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M otivation

® Consider a linear system S of the form

Tr+1 = Az + Bug

yr = Cxi + Duy

with state vector x € R"™, output y € RP, and unknown input v € R™

® Unknown inputs can be used to model
@ Faults
@ Parameter uncertainties
@ Noise with unknown statistics
@ Control inputs generated by controllers in decentralized control

® Can we (asymptotically) estimate the state of the system using only the outputs?
® Note: known inputs are easy to handle, so we omit them




Previous Wor k

® Problem has been investigated extensively over the past few decades

@ Wang, Davison, Dorato, Hautus, Kudva, Viswanadham, Ramakrishna,
Darouach, Zasadzinski, Xu, Hou, Muller, Patton, Yang, Wilde, Valcher, ...

® These investigations typically focus on zero-delay observers
@ i.e., use yi to estimate xy

@ Existence conditions for such observers are quite strict

® Conditions can be relaxed by using delayed outputs
@ Jin and Tahk (1997), Saberi, Stoorvogel and Sannuti (2000)

® Here, we present a design procedure for reduced-order observers with delays
@ Allows us to treat full-order observers as a special case




Praiminaries

® Output of system over « + 1 time-steps is

-yk- el D 0 0--’ka

Yk+1 CA CB D 0 Uk +1
= Tk +

| Yk+o | | CAY _CAa_lB CA*—2B ... D] |ugta.




Directly Measurable States

What states can we directly measure from the output over o + 1 time-steps?

® Let 5, =rank [@a Ma} — rank [Ma}
® Theorem: There are 3, linear functionals of the state that are directly available
from the output.

@® Proof:
@ There are 3, linearly independent columns in the matrix ©., that cannot be

written as a linear combination of columns in M,
@ Thus there exists a matrix P with 3, rows such that PM, = 0 and P©, has

full row-rank, which gives

PYkzzkz—i—a — P@axk: + PMaUk:k—l—oz
= P@axk;




Observing the Other States

@ Choose a matrix H so that 7 = [PSO‘] IS square and invertible

@ Consider an observer of the form

2k+1 = Bz + FYkkto ,
Y = 2k + GYkikta

where E, F and G are chosen so that ¢, — Hxx as k — oo
® An estimate of the original states can then be obtained as

PO,k

A -1
T =T
ka;

PYk:k+a] 71

Vi

® Can obtain a full-order observer by choosing P to be the empty matrix and 'H = I,




Observer Design (1)

How do we choose F, F and G?
® The observer error is given as

ek+1 = Yrt1 — Hop4a

= Ezp + FYkkta + GYet1:k4ar1 — HAzr — HBug

@ Partition F and G as

F=|r R

G=la, G

Fal

]

where each F; and G; are of dimension (n — 3) X p

® Define K = [Fo _EG, Fi— EG:i+ Go

Fo — EGa + Ga Ga}



Observer Design (2)

® After some algebra, observer error can be written as

extr1 = Fep + ([O E} — [Agl A22} + K [Cbl <I>2D T xy

+ <KMa+1 — [HB O}) Uk:k+a+1

where [Am AQQ} = HAT ' and [cbl (I)Q} = Q4171
@ To force the error to go to zero, we need:
@ Input decoupling: KMy4+1 — [HB O} =0
@ State decoupling:

O:A21 —K(I)l
E = Ao — K&

@ F must be a stable matrix




| nput Decoupling

KM, .\ = [HB 0} (1)

Theorem: There exists a matrix K satisfying (1) if and only if

rank [Mo41] —rank [M,] =m .

® This is the Massey-Sain condition for system inversion with delay o + 1 (1969)
© We must invert the inputs in order to estimate the states

® The larger the delay, the better the chance of satisfying the condition

@ Upper bound on inversion delay provided by Willsky (1974) as a = n — nullity[ D]




Parametrizing the Gain

® The gain K must simultaneously satisfy

KMy4+1 = [HB O} (input decoupling)
K& = As (state decoupling)

@ To satisfy the above, we show that K can be parametrized as

AN

K = [Ll—_r?Lz e HB}J,

for some matrices Li, Lo and J
@ K is a free matrix




Stability (1)

® The second state-decoupling condition was

E = Ay — KPs

® Using the parametrization of K, we get
E = Ay — [L1 ~ KL, K HB} J Do

@ We show that 7®, =

v

0 .
] for some matrix v

@ This leads to

E = Ags — I/(\' HB_I/

= Ago — I? HB_ lm]

V2

= (AQQ — HBVQ) — f?vl



Stability (2)

® For F to be stable, (A22 — HBvs, 1) must be detectable

Theorem: The pair (A22 — HBuvs, 1) is detectable if and only if

2z — A —B
C D

rank =n+m, V2z€C, |z|>1.

® Putting this together with the inversion condition, we get

Theorem: The system S has an observer with delay « if and only if
1. rank [My41] —rank[M,] = m,

2 — A —B
D

2. rank =n+m, Vz€C, |z|>1.




Stable I nversion

® In fact, the second condition is equivalent to the existence of a stable inverse
(Moylan, 1977)

® Thus, we get

Theorem: The system S has a (delayed) observer if and only if

2 — A —B
D

rank =n+m, V2z€C, |z|>1.




Final Observer Equations

@ Choose K to make E = (A22 — HBu2) — K, stable
® SetK=|L-KL, R HB|J

@ Map this K matrix back to F and G via
K=|F—EGy Fi—EGi+Go — Fo—EGa+Gai Gal
@ Mapping is not unique
® Final observer given by

2e+1 = Bz + FYkkta
Ve = 2k + GYkikta



Example (1)

Consider the system given by the matrices

Loy Lo
S
0 0 —3 s 0 0
1 -1 0 -3 0 0]

C = 1 0 21|,D=1{0 0
0 -1 4 1 0

® We find that rank[M5] - rank[M;] = 2, so observer must have a minimum delay of
a=1

® We have 3; = rank [@1 Ml} — rank|[M;] =3

@ Can obtain three linear functionals directly from the output




Example (2)

@ Design matrices are chosen as

_ O = =

0
01 ,
O -

0 —3
1 -7
0 5
2 1




Example (3)

@ We find

[ Ay | Ass ] — HAT ' = [

CIESRTEESE

@ Note that 5 =0

N|©

_ O = = O R = O

o o O o oo o o o —/]/




Example (4)

® The matrix K is parametrized as

- o o
> o o
A 1
& I

[a\l

(e ~

o 1
~ N
(e _

_

— B

il |

Il

< I
Il
3

where

0

o 0 0 0 O

0

0
0

0

0O 0 0 O




Example (5)

® Calculate v; and vo:

0
vi| =JP2=0

V2

® Matrix E is given by E = (A2 — HBus) — Ky = L
@ E has magnitude less than 1, so observer will be stable
® Choose K =0

@ Gain matrix given by

K = -L1—I?L2 K HB}j

—lu 4 6 —7 _9 —2200}

| 2



Example (6)

® Obtain F' and G by choosing Go = 0

2

F=|r Fl}z[“ 4 6 -6 -2 —2}

G::Go Gl}z[o 00 2 0 0}

® Final observer given by

ki1 = 5%k + F'Ykkt1

Vi = 2k + GYgrikt1
@ Estimate of original state given by

e [PYkz:k—l-l]

Vi,



Example (7)

10
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20
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time-step

15
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System states

= = = Estimated one-step delayed states

5 10 15
time-step

20



Summary

® Provided a design procedure for delayed observers for linear systems with
unknown inputs

@ Focused on reduced-order observers, allowing full-order observers as special
case
® System inversion is necessary in order to construct an observer
@ Characterized the minimum and maximum delays required for state estimation

® Provided a parametrization of the observer gain to perform state and input
decoupling
@ Remaining freedom used to ensure stability
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