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Switched Control
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Better handling of modelling uncertainty

Stabilizes systems that cannot be stabilized otherwise



Fault Tolerance

Fault tolerance describes ability to:

Withstand internal faults

Produce overall desirable “behavior”

Necessary or desirable in:

Life-threatening circumstances (military, transportation, medical)

Systems in inaccessible environments (space missions)

Reliable systems from unreliable components (faster, less expensive, less power)

Universal approach: Modular Redundancy

Problems:
Replication
Voter reliability
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Fault Detection and Correction in Switched Controllers (1)
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Switched linear controller given by:

S : x[k + 1] = Aσ[k]x[k] + Bσ[k]u[k] , x[k] ∈ R
n

Goal: Detect and correct transient state-transition faults



Fault Detection and Correction in Switched Controllers (2)

Embed S in a redundant system of dimension η = n + d:

H : xh[k + 1] = Aσ[k]xh[k] + Bσ[k]u[k] , xh[k] ∈ R
η

Enforce linear encoding and decoding:

x[k] = Lxh[k]

xh[k] = Gx[k]

Fault detection: Choose parity check matrix P such that:
If there is no error, Pxh[k] = 0

If xh[k] is not in the column space of G, Pxh[k] 6= 0



Characterization of Redundant Controller Implementations

S : x[k + 1] = Aσ[k]x[k] + Bσ[k]u[k] , x[k] ∈ R
n

H : xh[k + 1] = Aσ[k]xh[k] + Bσ[k]u[k] , xh[k] ∈ R
η

H is a redundant implementation of S iff H is similar to the following standard
form:

xr[k + 1] =

[

Aσ[k] A12σ[k]

0 A22σ[k]

]

︸ ︷︷ ︸

Arσ[k]
=T−1Aσ[k]T

xr[k] +

[

Bσ[k]

0

]

︸ ︷︷ ︸

Brσ[k]
=T −1Bσ[k]

u[k]

PT =
[

0 Id

]

≡ Pr

for some sets of matrices A12σ[k]
and A22σ[k]

, and some invertible T .



Non-Concurrent Detection and Identification (1)

Step 0
 Step N-t


Error


Step N


Motivation: relax checking requirements (e.g., periodic checking)

Design redundant implementation so that parity check at time N allows detection
and identification of errors in [0, N − 1]

For each error (j), need to identify:
affected state variable (eij

)

value of error (vj)

time-step (N − tj)



Non-Concurrent Detection and Identification (2)

Additive error model: fault at time-step N − t causes

xf [N − t] = xh[N − t]
︸ ︷︷ ︸

fault-free

+vei

With D errors, faulty state at step N given by

xf [N ] = xh[N ] +
D∑

j=1






vj





N−1∏

i=N−tj

Aσ[i]



 eij







Parity check at step N yields

s[N ] ≡ Pxf [N ] =

D∑

j=1






vjP





N−1∏

i=N−tj

Aσ[i]



 eij









Non-Concurrent Detection and Identification (3)

Theorem

If H is a redundant implementation of S, syndrome s[N ] can be expressed as

s[N ] =

D∑

j=1






vj





N−1∏

i=N−tj

A22σ[i]



Peij







If all A22σ[k]
= A22, syndrome is independent of switching sequence

s[N ] =
D∑

j=1

{

vjA
tj

22Peij

}



Syndrome Generation

Syndrome s[N ] is a linear combination of D columns of

S =
[

P A22P A
2
22P · · · A

N−1
22 P

]

To detect D errors, need all sets of D columns of S to be linearly independent
Require at least D extra state variables

To identify D errors, need all sets of 2D columns of S to be linearly independent
Require at least 2D extra state variables



Construction of a Redundant Implementation (1)

Fact: Any 2D columns of V are linearly independent iff wi’s are distinct.

V(w1, w2, . . . , wρ) =









w1 w2 . . . wρ

w2
1 w2

2 . . . w2
ρ

...
...

. . .
...

w2D
1 w2D

2 . . . w2D
ρ









Basic idea: Make S look like a Vandermonde matrix

S =
[

P A22P A
2
22P · · · A

N−1
22 P

]

Define Λ = diag(w, w2, w3, . . . , w2D−1, w2D)

Λk
V(w1, w2, . . . , wρ) is also a Vandermonde matrix



Construction of a Redundant Implementation (2)

Construction:
2D additional state variables (d = 2D)
Select appropriate parameters w, w1, w2, . . . , wn+d

Λ = diag(w, w2, w3, . . . , w2D−1, w2D) , M = V(wn+1, wn+2, . . . , wn+d)

In standard implementation, set A22 = M
−1ΛM , A12σ[k]

= 0

For similarity transformation, use T =

[

In 0

C I2D

]

where

C = −M
−1

V(w1, w2, . . . , wn)

Theorem: Resulting implementation allows non-concurrent identification of D
errors (detection of 2D errors)

Efficient decoding of errors
Modified Peterson-Gorenstein-Zierler (PGZ) algorithm



Example (1)

Switched system: x[k + 1] = Aσ[k]x[k] + Bσ[k]u[k], σ[k] ∈ {1, 2}

A1 =






−1/2 1 0

1/4 0 1

1/5 0 0




 , B1 =






1

0

1




 ;

A2 =






−1/5 1 0

1/3 0 1

1/9 0 0




 , B2 =






1.5

1

0




 .

Goal: Protect against two errors in [0, 4] ⇒ use 4 additional state variables

Choose {w1, w2, w3, w4, w5, w6, w7, w} = {−1, 1,−3, 3,−5, 5, 7, 1
2
}



Example (2)

Construct required matrices

M = V(w4, w5, w6, w7)








3 −5 5 −7

9 25 25 49

27 −125 125 −343

81 625 625 2401








Λ = diag(w, w
2
, w

3
, w

4)








1/2 0 0 0

0 1/4 0 0

0 0 1/8 0

0 0 0 1/16








C = −M−1V(w1, w2, w3)








0.300 −0.400 0.400

−0.180 0.080 −0.720

−0.080 0.080 −0.120

0.057 −0.029 0.171








A22 = M−1ΛM








0.604 −0.440 0.928 −0.325

−0.084 0.580 −0.037 0.846

−0.104 0.129 −0.074 0.100

0.030 −0.154 0.014 −0.173










Example (3)

Resulting fault-tolerant implementation:

xh[k + 1] =

[

Aσ[k] 0

CAσ[k] − A22C A22

]

xh[k] +

[

Bσ[k]

CBσ[k]

]

u[k]

P =
[

−C I2D

]

Errors affect variable 2 at time step 2, and variable 6 at time step 4:















0

0

0

0

0

0

0















⇒















1.50

1.00

0

0.05

−0.19

−0.04

0.06















⇒
















1.25

0.88

1.30

0.74

−1.13

−0.23

0.28
















⇒















2.12

2.72

0.14

−0.30

−0.29

0.01

0.08















⇒
















2.65

0.67

1.42

1.15

−1.46

0.56

0.38


















Example (4)

Compute syndrome

s[4] = Pxf [4] =








0.047

−0.015

0.889

0.005








Use PGZ to find the corresponding linear combination of 2 columns of

S =
[

P A22P A
2
22P A

3
22P A

4
22P

]

s[4] = 0.9P(:, 6) + 0.5(A2
22P)(:, 2)

⇒ Error at time step 4 affected variable 6 by value 0.9, and error at time step 2
affected variable 2 by value 0.5



Summary

Reflection of hardware faults through appropriate error models

Systematic embedding of switched controllers into redundant systems
Completely characterizes non-concurrent fault identification
Construction of fault-tolerant system through use of Vandermonde matrices

Future work:
Robustness to finite precision effects
Utilize flexibility in choice of A12σ[k]

Investigate designs that minimize redundant arithmetic operations
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