). To complete the state-space model

in (5.2), we note that BS = [ 1 0 0 0 0
0 0 0 0 1 ]

′
and BF̂ is a vector with a single “1” in the j–th

position (if node xj is malicious) and zeros elsewhere. Since sink node x1 has access to

its own transmission and the transmissions of nodes x2, x3 and x4 at each time-step, the

matrix C1 is given by

C1 =





1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0




.
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The matrix C5 for sink node x5 can be obtained in a similar way.

The next step is to determine the smallest delay L for which the system given by the

tuple (W,BS∪J ,C1) is invertible (for any set J of 2 nodes, disjoint from S). Follow-

ing Theorem 1.2, we find that L = 2 is the smallest integer for which rank
(
MS∪J

1,L

)
−

rank
(
MS∪J

1,L−1

)
= |S| + 2f = 4. For example, if J = {x2, x3}, we have

MS∪J
i,2 =




0 0

C1BS∪J 0

C1WBS∪J C1BS∪J



 =





0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 12 20 1 0 0 0

115 4 0 0 0 0 1 0

16 107 0 0 0 0 0 1

115 118 0 0 0 0 0 0





,

and it is easy to verify that the first |S| + 2f = 4 columns of this matrix are linearly

independent of all other columns. We omit the exact values of the matrices for other sets

J in the interest of space. The above analysis indicates that node x1 can recover node x5’s

stream (and its own stream) despite the presence of f = 1 malicious node after L + 1 = 3

time-steps. The observability matrix O1,2 in Equation (5.4) is given by

O1,2 =




C1

C1W

C1W
2



 =





1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 12 20 18 0

115 0 0 0 4

16 0 0 0 107

115 0 0 0 118

3 0 0 0 41

0 3 22 94 0

0 72 107 7 0

0 64 104 2 0





.

Node x1 is provided with this matrix, and it can use this to generate the matrices M
S∪F̂j

1,2
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for any set F̂j = {xj} of one malicious node from the set {x2, x3, x4}. Similarly, node

x5 is provided with the observability matrix O5,2, which it can use to generate the matri-

ces M
S∪F̂j

5,2 . With this information in hand, the nodes are ready to exchange streams of

information through the network.

Suppose that node x1 wishes to transmit the stream of numbers

s1[k] = {104, 88, 40, 120, 4, 55, 48, . . .}

to node x5, and node x5 wants to transmit the stream of numbers

s5[k] = {63, 121, 43, 74, 28, 95, 32, . . .}

to node x1. To accomplish this, all nodes in the network use the linear network code

modeled by Equation (5.2) with the weight matrix W specified above. For example, node

x2 transmits the value x2[k + 1] = 115x1[k] + 4x5[k] at time-step k + 1. Suppose that node

x4 is malicious, and decides to modify its transmitted value in arbitrary ways. For example,

at time-step k = 1, node x4 decides to transmit the value x4[1] = 115x1[0] + 118x5[0] + 0

(i.e., it commits an additive error of 0, and thus behaves normally). However, at time-

step k = 2, it transmits the value x4[2] = 115x1[1] + 118x5[1] + 14 (i.e., it commits an

additive error of 14). The set of all additive errors committed by node x4 is given by

f4[k] = {0, 14, 26, 39, 111, 104, . . .}. All other nodes in the network behave normally at each

time-step. The values transmitted by each node at each time-step with these source values

and additive errors are given by

[
x[0] x[1] x[2] x[3] x[4] x[5] · · ·

]
=





0 104 88 39 95 104 · · ·

0 0 109 60 61 26 · · ·

0 0 126 102 98 101 · · ·

0 0 107 122 10 31 · · ·

0 63 121 126 64 68 · · ·




.

At each time-step k, node x1 has access to the transmitted values y1[k] = C1x[k]. Starting

at time-step 0, the values seen by node x1 up to time-step L = 2 are given by

y1[0] =
[
0 0 0 0

]′

y1[1] =
[
104 0 0 0

]′

y1[2] =
[
88 109 126 107

]′
.

Based on this information, node x1 can use Theorem 5.2 to determine the first value trans-

mitted by node x5, along with the identity of any node that was malicious in the first
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time-step. Specifically, from Equation (5.6), node x1 knows that the values y1[0 : 2] can be

written as

y1[0 : 2] = O1,2x[0] + MS∪F̂
1,2 u[0 : 1] ,

where u[k] =
[
s1[k] s5[k] f4[k]

]′
. Node x1 does not know the set F̂ , so it tries to find a

set F̂j = {xj}, j ∈ {2, 3, 4}, of one node such that the vector y1[0 : 2] −O1,2x[0] is in the

column space of the matrix M
S∪F̂j

1,2 . Performing this test, it finds that the above condition

is satisfied only for j = 4 and finds a vector ū[0 : 1] such that

y1[0 : 2] −O1,2x[0] =





0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 18 1 0 0

115 4 0 0 0 0

16 107 0 0 0 0

115 118 0 0 0 1





︸ ︷︷ ︸
M

S∪{x4}
1,2





104

63

0

88

0

14





︸ ︷︷ ︸
ū[0:1]

.

Based on this, node x1 determines that node x5 transmitted the value s5[0] = 63 at the

first time-step, and that node x4 committed an “additive error” of 0. Node x1 therefore

correctly concludes that there were no malicious nodes during the first time-step. It can

now calculate the values transmitted by all nodes at time-step k = 1 as

x[1] = Wx[0] +





1 0 0

0 0 0

0 0 0

0 0 1

0 1 0





︸ ︷︷ ︸
BS∪{x4}




104

63

0



 =





104

0

0

0

63




.

At time-step k = 3, node x1 receives the values y1[3] =
[
39 60 102 122

]′
. Once

again, it tries to find a candidate set F̂j = {xj} of one malicious node so that the quantity

y1[1 : 3] −O1,2x[1] is in the column space of the matrix M
S∪F̂j

1,2 . With the given values of

x[1] and y1[1 : 3], node x1 tests F̂4 = {x4} (since that was the suspected malicious node
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during the previous time-step) and finds that the required condition is satisfied. Node x1

then finds a vector ū[1 : 2] such that

y1[1 : 3] −O1,2x[1] =





0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 18 1 0 0

115 4 0 0 0 0

16 107 0 0 0 0

115 118 0 0 0 1





︸ ︷︷ ︸
M

S∪{x4}
1,2





88

121

14

40

0

26





︸ ︷︷ ︸
ū[1:2]

.

Node x1 thus finds that node x5 transmitted the value s5[1] = 121 at time-step 1, and that

node x4 was in fact malicious/faulty and committed an additive error of f5[1] = 14. It can

now update its estimate of the transmitted values as

x[2] = Wx[1] +





1 0 0

0 0 0

0 0 0

0 0 1

0 1 0





︸ ︷︷ ︸
BS∪{x4}




88

121

14



 =





88

109

126

107

121




.

Node x1 continues in this way and thereby recovers all of the values transmitted by source

node x5, as well as all of the additive errors caused by node x4. Note that node x1 does not

need to find the candidate set F̂j for future iterations of the decoding procedure, since it

already knows that node x4 is the malicious node. However, if we drop our assumption that

the same node is malicious throughout the linear iteration, but instead assume that at most

f = 1 node can be malicious during any time interval of length L = 2, the above decoding

procedure will still allow node x1 to recover the sources streams and identify the malicious

nodes; in this case, node x1 would have to test all possible sets of candidate malicious nodes

at every time-step.

The decoding procedure for node x5 is completely symmetric to the above procedure,

and we omit the details here.
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5.5 Comparisons to Existing Work

In order to more conveniently compare the results in this chapter to the existing literature

on network coding (both with and without Byzantine adversaries), we first briefly discuss

the extension of our results to networks where nodes are allowed to send different values

on each of their outgoing edges (e.g., under the wired communications model). This is the

standard scenario considered in much of the existing literature on network coding (although

those results translate quite readily to the wireless model as well). We will now discuss this

translation of a wired communication network to the “wireless broadcast” model that we

consider in this thesis (similar translations can be found, for example, in [9, 90]), and then

delve into a comparison of the proposed schemes.

5.5.1 Application to Wired Networks

Consider a network Ḡ = {X̄ , Ē}, where X̄ = {x̄1, x̄2, . . . , x̄N̄} is the set of nodes in the

network, and Ē = {(x̄i, x̄j)} is the set of edges between nodes. The head of an edge

e = (x̄i, x̄j) is given by head(e) = x̄j and the tail of the edge is given by tail(e) = x̄i. In

this section, we allow for multiple edges between nodes and thus Ḡ is a multigraph [28]. For

convenience, suppose that there is a single source node x̄1 and a set T of sink nodes in the

network.6 The source node receives |S| input streams, which it must transmit through the

network to the sink nodes. To model these streams, we will add a “dummy” source node x̄S

to the network, with |S| edges of the form (x̄S , x̄1). At each time-step k, each node (other

than x̄S) transmits on each of its outgoing edges a linear combination of the packets that

it receives on its incoming edges (the linear combination used for each outgoing edge can

be different). We also assume that up to f edges in the network can be under the control

of a malicious attacker; specifically, if edge (x̄i, x̄j) is controlled by the attacker, the value

received by node x̄j is the value that was transmitted by x̄i on that edge along with an

additive error. We assume that the edges (x̄S , x̄1) are fault-free (since otherwise, additive

errors will be indistinguishable from the source streams).

Note that in the above scenario, each edge in the network has some linear combination

of the source values (along with a potential additive error) associated with it. However, this

model can be easily translated to the model that we consider in this thesis (where each node

has an associated linear combination of the source streams, along with a potential additive

error) in the following manner. Define the line graph of the network as G = {X , E}, where

X = {x1, x2, . . . , xN} = Ē ∪T ; in other words, every edge in the network Ḡ (including every

edge between the dummy source x̄S and x̄1) becomes a node in the network G, and the

sink nodes from Ḡ are duplicated in G, which means that N = |Ē | + |T |.7 The edge set E

6This can be extended to the case of multiple source nodes, but we will consider this simple scenario here
for pedagogical reasons and to enable comparisons to the existing work in the literature.

7It is actually not necessary to include the source edges and the sink nodes in the graph G in order to
analyze the system, but we do it here in order to obtain a model that is equivalent to the one considered
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is defined as follows. Consider two nodes xi, xj ∈ X , and suppose that both of these two

nodes correspond to edges in Ḡ. Then, (xi, xj) ∈ E if head(xi) = tail(xj) in Ḡ (i.e., there is

an edge from xi to xj in G if, in the graph Ḡ, the edge corresponding to xi feeds into the

edge corresponding to xj). Furthermore, consider an edge that feeds into a sink node in

Ḡ, and let xi and xj denote the corresponding edge node and sink node in G, respectively;

then, (xi, xj) ∈ E . An example of this transformation is shown in Figure 5.2.

x̄S x̄1 x̄2

e3

e4

e5

e6

e1

e2

x1 x2

x3 x4 x5 x6

x7(a)

(b)

Figure 5.2: (a) The network Ḡ. The source node x̄1 has four edge-disjoint paths to the sink
node x̄2. The dummy source node x̄S injects two source streams into the source node x̄1

for transmission to x̄2. (b) The corresponding network G. The mapping from Ḡ to G is as
follows: e1 → x1, e2 → x2, e3 → x3, e4 → x4, e5 → x5, e6 → x6, x̄2 → x7. The sink node
in G is given by T = {x7} and the source nodes are given by S = {x1, x2}.

The graph G is now essentially in the form that was considered earlier in this chapter.

Specifically, G contains a set of source nodes S (each corresponding to one of the edges of

the form (x̄S , x̄1) in Ḡ), and a set T of source nodes. The f (or fewer) malicious edges in Ḡ

are now given by a set F of f (or fewer) malicious nodes in G. The sink node xi ∈ T in G

has access to the values transmitted by its neighbors Ni at each time-step (note that these

neighbors represent the incoming edges to the sink node in the graph Ḡ); these values can

be represented as yi[k] = Cix[k], where Ci is a (degi +1) × N matrix with a single “1” in

each row corresponding to a node in Ni ∪ {xi}. Denoting the value transmitted by node xj

(or equivalently, the value transmitted on the corresponding edge in Ḡ) at time-step k by

xj[k], we obtain the linear system model given by Equations (5.2) and (5.3).

Before proceeding, it will be useful for us to understand how topological conditions in

the graph Ḡ are reflected in the graph G. Consider two nodes x̄i and x̄j in the graph Ḡ. Let

xi,1, xi,2, . . . , xi,a denote the vertices in G corresponding to the outgoing edges from x̄i in Ḡ,

and let xj,1, xj,2, . . . , xj,b denote the vertices in G corresponding to the incoming edges to x̄j

in Ḡ. It is then easy to argue that if there are r edge-disjoint paths from x̄i to x̄j in Ḡ, then

there will be an r-linking from the set {xi,1, xi,2, · · · , xi,a} to the set {xj,1, xj,2, . . . , xj,b} in

G [28]. Note that if x̄j is a sink node in Ḡ, and xj is the corresponding sink node in G,

the above condition is equivalent to saying that there are r internally node-disjoint paths

from {xi,1, xi,2, . . . , xi,a} to xj in G (since xj explicitly appears in G and has incoming edges

earlier in this chapter.
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from each of the nodes in {xj,1, xj,2, . . . , xj,b} by construction). For example, the graph Ḡ

shown in Figure 5.2.a has two edge-disjoint paths from x̄S to x̄2, and the associated graph

G has two internally node-disjoint paths from the nodes {x1, x2} to x7. This fact will allow

us to translate existing topological conditions that are described in the network coding

literature to the wireless model, and then compare them to the condition that is presented

in Theorem 5.1.

5.5.2 Comparison with Existing Work on Network Coding

Comparison of Network Topology Conditions for Tolerating Byzantine

Adversaries

In [37], it was shown that if there are |S|+ 2f edge-disjoint paths from the source node x̄1

to every sink node in Ḡ, then every sink node can recover the |S| source streams despite the

presence of up to f malicious edges in the network. In the graph G, let {xi,1, xi,2, . . . , xi,a}

denote the nodes that correspond to the outgoing edges from the source node in Ḡ. The

condition that there are |S| + 2f edge-disjoint paths from the source node to every sink

node in Ḡ then translates to the following condition.

Condition 1: To transmit |S| streams of information despite f malicious edges in Ḡ,

there must exist |S| + 2f internally node-disjoint paths from {xi,1, xi,2, . . . , xi,a} to every

sink node in G.

For example, consider once again the network in Figure 5.2.a. The source node x̄1 has

4 edge-disjoint paths to the sink node x̄2, and if there is up to f = 1 malicious edge, the

results in [37] indicate that one can transmit |S| = 4 − 2f = 2 streams of information

through the network. Equivalently, we can examine the graph G in Figure 5.2.b and note

that there exist |S| + 2f = 4 internally node-disjoint paths from the set {x3, x4, x5, x6} to

the sink node x7.

The analysis that we performed earlier in this chapter differs from the above work (and

other related works such as [40]) in that we consider the problem of both recovering the

source stream and identifying the set of malicious nodes (or edges in the wired model);

as might be expected, the conditions required on the network topology to achieve this

objective are stronger than the conditions required for only recovering the source streams.

Specifically, from Theorem 5.1, our procedure requires the following condition.

Condition 2: To transmit |S| streams of information and identify f malicious edges

in Ḡ, there must exist |S|+ 2f node-disjoint paths from the set S ∪ J (where J is any set

of 2f nodes disjoint from S) to every sink node in G.

Note that if Condition 2 is satisfied, then Condition 1 will also hold. To see this, let J be

a set of 2f nodes from the set {xi,1, xi,2, . . . , xi,a} (these nodes correspond to the outgoing

edges from the source node in Ḡ). If G contains |S|+2f internally node-disjoint paths from

S ∪ J to every sink node, then it must also contain |S|+ 2f internally node-disjoint paths
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from {xi,1, xi,2, . . . , xi,a} to every sink node (since every path originating from a source

node in S must pass through one of the nodes in {xi,1, xi,2, . . . , xi,a}), and this is precisely

Condition 1. However, in general, there will be graphs where Condition 1 is satisfied but

Condition 2 is not. For example, the graph shown in Figure 5.2 satisfies both Condition 1

and Condition 2, whereas the graph shown in Figure 5.3 satisfies Condition 1 (there are

|S| + 2f = 3 internally node-disjoint paths from {x2, x3, x4} to x8) but not Condition 2.

For instance, if we consider J = {x2, x5}, one can immediately see that there are not

|S|+ 2f = 3 internally node-disjoint paths from S ∪J to x8. Thus, one cannot identify all

malicious edges in this network (even though one can recover all the source streams using

the techniques in [37]). The intuition behind this is clear from the graph Ḡ: the sink node

would never be able to distinguish malicious behavior on edge e5 from malicious behavior

on edge e2.
8

x̄S x̄1 x̄5

x̄2

x̄3

x̄4

e1

e2

e3

e4

e5

e6

e7

x1

x2 x3 x4

x5 x6 x7

x8(a)

(b)

Figure 5.3: (a) The network Ḡ. The source node x̄1 has three edge-disjoint paths to the
sink node x̄5. The dummy source node x̄S injects one source stream into the source node
x̄1 for transmission to x̄5. (b) The corresponding network G. The sink node in G is given
by T = {x8} and the source node is given by S = {x1}.

Comparison of Decoding Schemes: Convolutional Network Codes

One of the benefits of our framework is that it provides a systematic method to design re-

cursive decoders for linear network codes for arbitrary networks (with or without Byzantine

attackers). Specifically, when the network topology contains cycles, the input packets to

some nodes in the network could be functions of previous output packets at those nodes. To

deal with this phenomenon, the network coding literature introduces a delay parameter z

into the network (e.g., by modeling either the links or the nodes as having delays), and views

the packets generated by each node as a power series in z [9, 84, 82], thereby producing a

convolutional network code. Decoders for such codes are traditionally designed by forming

8This phenomenon of indistinguishable faults on links has been previously noted in [91, 39]; the difference
here is that we provide conditions on the network topology that allow all malicious edges to be located,
along with a decoding procedure to do so.
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a transfer function matrix (with elements that are rational functions in z) from the source

stream to the sink nodes, and then using this matrix to extract the source streams [9, 82].

For example, an algorithmic procedure for choosing the weights for convolutional network

codes was provided in [86, 90], and a decoding procedure was proposed that essentially

requires the sink nodes to solve a system of equations in the delay parameter z. However,

a drawback of this approach is the need to construct and manipulate (potentially large)

matrices of rational functions in the parameter z.

In contrast, our decoding procedure is based on the linear state-space model given by

Equations (5.2) and (5.3); inspired by results pertaining to dynamic system inversion, we

show that every sink node only has to examine the values that it receives over a certain

length of time in order to decode the source streams. Furthermore, the operations performed

by the sink node involve purely numerical matrices, and do not require manipulation of

transfer function matrices in the delay variable z. Indeed, this was the main motivation

that drove the development of dynamic inversion schemes in the control literature, and

there are various results in this area that can be leveraged to design system inverters (or

decoders, in our context) purely in the state-space domain (e.g., see [43, 92]). As mentioned

in the introduction, a state-space model for network codes (without malicious attackers)

was also formulated in [85], but this model was not fully utilized in order to design a decoder

for the code.

Comparison of Decoding Schemes: Byzantine Adversaries

The details of the decoding scheme described in [37] to overcome Byzantine attacks on

network codes are as follows. If we let U denote the source packets, and Z denote the

malicious packets that are injected on f edges, then the packets that are received by the

sink node are given by

Y = TU + T ′Z, (5.8)

where T is the transfer function from the source node to the sink node, and T ′ is the transfer

function from the malicious edges to the sink. The authors of [37] assume that the graph

topology is unknown (or even changing), and thus use the standard technique of sending

the coefficients along with the data packets to the sink nodes. In the presence of malicious

nodes, this technique is complicated by the fact that T and T ′ in (5.8) are partially unknown.

Under this condition, the authors show that the input stream can only be determined to lie

within a certain subspace, but cannot be uniquely decoded otherwise. However, the authors

also show that this problem can be circumvented by adding redundancy to the input stream

in a certain manner, which then allows each sink node to exactly recover the input stream

despite the maliciously injected packets (with high probability).

The key difference between our work and [37, 40] is that the network topology and

weights are assumed to be known in our analysis. This essentially amounts to knowing the
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transfer functions T and T ′ (for any set of f malicious edges); we show that this information

(together with the topological condition discussed earlier) is enough to allow the sink nodes

to recover the source streams and identify the malicious nodes (or edges), without requiring

preprocessing or added redundancy at the source. A benefit of our decoding procedure

is that it will work even with time-varying sets of malicious nodes (as long as there are

no more than f malicious nodes within any time interval of a certain length). It is not

immediately clear whether the approach in [37, 40] can handle such cases.

Summary of Differences

In summary, the key differences between the work in this chapter and previous work on

network coding are as follows.

• We consider the problem of decoding the source streams and identifying the malicious

nodes, which imposes stronger conditions on the network topology than that required

purely for recovering the source streams.

• The work in [37, 40] has the benefit of not assuming any knowledge about the network

topology (aside from the existence of sufficiently many edge-disjoint paths from the

source to the sink). In contrast, we assume in our work that the network topology and

weights are known to the sink nodes in the network, but we show that this knowledge

allows us to design a decoding procedure that does not require preprocessing or the

addition of redundancy at the source.

• In contrast to existing work on convolutional network codes, we provide a systematic

decoding procedure that involves purely numerical matrices, and does not require

manipulation of transfer function matrices in the delay variable z.

5.6 Extensions

There are a variety of interesting extensions that can be pursued within the framework

that we have developed in this chapter. For example, the decoding procedure specified

by the proof of Theorem 5.2 essentially requires each sink node to reconstruct the values

transmitted by all nodes in the network at each time-step (i.e., the decoder for each sink

node has dimension equal to the number of nodes in the system). However, based on

the connections that we have made in this chapter between linear network coding and the

theory of dynamic system inversion, it may be possible to design more efficient decoders by

using results from the topic of minimal dynamic inversion, which consider the problem of

designing system inverses of smallest possible dimension [93, 94].

As another extension, one can investigate conditions on the network topology that are

needed for each sink node to reconstruct certain functions of the source streams and fault
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streams (reconstructing all of the source and fault streams is a special case of this problem).

Depending on the function to be reconstructed, the condition that there exist |S|+2f node-

disjoint paths from S and any other set of 2f nodes to each sink node may no longer be

necessary; however, with this relaxation, each sink node will no longer be able to determine

the values transmitted by all nodes in the system (e.g., it may not know what values were

transmitted by the malicious nodes), and thus designing a decoder for the sink nodes will

become more complicated. One possible way to handle this could be to make use of results

on partial system inversion, which deal with the topic of constructing a system inverse that

recovers only some of the unknown inputs to a linear system [95, 96, 97]. Extending such

results to finite fields (with appropriate graph-based characterizations), and leveraging them

to design decoders for the sink nodes would be an interesting avenue for future research.

5.7 Summary

In this chapter, we considered the problem of using linear network codes to perform mul-

tisource multicast in networks with malicious nodes. We showed that, under the wireless

broadcast communication model, the network code can be compactly represented as a lin-

ear system with unknown inputs. We then used concepts pertaining to system inversion

and structured system theory to show that the multisource multicast problem with up to f

malicious nodes is solvable if there exist vertex disjoint paths from the set of source nodes

and any set of 2f other nodes to each sink node and its neighbors. Furthermore, we showed

that if this topological condition is satisfied, choosing the weights for the network code

independently and uniformly from the field Fq of sufficiently large size will allow all sink

nodes to recover the source streams and identify malicious nodes with high probability.

We showed that the maximum latency required to decode the source streams is given by

N −|S|− 2f +1, and provided a systematic procedure for each sink node to follow in order

to decode the source streams and identify all malicious nodes in a distributed manner.
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CHAPTER 6

SUMMARY AND FUTURE WORK

6.1 Summary

In this thesis, we have studied the use of linear iterative strategies for information dissemi-

nation and distributed computation in networks and networked systems. In such strategies,

each node in the network repeatedly updates its value to be a weighted linear combina-

tion of its previous value, and those of its neighbors. We showed how networks running

these strategies can be modeled as linear dynamical systems, and developed a control the-

oretic framework to analyze the features and capabilities of the strategies. Specifically, we

demonstrated the following key results.

1. Using observability theory, we showed that if the weights for the linear iteration are

chosen randomly from a field of sufficiently large size, then with high probability, the

linear iterative strategy allows any node to obtain the values of any other node (in

strongly connected networks) after a finite number of iterations. In fact, our analysis

revealed that the number of time-steps required for any node to accumulate all of the

initial values via a linear iterative strategy is no greater than the size of the largest tree

in a certain subgraph of the network; we conjectured that this quantity is actually the

minimum number of time-steps required for any protocol to disseminate information

in networks, in which case linear iterative strategies are time-optimal for any given

network.

2. When transmissions and information exchanges in the network are affected by additive

noise, we showed that linear iterative strategies allow nodes in the network to obtain

unbiased estimates of any linear function of the initial values after a finite number of

time-steps (once again, no greater than the size of the largest tree in a certain subgraph

of the network). Furthermore, we showed that if the second-order statistics of the noise

are also known, each node can minimize the mean square error associated with its

estimate (for a given weight matrix) by taking an appropriate linear combination of

the noisy values that it receives over the course of the linear iterative strategy.

3. We demonstrated that linear iterative strategies are inherently robust to malicious

nodes by virtue of the network topology. Specifically, we showed that if there exists
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a pair of nodes xi and xj that can be disconnected from each other by removing 2f

or fewer nodes, then f malicious nodes can conspire to update their values in such a

way that xi cannot calculate any function of xj’s initial value. We provided a specific

strategy for the malicious nodes to follow in order to disrupt the linear iterative

strategy in this fashion. However, we also showed that if every node in the network

has at least 2f + 1 node-disjoint paths to xi, then f malicious nodes cannot prevent

xi from correctly calculating any function of the initial values (and identifying the

malicious nodes) when the linear iterative strategy is used. In particular, we showed

that this can be achieved with almost any choice of real-valued weights for the linear

iterative strategy, and will require at most N time-steps (where N is the number of

nodes in the network).

4. We treated the problem of transmitting a stream of data from a set of source nodes in

the network (as opposed to initial values from every node in the network) to a set of

sink nodes, even when some nodes in the network potentially transmit arbitrary values

at each time-step. We considered linear network codes that have been developed to

solve this problem, and showed that such codes can be conveniently modeled as linear

dynamical systems with unknown inputs. We showed that if the network topology

contains node-disjoint paths from the set of source nodes and any other set of 2f

nodes to each sink node and its neighbors, then a random choice of weights for the

linear network code from a field of sufficiently large size will allow the sink nodes to

recover the source streams and identify the malicious nodes with high probability.

5. We developed a theory of structured linear systems over finite fields; specifically, we

showed that if the graph associated with a given structured linear system satisfies

certain topological properties, then the system will be observable and invertible with

high probability after a random choice of free parameters from a field of sufficiently

large size. In the process of deriving our results, we obtain an improved bound on the

observability index of linear systems in terms of the topology of the associated graph.

6.2 Future Work

It is likely that our control-theoretic framework for linear iterative strategies can be fur-

ther extended and generalized to yield even greater insights into the capabilities of such

strategies. Some immediate avenues for further exploration are described below.

1. We showed that linear iterative strategies inherently allow every node to obtain all

of the initial values after at most Di time-steps (where Di is the size of the largest

tree in an optimal spanning forest of the network). We conjectured that no protocol

can disseminate information in a fewer number of time-steps – proving this conjecture
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would establish linear iterative strategies as time-optimal methods of disseminating

information in networks.

2. As described in Section 2.4, it is possible for the nodes to calculate their observability

matrices (and the gains Γi) in a distributed manner when the network is noise-free and

all nodes follow the specified protocol. However, using such techniques in networks

with noisy transmissions or with malicious nodes is complicated by the fact that each

node can only obtain uncertain information about the network from its neighbors –

developing methods to minimize or eliminate this uncertainty will be necessary in

order to obtain fully decentralized versions of the linear iterative strategies.

3. In our study of linear iterative strategies in noisy networks, we had each node run the

linear iteration for the smallest number of time-steps required for unbiased estimation

of the desired linear function of the initial values. If we allow each node to run

the linear iteration for more time-steps than this minimum value, each node can

potentially reduce the variance of its estimate (since it is obtaining more information

about the initial state). The variance of the estimate will be a nonincreasing function

of the number of time-steps, and thus the tradeoff between delay and variance can be

taken as a design parameter for a given graph. A quantitative characterization of the

relationship between delay and variance will be the subject of future research.

4. While we were able to obtain characterizations of structural observability and invert-

ibility over finite fields, we do not currently have a similar result pertaining to strong

observability. Obtaining such a characterization would allow us to immediately show

that linear iterative strategies are resilient to malicious nodes even when all operations

and transmissions are performed over finite fields.

5. We provided a checking strategy for each node in the network to detect and overcome

malicious behavior; this strategy requires the node to test up to
(
N
f

)
possibilities when

trying to determine the possible sets of malicious nodes. It is worth noting that this is

equivalent to the brute force method of determining up to f errors in an N -dimensional

real number codeword with distance 2f +1. In the coding theory literature, there exist

efficient ways of performing this check for both structured and random real number

codes (e.g., see [81] and the references therein), and one can potentially exploit those

results to streamline the checking procedure that we have proposed. Similarly, if the

network involves both malicious nodes and noisy transmissions between nodes, then

more complex decoding procedures will have to be developed to identify malicious

behavior. Clearly the line between noise and malicious errors becomes blurred as the

magnitude of the noise increases, which makes it harder to handle such behavior. This

issue have been investigated in the context of real-number error correcting codes in

[81], and we will leave connections to such work for future research.
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6. As discussed in Section 5.6, there are a variety of interesting extensions that can be

pursued within our framework for linear network coding. For example, one can pursue

some of the results from the literature on minimal dynamic inversion (which consider

the problem of designing system inverses of smallest possible dimension [93, 94]) in

order to design decoders for each sink node that are of smallest possible dimension.

Similarly, one can also potentially use results from the literature on partial system

inversion in order to derive conditions on the network topology and to design decoders

that allow sink nodes to recover the source streams without necessarily identifying

and locating the malicious nodes. These extensions (if successful) would reduce the

computational effort needed by the sink nodes in order to successfully recover the

streams of values transmitted by the source nodes.

7. In our current work, we have designed the linear iterative scheme for fixed (time-

invariant) network topologies. Small or intermittent changes in network topology can

be handled within our framework by treating them as faults and using our results

from Chapter 4; however, it will be of interest to extend our results to cases when

the network topology is inherently time varying, with potentially drastic changes in

structure. In the consensus literature, such cases are handled by only requiring the

system to reach consensus asymptotically (as discussed in Chapter 1), and not in finite

time. In the network coding literature, robustness to changes in network topology is

handled by having each node transmit the weights of the linear combination along with

its updated value; after a node receives a sufficient number of values and coefficients,

it can reconstruct the desired information by inverting the matrix of coefficients. It

is an open question as to whether the framework that we have developed in this work

can be extended or modified to handle general time-varying networks.
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APPENDIX

PROPERTIES OF STRUCTURED

LINEAR SYSTEMS OVER FINITE

FIELDS

A.1 Introduction

Recall from Section 1.5.1 that a structured system is one where each entry in the system

matrices is either identically zero, or an independent free parameter from a field F. Certain

properties of such systems can be inferred by examining the graph H associated with the

system. This graph-based analysis will turn out to be quite useful to our discussion on

linear iterative strategies in distributed systems, and so structured system theory will play

a key role in this thesis. However, as mentioned in Chapter 1, almost all of the existing

work on structured systems only deals with the case where the free parameters are chosen

from the field of real numbers (with the analysis being performed over the field of complex

numbers). With this assumption, these previous works rely on tests (such as the Hautus-

Rosenbrock condition for observability) to determine properties of real-valued matrix sets

[41, 52]; however, these proof techniques do not extend to the case where the parameters in

the matrices are chosen from finite fields due to the fact that such fields are not algebraically

closed (as discussed in Section 1.5.1). While we will be able to use these existing results to

derive linear iterative strategies with real-valued transmissions and operations, we will also

be interested in designing linear iterative strategies where nodes can only perform operations

in a finite field. This situation arises in many practical situations, such as in networks with

bandwidth restrictions in the transmission channels between nodes, or networks with nodes

that are limited in the precision of the computations that they perform. In order to design

such strategies, we will first need to develop a theory of structured linear systems over finite

fields, and that is topic of this appendix.

We will start by considering the topic of structural system observability over finite fields,

and then we will investigate the problem of structural system invertibility over finite fields.

Specifically, we will show that if the graph associated with the system satisfies certain

conditions, and if the free parameters for the system are chosen randomly (independently

and uniformly) from the finite field Fq (of size q), then the system will possess certain

properties (such as observability or invertibility) with some probability that increases with

q. For fields of infinite size, our results corroborate the notion of genericness of structural

properties that has been established in the literature, since the system properties will hold
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with probability 1. Our development will also allow us to obtain a characterization of

the generic observability index of a given structured system, which we will define to be

the observability index that is attained with high probability for a random choice of free

parameters; such a characterization does not currently exist in the literature.

In our development, we will make use of the following lemma pertaining to the roots

of a given multivariate polynomial over finite fields (e.g., see [55, 98]). In this lemma, the

total degree of a multivariate polynomial p(ξ1, ξ2, . . . , ξn) is defined as the maximum sum of

the degrees of the variables ξ1, ξ2, . . . , ξn in any term of the polynomial.

Lemma A.1 (Schwartz-Zippel) Let p(ξ1, ξ2, . . . , ξn) be a nonzero polynomial of total de-

gree d with coefficients in the finite field Fq (with q ≥ d). If p is evaluated on an element

(s1, s2, . . . , sn) chosen uniformly at random from F
n
q , then

Pr[p(s1, s2, . . . , sn) = 0] ≤
d

q
.

It is worth noting that tighter bounds can be obtained on the probability of a given

polynomial being zero after a random choice of parameters (e.g., see [55]), and these can

also be applied in the proofs of our results. We will work with the bound provided by the

above lemma for convenience.

A.2 Structural Observability over Finite Fields

We will start by investigating the observability of matrix pairs of the form (A, e′1,N ), where

A is an N × N matrix, and e′1,N is a row-vector of length N with a 1 in its first position

and zeros elsewhere. Matrix A may be structured (i.e., every entry of A is either zero, or an

independent free parameter to be chosen from a field F), or it may be numerically specified.

Our analysis will be based on a graph representation of matrix A, denoted by H, which we

obtain as follows. The vertex set of H is X = {x1, x2, . . . , xN}, and the edge set is given by

E = {(xj , xi) | Aij 6= 0}. The weight on edge (xj, xi) is set to the value of Aij (this can be

a free parameter if A a structured matrix). Note that if A is the weight matrix for a linear

iteration, H is simply the graph of the network G augmented with a self-loop on node xi if

Aii 6= 0.

A.2.1 Observability of a Spanning Tree

We will start by considering a linear system whose graph is a spanning tree. For such

systems, we will show the following result.

Theorem A.1 Consider the matrix pair (A, e′1,N ), where A is an N × N matrix with

elements from a field F of size at least N . Suppose that the following two conditions hold:
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• The graph H associated with A is a spanning tree rooted at x1 with self-loops on every

node.

• The weights on the self-loops are different elements of F for every node, and the

weights on the edges between different nodes are equal to 1.

Then the pair (A, e′1,N ) is observable over the field F.

In the proof of the theorem, we will use the well-known fact that the rank of the

observability matrix for the pair (A, e′i,N ) is equal to the rank of the observability matrix

for the pair (TAT−1, e′1,NT−1), for any invertible matrix T [41].

Proof: [Theorem A.1] Since the graph associated with A is a spanning tree rooted at

x1 (and, in particular, it is acyclic and each node has out-degree equal to 1, except for node

x1), there exists a numbering1 of the nodes such that the A matrix is upper-triangular, with

the self-loop weights on the diagonal [28, 52]. Denote the self-loop weight on node xi by λi.

Since all of the self-loop weights are different, this matrix will have N distinct eigenvalues

(given by λ1, λ2, . . . , λN ), with N corresponding linearly independent eigenvectors. We will

now show that the first element in each of these eigenvectors will be “1”, and then we will

use this fact to prove observability.

Consider the eigenvalue λi. Let xl be any node in the graph with in-degree 0 such

that the path from xl to x1 passes through xi (if the in-degree of xi is zero, we can take

xl = xi). Let ri denote the number of nodes in this path, and reorder the nodes (leaving

x1 unchanged) so that all nodes on the path from xl to x1 come first in the ordering, and

all other nodes come next. Let Pi denote the permutation matrix that corresponds to this

reordering, and note that the matrix PiAP−1
i has the form

PiAP−1
i =

[
Ji Ā1

0 Ā2

]
, (A.1)

for some matrices Ā1 and Ā2. The matrix Ji has the form

Ji =





λ1 1 0 0 · · · 0 0

0 λ2 1 0 · · · 0 0

0 0 λ3 1 · · · 0 0

0 0 0 λ4 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · λri−1 1

0 0 0 0 · · · 0 λri





,

1This renumbering simply corresponds to performing a similarity transformation on A with a permutation
matrix, and thus does not change the eigenvalues of the matrix.
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where λ1, λ2, . . . , λri
are different elements of F. This matrix has ri distinct eigenvalues

(given by the λt’s) in the field F, and thus the matrix has ri eigenvectors over F. Note that

there exists some t ∈ {1, 2, . . . , ri} such that λt = λi (where λi is the eigenvalue that we are

considering in matrix A). It is easy to verify that the eigenvector vt of Ji associated with

the eigenvalue λt is given by

vt =
[
1 (λt − λ1) (λt − λ1)(λt − λ2) · · ·

∏t−1
s=1(λt − λs) 0 · · · 0

]′
,

and thus the eigenvector corresponding to eigenvalue λt for the matrix PiAP−1
i in Equa-

tion (A.1) is given by

wt =

[
vt

0

]

.

Next, note that the eigenvector corresponding to eigenvalue λt (or equivalently, λi) for

matrix A will be given by Piwt. Since Pi is a permutation matrix, and node x1 was left

unchanged during the permutation, the first row of Pi is given by the vector e′1,N . This

means that the first element of the eigenvector Piwt will be “1” (based on the matrices wt

and vt shown above). Since the above analysis holds for any eigenvalue λi, we can conclude

that all eigenvectors for the matrix A will have a “1” as their first element. Let V be

the matrix whose columns are these eigenvectors (so that each entry in the first row of V

is “1”); since the eigenvectors are linearly independent, this matrix will be invertible over

the field F. We thus have V−1AV = Λ, where Λ = diag(λ1, λ2, . . . , λN ), and furthermore,

e′1,NV = 1′
N .

Now, consider the observability matrix for the pair (Λ,1′
N ), given by





1′
N

1′
NΛ

1′
NΛ2

...

1′
NΛN−1





=





1 1 1 · · · 1

λ1 λ2 λ3 · · · λN

λ2
1 λ2

2 λ2
3 · · · λ2

N
...

...
...

. . .
...

λN−1
1 λN−1

2 λN−1
3 · · · λN−1

N





;

this is a Vandermonde matrix in the parameters λ1, λ2, . . . , λN [99]. It is well-known that

such matrices are invertible if and only if all of the parameters are distinct, and thus the

above observability matrix has rank N over F. This means that the pair (A, e′1,N ) will also

be observable.

A.2.2 Observability of a Spanning Forest

We will now generalize the discussion in the previous section to the case where the graph of

the system is a spanning forest (i.e., it consists of disjoint trees rooted at certain nodes). The

following result will later provide us with a way to obtain a tight bound on the observability

124



index of a given structured matrix pair.

Theorem A.2 Consider the matrix pair (A,C), where A is an N×N matrix with elements

from a field F, and C is a p×N matrix of the form C =
[
ei1,N ei2,N · · · eip,N

]′
. Suppose

the graph H associated with the matrix A satisfies the following two conditions:

• The graph H is a spanning forest rooted at {xi1 , xi2 , . . . , xip}, with self-loops on every

node.

• No two nodes in the same tree have the same weight on their self-loops, and the weights

on the edges between different nodes are equal to 1.

Let D denote the maximum number of nodes in any tree in H. Then, the pair (A,C) is

observable with observability index equal to D.

Proof: Let T1,T2, . . . ,Tp denote the trees in H, and let ri denote the number of nodes

in tree Ti (so that N = r1 + r2 + · · ·+ rp). Since the graph associated with A is a spanning

forest rooted at {xi1 , xi2 , . . . , xip}, there exists a numbering of the nodes such that the pair

(A,C) has the form





A1 0 0 · · · 0

0 A2 0 · · · 0

0 0 A3 · · · 0
...

...
...

. . .
...

0 0 0 · · · Ap





, C =





e′1,r1
0 0 · · · 0

0 e′1,r2
0 · · · 0

0 0 e′1,r3
· · · 0

...
...

...
. . .

...

0 0 0 · · · e′1,rp





,

where the ri × ri matrix Ai corresponds to the tree Ti. The observability matrix OD−1 for

this pair is given by

OD−1 =





C

CA
...

CAD−1




=





e′1,r1
0 · · · 0

0 e′1,r2
· · · 0

...
...

. . .
...

0 0 · · · e′1,rp

e′1,r1
A1 0 · · · 0

0 e′1,r2
A2 · · · 0

...
...

. . .
...

0 0 · · · e′1,rp
Ap

...
...

. . .
...

e′1,r1
AD−1

1 0 · · · 0

0 e′1,r2
AD−1

2 · · · 0
...

...
. . .

...

0 0 · · · e′1,rp
AD−1

p





,
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and if we denote the observability matrix for the pair (Ai, e
′
1,ri

) as Oi,D−1, it is easy to see

that

rank(OD−1) =

p∑

i=1

rank(Oi,D−1) .

Since each matrix Ai is a spanning tree rooted at the first node in Ai, and this matrix

satisfies the conditions in Theorem A.1, we see that the pair (Ai, e
′
1,ri

) will be observable;

specifically, the matrix Oi,ri−1 will have rank equal to ri. Since D is the maximum value of

all the ri’s, the above expression for the rank of the observability matrix becomes

rank(OD−1) =

p∑

i=1

ri = N ,

which concludes the proof of the theorem.

A.2.3 Observability of Arbitrary Graphs

So far, we have shown that if the graph associated with A is a spanning forest rooted at

certain nodes, with self-weights that are different elements of a field F and other edge weights

equal to 1, then the pair (A,C) will be observable. We will now consider matrices A with

arbitrary graphs (not necessarily spanning forests). The following corollary is immediate

from the previous section.

Corollary A.1 Consider the matrix pair (A, e′1,N ), where A is an N×N structured matrix

(i.e., every entry of A is either a fixed zero or an independent free parameter from a field

F), and C is a p × N matrix of the form C =
[
ei1,N ei2,N · · · eip,N

]′
. Suppose the

graph H associated with the matrix A contains a path from every node to at least one node

in the set {xi1 , xi2 , . . . , xiN }, and furthermore, every node has a self-loop (i.e., the diagonal

elements of A are free parameters). Let H̄ be a subgraph of H that is a spanning forest

rooted at {xi1 , xi2 , . . . , xip}, with the property that the size of the largest tree is minimal over

all possible subgraphs that are spanning forests rooted at those nodes. Let D denote the size

of the largest tree in H̄. Then if F has size at least D, there exists a choice of parameters

from F such that the observability matrix corresponding to the pair (A,C) has rank N over

that field, with observability index equal to D.

Proof: Consider the spanning forest H̄, and set the values of all parameters correspond-

ing to edges that are not in H̄ to zero, and set the values of all parameters corresponding

to edges between different nodes in H̄ to “1”. Finally, select the values of the parameters

corresponding to self-loops to be such that no two nodes in the same tree of H̄ have the

same value (this is possible since the size of the field is at least D). This produces a matrix

A satisfying the conditions in Theorem A.2, and thus the pair (A,C) is observable with

this choice of parameters (with observability index equal to D).
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The above corollary shows that one can explicitly choose parameters from a field of size

D or greater in order to make the pair (A,C) observable. However, we will also be interested

in the case where each nonzero parameter in A is chosen randomly (i.e., independently and

uniformly) from field Fq of size q. In this case, we would like to characterize the probability

that the pair (A,C) will be observable, and this is the subject of the following theorem.

Theorem A.3 Consider the matrix pair (A,C), where A is an N × N structured matrix

(i.e., every entry of A is either a fixed zero or an independent free parameter from the field

Fq), and C is a p × N matrix of the form C =
[
ei1,N ei2,N · · · eip,N

]′
. Suppose the

graph H associated with the matrix A contains a path from every node to at least one node

in the set {xi1 , xi2 , . . . , xip}, and furthermore, every node has a self-loop (i.e., the diagonal

elements of A are free parameters). Let H̄ be a subgraph of H that is a spanning forest

rooted at {xi1 , xi2 , . . . , xip}, with the property that the size of the largest tree is minimal over

all other subgraphs that are spanning forests rooted at those nodes. Let D denote the size of

the largest tree in H̄. If each free parameter in A is chosen randomly (independently and

uniformly) from the field Fq (of size q ≥ (D − 1)(N − p + 1 − D
2 )), then with probability at

least 1− 1
q
(D−1)(N −p+1− D

2 ), the following two properties will hold: (i) the observability

matrix for the pair (A,C) will have rank N , and (ii) the observability index will be upper

bounded by D.

Proof: Let the free parameters of matrix A be given by λ1, λ2, . . . , λl ∈ Fq (note

that these λi’s are no longer used to simply refer to the diagonal entries, as in the proof of

Theorem A.1, but to all nonzero entries in the matrix). When convenient, we will aggregate

these parameters into a vector λ ∈ F
l
q. With this notation, the matrix A can also be denoted

as A(λ) to explicitly show its dependence on the free parameters. Any particular choice

of the free parameters will be denoted by λ∗ =
[
λ∗

1 λ∗
2 · · · λ∗

l

]
, with corresponding

numerical matrix A(λ∗).

If the graph of matrix A satisfies the conditions in the theorem, then we know from

Corollary A.1 that there exists a choice of parameters λ∗ ∈ F
l
q (where q ≥ N) such that the

observability matrix

O(λ∗)D−1 =





C

CA(λ∗)

CA2(λ∗)
...

CAD−1(λ∗)





has rank N over the field Fq. This means that the observability matrix O(λ∗)D−1 contains an

N×N submatrix (denoted by Z(λ∗)) whose determinant will be nonzero. Suppose (without

loss of generality) that Z(λ∗) is constructed by taking the first N rows of O(λ∗)D−1 that

form a linearly independent set. We will now derive an expression for the determinant of

Z(λ) in terms of the symbolic parameters λ.
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First, note that the first p rows of Z(λ∗) are given by the matrix C. Next, recall from

Section 1.5 that every set of rows of the form CAk(λ∗) must increase the rank of the

observability matrix by at least one. In the worst case, each such set of rows increases

the rank by exactly one, and the last set of rows CAD−1(λ∗) contributes the rest of the

rank. Thus, in the worst case, matrix Z(λ∗) has p rows from C, one row from each of

CA(λ∗),CA2(λ∗), . . . ,CAD−2(λ∗), and N − p − (D − 2) rows from CAD−1(λ∗). Next,

consider the matrix Z(λ) (which is obtained by reverting the special choice of parameters

λ∗ back to the original symbolic parameters). The determinant of Z(λ) will therefore be a

nonzero polynomial in these parameters over the field Fq (since this polynomial is nonzero

after a specific choice of parameters from that field). Specifically, the determinant of an

N × N matrix is a sum of products, where no two entries in any product come from the

same row or column of that matrix. Thus, each product in detZ(λ) will consist of an entry

from each row of Z(λ). Now, note that the matrix CAk(λ) is simply a set of rows from

Ak(λ) (from the form of C), and recall that entry (i, j) in Ak(λ) is a polynomial in λ where

every term corresponds to the product of weights on a path of length k from node xj to xi

(i.e., every term is a product of k parameters from λ). Since Z(λ) consists of at least one

row from matrices of the form CA(λ),CA2(λ), . . . ,CAD−2(λ), and at most N − p−D + 2

rows from CAD−1(λ), we see that each term in detZ(λ) will be a product of at most

1 + 2 + · · · + D − 2 + (N − p − D + 2)(D − 1) = (D − 1)

(
N − p −

D

2
+ 1

)

free parameters. Thus, detZ(λ) is a polynomial of total degree no greater than (D −

1)
(
N − p − D

2 + 1
)

and as noted earlier, it is not identically zero over the field Fq. If we

now choose a set of parameters (λ∗
1, λ

∗
2, . . . , λ

∗
l ) independently and uniformly from F

l
q, we

can apply the Schwartz-Zippel lemma (Lemma A.1) to obtain

Pr[detO(λ∗) = 0] ≤
(D − 1)

(
N − p − D

2 + 1
)

q
,

or equivalently,

Pr[detO(λ∗) 6= 0] ≥ 1 −
(D − 1)

(
N − p − D

2 + 1
)

q
.

Since this particular choice of observability matrix has full rank after D time-steps, the

observability index for this choice of parameters is upper bounded by D, which concludes

the proof of the theorem.

Remark A.1 Note that in the worst case, D = N − (p − 1) (i.e., the spanning forest

consists of p − 1 isolated vertices, along with a single tree rooted at some vertex). In this

case, the observability index meets the upper bound N − p + 1 stated in Section 1.5 (where

p = rank(C)). In general, however, the characterization of the observability matrix provided

by the above theorem will be much smaller than this trivial upper bound.
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Remark A.2 While the above theorem only states that the observability matrix is upper

bounded by D, we can also conjecture that the observability index will be exactly equal to D;

proving this conjecture appears to be rather difficult, however.

Now that we have a characterization of the observability of structured systems over

finite fields, we turn our attention to the problem of structured invertibility.

A.3 Structural Invertibility over Finite Fields

Consider the linear system

x[k + 1] = Ax[k] + Bu[k]

y[k] = Cx[k] , (A.2)

where x ∈ F
N ,u ∈ F

m,y ∈ F
p for some field F and p ≥ m. Furthermore, assume that the

matrices B and C are of the form

B =
[
ei1,N ei2,N · · · eim,N

]
, C =





e′j1,N

e′j2,N
...

e′jp,N





for some sets of indices {i1, i2, . . . , im} and {j1, j2, . . . , jp}; in other words, we assume that

B has a single “1” in each column (and at most one “1” in each row), and C has a single

“1” in each row (and at most one “1” in each column).2 We assume that A is an N × N

matrix with entries from the field F. As described in Section A.2, A is said to be structured

if every entry of A is either zero or an independent free parameter (to be chosen from a

field F).

The transfer function matrix of system (A.2) is given by T(z) = C(zIN −A)−1B. When

the matrix A is numerically specified, the system is said to be invertible if T(z) has rank

m over the field of rational functions in z (with coefficients from F). Recall that the matrix

pencil of the set (A,B,C) is given by

P(z) =

[
A− zIN B

C 0

]
.

The rank of the transfer function matrix can be related to the rank of the matrix pencil of the

system by using the following lemma from [55]; this lemma was also derived independently

2This form corresponds to having each sensor and actuator in the system measuring or affecting only
a single state variable. Linear systems of this form commonly occur in practice (e.g., see [41]), and in
particular, are applicable to the linear iterative strategies studied in this thesis.
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in the context of linear structured systems (with real-valued parameters) in [54].

Lemma A.2 ([54, 55]) Consider the linear system given by Equation (A.2). For this

system,

rank
(
C(zI −A)−1B

)
= rank

[
A− zI B

C 0

]

− N .

Note that the matrix pencil P(z) has N + m columns, and thus if the transfer function

matrix T(z) is to have rank m over the field of rational functions in z (i.e., if it is of full

column rank), then the matrix pencil P(z) must be of rank N + m over that field (i.e., it

must also be of full column rank). Note that this lemma applies regardless of the field F.

Our analysis of structured system invertibility over finite fields will be based on a graph

representation of the matrix set (A,B,C), denoted by H, which we obtain as follows.

The vertex set of H is X ∪ U ∪ Y, where X = {x1, x2, . . . , xN} is a set of state vertices,

U = {u1, u2, . . . , um} is a set of input vertices, and Y = {y1, y2, . . . , ym} is a set of output

vertices. The edge set of H is given by E = Exx ∪ Eux ∪ Exy, where

• Exx = {(xj , xi)|Aij 6= 0} is the set of edges corresponding to interconnections between

the state vertices,

• Eux = {(uj , xi)|Bij 6= 0} is the set of edges corresponding to connections between the

input vertices and the state vertices, and

• Exy = {(xj , yi)|Cij 6= 0} is the set of edges corresponding to connections between the

state vertices and the output vertices.

The weight on edge (xj, xi) is set to the value of Aij (this can be a free parameter if A

is a structured matrix). Note that if A is the weight matrix for a linear iteration, H is

simply the graph of the network G, augmented with self-loops on every node and with a

set of input and output vertices (each with a single outgoing or incoming edge to a state

vertex). We will now provide a graph-based analysis of invertibility over finite fields; our

development will be similar to the derivation in [55], which considered the probability of a

linear network code being feasible when the coefficients are chosen at random from a finite

field. However, the bounds that we obtain in our derivation will be slightly different than

the bounds in [55], due to differences in the forms of the systems that are considered.

A.3.1 Invertibility of Systems Whose Graphs Are Linkings

We start by considering a system (A,B,C) whose graph H is an m-linking from U to Y

(through some state vertices) along with a set of isolated state vertices. We will show that

such systems are invertible regardless of the choice of field.
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Theorem A.4 Consider the matrix set (A,B,C), where the entries in the N × N matrix

A are elements of a field F, the N × m matrix B has a single “1” in each column (and at

most one “1” in each row), and the p × N matrix C has a single “1” in each row (and at

most one “1” in each column). Suppose that the following two conditions hold:

• The graph H associated with (A,B,C) is a disjoint union of an m-linking from the

inputs to the outputs and a set of isolated state vertices (with the exception of possible

outgoing edges to output vertices).

• The weights on the edges involved in the linking are all equal to “1”, and the weights

on the self-loops are all equal to zero.

Then the system given by (A,B,C) is invertible over the field F.

Proof: Consider the m disjoint paths that constitute the linking from the inputs to the

outputs, and let ri denote the number of state vertices that are involved in the path from

input vertex ui to output vertex yi (for i = 1, 2, . . . ,m). Note that the inputs and outputs

can be renumbered accordingly for this to be possible. We will let r = r1 + r2 + . . . + rm.

Without loss of generality, we can assume that the matrix pencil for the set (A,B,C) has

the form

P(z) =

[
A− zIn B

C 0

]

=





−zIN−r 0 0 · · · 0 0 0 · · · 0

0 J1(z) 0 · · · 0 er1,r1 0 · · · 0

0 0 J2(z) · · · 0 0 er2,r2 · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · Jm(z) 0 0 · · · erm,rm

C̄ 0 0 · · · 0 0 0 · · · 0

0 e′1,r1
0 · · · 0 0 0 · · · 0

0 0 e′1,r2
· · · 0 0 0 · · · 0

...
...

...
. . .

...
...

...
. . .

...

0 0 0 · · · e′1,rm
0 0 · · · 0





,
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where the ri × ri matrix Ji(z) corresponds to the state vertices involved in the i–th path in

the linking and has the form

Ji(z) =





−z 1 0 0 · · · 0

0 −z 1 0 · · · 0

0 0 −z 1 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · 1

0 0 0 0 · · · −z





.

The matrix −zIN−r corresponds to the isolated vertices in H, and the matrix C̄ represents

the portion of C associated with those vertices. The above form for the matrix pencil can

always be obtained by a simple permutation of the state vertices, which does not change the

rank of the pencil (or the transfer function matrix). The rows and columns of this matrix

pencil can further be rearranged (without affecting the rank) to produce a matrix of the

form 



−zIN−r 0 0 · · · 0

0 P1(z) 0 · · · 0

0 0 P2(z) · · · 0
...

...
...

. . .
...

0 0 0 · · · Pm(z)

C̄ 0 0 · · · 0





, (A.3)

where

Pi(z) =

[
Ji(z) eri,ri

e′1,ri
0

]
.

Based on the form of matrix Ji(z) given above, one can readily verify that Pi(z) is non-

singular over the field of rational functions in z (with coefficients from F); in fact, the

determinant of Pi(z) is equal to 1. Since each Pi(z) is an (ri + 1)× (ri + 1) matrix, we see

that the last r + m columns of the matrix (A.3) will be linearly independent. Finally, note

that the first N − r columns of this matrix are also guaranteed to be linearly independent

over the field of rational functions in z due to the matrix −zIN−r. Thus, matrix (A.3) has

rank N + m over the field of rational functions in z, which means that the matrix pencil

will also have rank N + m. From Lemma A.2, we see that the system is invertible.

A.3.2 Invertibility of Arbitrary Graphs

So far, we have shown that if the graph of the system (A,B,C) consists of an m-linking from

the inputs to the outputs and a set of isolated vertices, then the system will be invertible

(regardless of the choice of field F). In this section, we extend this result to systems that
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have more general graphs. We start with the following corollary, which is immediate from

the previous discussion.

Corollary A.2 Consider the matrix set (A,B,C), where A is a structured matrix (i.e.,

every entry of A is either a fixed zero or an independent free parameter to be chosen from

an arbitrary field F), the N ×m matrix B has a single “1” in each column (and at most one

“1” in each row), and the p × N matrix C has a single “1” in each row (and at most one

“1” in each column). Suppose that graph H associated with (A,B,C) contains an m-linking

from the inputs to the outputs. Then there exists a choice of free parameters from F so that

the system is invertible.

Proof: Since there is an m-linking from the input vertices to the output vertices in H,

it is possible to find a subgraph of H that contains only those vertices and edges that are

involved in the linking. Now, set the values of all parameters corresponding to edges that

are not in this subgraph to zero, and set the values of all parameters corresponding to the

edges in the linking to 1. Finally, set all of the parameters corresponding to the self-loops

to be zero. This produces a matrix A satisfying the conditions in Theorem A.4, and thus

the system (A,B,C) is invertible with this choice of parameters.

The above corollary shows that one can explicitly choose parameters from a field of

arbitrary size in order to make the system (A,B,C) invertible. However, as in Section A.2,

we will also be interested in the case where each nonzero parameter in A is chosen randomly

(i.e., independently and uniformly) from the field Fq of size q. In this case, we would like

to characterize the probability that the system (A,B,C) will be observable, and this is the

subject of the following theorem.

Theorem A.5 Consider the matrix set (A,B,C), where A is a structured matrix (i.e.,

every entry of A is either a fixed zero or an independent free parameter to be chosen from

the field Fq of size q ≥ N − m), the N × m matrix B has a single “1” in each column

(and at most one “1” in each row), and the p × N matrix C has a single “1” in each row

(and at most one “1” in each column). Suppose that the graph H associated with (A,B,C)

contains an m-linking from the inputs to the outputs. Then, if each free parameter in A is

chosen randomly (independently and uniformly) from the field Fq, the probability that the

system (A,B,C) will be invertible is at least 1 − N−m
q

.

Proof: Let the free parameters of matrix A be given by λ1, λ2, . . . , λl ∈ Fq. When con-

venient, we will aggregate these parameters into a vector λ ∈ F
l
q. With this notation, the ma-

trix A can also be denoted as A(λ) to explicitly show its dependence on the free parameters.

Any particular choice of the free parameters will be denoted by λ∗ =
[
λ∗

1 λ∗
2 · · · λ∗

l

]
,

with corresponding numerical matrix A(λ∗). The matrix pencil corresponding to these

parameters will be denoted by P(λ, z).
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Next, note from Corollary A.2 that if the graph H contains an m-linking from the inputs

to the outputs, then there exists a choice of free parameters λ∗ ∈ F
l
q so that the matrix

pencil P(λ∗, z) will have rank N + m. This means that there exists an (N + m)× (N + m)

submatrix of P(λ∗, z) that is invertible; denote this submatrix by Z(λ∗, z), and note that

detZ(λ, z) will be a polynomial in λ and z that is not identically zero. To obtain a more

careful characterization of this polynomial, note from the structure of P(λ, z) that the last

m columns of Z(λ, z) must each have a single “1” in some entry, and zeros elsewhere. Since

the determinant of a matrix is a sum of products of the entries in the matrix, where no two

entries in any product are from the same row or column, we see that the rows corresponding

to those 1’s do not contribute any parameters to detZ(λ, z). Thus, there are at most N −m

rows of Z(λ, z) that can contribute free parameters to the determinant. We can thus write

detZ(λ, z) =
∑

τi1
+τi2

+...+τil
+τiz≤N−m

ci1,i2,...,il,izλ
τi1
1 λ

τi2
2 . . . λ

τil

l zτiz ,

where the exponents on the free parameters are either 0 or 1, the exponent on z is nonnega-

tive, and ci1,...,il,iz ∈ {−1, 0, 1} for each valid choice of exponents. We can equivalently write

this as a polynomial in z, with coefficients that are polynomials in the free parameters λ,

and since the determinant is not identically zero, at least one of these coefficient polynomi-

als is not identically zero. Denote any one of these nonzero coefficient polynomials by c(λ),

and note that the total degree of this polynomial will be at most N−m (since it will contain

at most N − m free parameters). If c(λ∗) is nonzero for some choice of free parameters

λ∗ ∈ F l
q, then the determinant of Z(λ∗, z) will also be nonzero, and thus the matrix pencil

P(λ∗, z) will have rank N + m. To calculate the probability of c(λ∗) being nonzero for a

random choice of parameters, we use the Schwartz-Zippel lemma (Lemma A.1) to obtain

Pr[c(λ∗) = 0] ≤
N − m

q
;

since

Pr[rank(P(λ∗, z)) < N + m] ≤ Pr[detZ(λ∗, z) = 0] ≤ Pr[c(λ∗) = 0],

we obtain

Pr[rank(P(λ∗, z)) = N + m] ≥ 1 −
N − m

q
.
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