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Motivation

Consider a linear system S of the form

xk+1 = Axk +Buk

yk = Cxk +Duk ,

with state vector x ∈ R
n, output y ∈ R

p, and unknown input u ∈ R
m

Unknown inputs can be used to model
Faults
Parameter uncertainties
Noise with unknown statistics
Control inputs generated by controllers in decentralized control

Can we (asymptotically) estimate the state of the system using only the outputs?

Note: known inputs are easy to handle, so we omit them



Previous Work

Problem has been investigated extensively over the past few decades
Wang, Davison, Dorato, Hautus, Kudva, Viswanadham, Ramakrishna,
Darouach, Zasadzinski, Xu, Hou, Muller, Patton, Yang, Wilde, Valcher, . . .

These investigations typically focus on zero-delay observers
i.e., use yk to estimate xk

Existence conditions for such observers are quite strict

Conditions can be relaxed by using delayed outputs
Jin and Tahk (1997), Saberi, Stoorvogel and Sannuti (2000)

Here, we present a design procedure for reduced-order observers with delays
Allows us to treat full-order observers as a special case



Preliminaries
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Directly Measurable States

What states can we directly measure from the output over α+ 1 time-steps?

Let βα = rank

h

Θα Mα

i

− rank

h

Mα

i

Theorem: There are βα linear functionals of the state that are directly available
from the output.

Proof:

There are βα linearly independent columns in the matrix Θα that cannot be
written as a linear combination of columns in Mα

Thus there exists a matrix P with βα rows such that PMα = 0 and PΘα has
full row-rank, which gives

PYk:k+α = PΘαxk + PMαUk:k+α

= PΘαxk



Observing the Other States

Choose a matrix H so that T ≡

"

PΘα

H

#

is square and invertible

Consider an observer of the form

zk+1 = Ezk + FYk:k+α ,

ψk = zk +GYk:k+α ,

where E, F and G are chosen so that ψk → Hxk as k → ∞

An estimate of the original states can then be obtained as

x̂k = T −1

"
PYk:k+α

ψk

#
→ T −1

"
PΘαxk

Hxk

#

= xk

Can obtain a full-order observer by choosing P to be the empty matrix and H = In



Observer Design (1)

How do we choose E, F and G?

The observer error is given as

ek+1 ≡ ψk+1 −Hxk+1

= Ezk + FYk:k+α +GYk+1:k+α+1 −HAxk −HBuk

Partition F and G as

F =

h
F0 F1 · · · Fα

i
,

G =

h
G0 G1 · · · Gα

i

where each Fi and Gi are of dimension (n− β) × p

Define K ≡

h
F0 − EG0 F1 − EG1 +G0 · · · Fα − EGα +Gα−1 Gα

i



Observer Design (2)

After some algebra, observer error can be written as

ek+1 = Eek +
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≡ HAT −1 and

h
Φ1 Φ2

i
≡ Θα+1T

−1

To force the error to go to zero, we need:

Input decoupling: KMα+1 −

h
HB 0

i
= 0

State decoupling:

0 = A21 −KΦ1

E = A22 −KΦ2

E must be a stable matrix



Input Decoupling

KMα+1 =

h

HB 0

i

(1)

Theorem: There exists a matrix K satisfying (1) if and only if

rank [Mα+1] − rank [Mα] = m .

This is the Massey-Sain condition for system inversion with delay α+ 1 (1969)
We must invert the inputs in order to estimate the states

The larger the delay, the better the chance of satisfying the condition

Upper bound on inversion delay provided by Willsky (1974) as α = n− nullity[D]



Parametrizing the Gain

The gain K must simultaneously satisfy

KMα+1 =

h

HB 0

i

(input decoupling)

KΦ1 = A21 (state decoupling)

To satisfy the above, we show that K can be parametrized as

K =

h
L1 − bKL2

bK HB

i
J ,

for some matrices L1, L2 and JbK is a free matrix



Stability (1)

The second state-decoupling condition was

E = A22 −KΦ2

Using the parametrization of K, we get

E = A22 −

h

L1 − bKL2

bK HB
i

JΦ2

We show that JΦ2 =

"

0

ν

#

for some matrix ν

This leads to

E = A22 −

h bK HB

i
ν

≡ A22 −

h bK HB

i "ν1
ν2

#

= (A22 −HBν2) − bKν1



Stability (2)

For E to be stable, (A22 −HBν2, ν1) must be detectable

Theorem: The pair (A22 −HBν2, ν1) is detectable if and only if

rank

"

zI −A −B

C D

#

= n+m, ∀z ∈ C, |z| ≥ 1 .

Putting this together with the inversion condition, we get

Theorem: The system S has an observer with delay α if and only if

1. rank [Mα+1] − rank [Mα] = m,

2. rank

"
zI −A −B

C D
#

= n+m, ∀z ∈ C, |z| ≥ 1 .



Stable Inversion

In fact, the second condition is equivalent to the existence of a stable inverse
(Moylan, 1977)

Thus, we get

Theorem: The system S has a (delayed) observer if and only if

rank

"

zI −A −B

C D

#
= n+m, ∀z ∈ C, |z| ≥ 1 .



Final Observer Equations

Choose bK to make E = (A22 −HBν2) − bKν1 stable

Set K =

h

L1 − bKL2

bK HB

i

J

Map this K matrix back to F and G via

K ≡

h

F0 − EG0 F1 − EG1 +G0 · · · Fα − EGα +Gα−1 Gα

i
Mapping is not unique

Final observer given by

zk+1 = Ezk + FYk:k+α ,

ψk = zk +GYk:k+α



Example (1)

Consider the system given by the matrices

A =

26664 1 − 1

2
− 1

2
− 1

2

0 1

2
1 −2

0 0 0 1

0 0 − 1

2

3

2

37775 , B =

26664 1 0

0 0

0 −1

0 0

37775 ,
C =

264 1 −1 0 −3

0 1 0 2

0 1 −1 4

375 , D =
2640 0

0 0

1 0

375
We find that rank[M2] - rank[M1] = 2, so observer must have a minimum delay of
α = 1

We have β1 = rank

h
Θ1 M1

i
− rank[M1] = 3

Can obtain three linear functionals directly from the output



Example (2)

Design matrices are chosen as

P =

264 1 0 0 0 0 0

0 0 −1 1 0 0

0 2 0 0 1 0

375 ,

H =

h

1 −2 2 1

i
These matrices give us

T =

"
PΘ1

H
#

=

26664 1 −1 0 −3

1 −2 1 −7

0 5

2
0 5

1 −2 2 1

37775



Example (3)

We find h
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i

= HAT −1 =
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Note that Φ2 = 0



Example (4)

The matrix K is parametrized as

K =

h

L1 − bKL2

bK HB

i
J ,

where

L1 =

h
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2
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i
, L2 =

"
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Example (5)

Calculate ν1 and ν2: 264 0

ν1

ν2

375 = JΦ2 = 0

Matrix E is given by E = (A22 −HBν2) − bKν1 = 1

2

E has magnitude less than 1, so observer will be stable

Choose bK = 0

Gain matrix given by

K =

h
L1 − bKL2

bK HB

i
J

=

h
11

2
−4 6 −7 −2 −2 2 0 0

i



Example (6)

Obtain F and G by choosing G0 = 0

F =

h

F0 F1

i

=

h

11

2
−4 6 −6 −2 −2

i
G =

h

G0 G1

i

=

h

0 0 0 2 0 0
i

Final observer given by

zk+1 =
1

2
zk + FYk:k+1

ψk = zk +GYk:k+1

Estimate of original state given by

x̂k = T −1

"
PYk:k+1

ψk

#



Example (7)
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Summary

Provided a design procedure for delayed observers for linear systems with
unknown inputs

Focused on reduced-order observers, allowing full-order observers as special
case

System inversion is necessary in order to construct an observer
Characterized the minimum and maximum delays required for state estimation

Provided a parametrization of the observer gain to perform state and input
decoupling

Remaining freedom used to ensure stability
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