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Abstract— We present a method for estimating the inputs and
states in discrete-time switched linear systems with unknown
inputs. We first investigate the problem of system invertibility,
which reconstructs the unknown inputs based on knowledge
of the output of the system, the switching sequence, and the
initial system state. We then relax the assumption on the
knowledge of the initial system state, and construct observers
that asymptotically estimate the state. Our design, which
considers a general class of switched linear observers that
switch modes based on the known (but arbitrary) switching
sequence, shows that system invertibility is necessary in order
to construct state observers. Furthermore, some portion of the
observer gain must be used to recover the unknown inputs, and
the remaining freedom must be used to ensure stability. The
state of the observer is then used to asymptotically estimate the
unknown inputs (i.e., it forms the dynamic portion of a stable
inverter for the given switched system).

I. INTRODUCTION

In practice, it is often the case that a dynamic system
can be modeled as having unknown inputs. The problem of
estimating the unknown inputs in such systems based on the
output of the system and the initial system state has been
investigated extensively over the past few decades under the
moniker of system inversion [7], [6]. These investigations
have revealed that delayed (or differentiated) outputs will
generally be necessary in order to reconstruct the unknown
inputs. The problem of estimating the state in such systems
has also received considerable attention over the past few
decades [9], [8]. For linear time-invariant systems, it has
been shown that the problem of state estimation is equivalent
to that of stable system inversion, and so, delays will also
generally be required in order to estimate the state [3], [8].

Recently, various researchers have investigated ways of
observing the state of switched linear systems (e.g., see [1]).
However, the concept of state observers for switched systems
with unknown inputs has received only limited attention. In
particular, Daafouz and Millerioux studied observer design
for switched systems with unknown inputs in [5], but did not
make use of delayed measurements.

In this paper, we study the problems of system inversion
and state estimation in discrete-time switched linear systems
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with unknown inputs. We start by assuming knowledge of
the initial system state, and provide necessary and sufficient
conditions for the system to be invertible. We then relax
the assumption on the knowledge of the initial system state,
and design observers that asymptotically estimate the state.
Our approach generalizes recent work on observers for linear
time-invariant systems with unknown inputs [8], [9]. The
main challenges in constructing these observers lie in i)
decoupling the unknown inputs from the estimation error,
and ii) ensuring that the estimation error decreases asymp-
totically to zero, regardless of the switching sequence. We
show that system invertibility is necessary and sufficient to
address the first challenge, and we present a parameterization
of the observer gain that can be used to address the issue
of stability. We then use the state observer to asymptotically
estimate the unknown inputs, which produces a stable system
inverse. The resulting inverse and state estimator can be used
in applications such as fault-diagnosis and robust observer
design for uncertain systems.

II. PRELIMINARIES

Consider a discrete-time switched linear system S of the
form

Try1 = Ao Tr + Bojguk
Yk = Cop)@r + Dojpjur (1)

with state vector x € R™, unknown input v € R™, output
y € RP, and system matrices (A4;,B;,C;,D;), i € Q =
{1,2,..., N}, of appropriate dimensions. Note that known
inputs can be handled by a straightforward modification of
our approach, and so we omit them in the above expression.
The switching sequence is given by o : N — Q. The
dimension of the unknown input vector is taken to be a
constant (with value m). However, it may be the case that
each subsystem is affected by only a subset of these inputs.
To handle this case, we will define m; = rank | g: lieq,
and we will assume without loss of generality that the
first m; columns of [gZ] are linearly independent, and
the remaining columns are zero. In other words, we can
write [ 7] = gi g}, where B;; and D, ; each have
m; columns. This aissumption can always be enforced by
an appropriate (possibly time-varying) transformation of the
unknown inputs. This means that the input to subsystem ¢
consists only of the first m; components of the input vector
U.

We assume that the switching sequence is arbitrary, but
known to our observer. For any given integer o > 0, the



switching path starting at time-step k£ and ending at time-
step k + « will be denoted by o[k : k + a]. The response of
system (1) over o + 1 time-steps is given by

Yk:kJra = GJ[k:k+a}xk + Ma[k:k+a]Uk:k+a 3 (2)
where
Yk Uk
Yr+1 Uk+1
Yk:k+a = . B kik+a = . 3
Yk+a Uk+a

and the matrices O, (k.x+q) and My(g:k4q] can be defined
recursively (for a > 0) as

Moii:k) = Dojr)y Oolp:k] = Colr] s

Qa[k:k-‘r@—l] :|
O~ + 3)
[k:k+a] _Ca[kr+oz] H?:Ol Aa[kJrj]
- D O
MU B _ olk] :| 4
ettel = Otk 1k r0) Both) Mofkt1:ktal @
_ Ma[k:k-‘ra—l] 0 :| (5)
_Ca[k+oz] Colkkta—1]  Dolktal
where
Colkikta—1] = [H?;f Asli+5) Boli Bo[’“a—”}

III. INVERTIBILITY OF SWITCHED SYSTEMS

Definition 1: We say that the system in (1) is invertible
with delay « if, at each time-step k + « (k =0,1,...), it is
possible to uniquely recover the first m,[; components of
the unknown input uy from the output of the system Yj.x+q.»
the switching sequence o[k : k + «], and knowledge of the
value of the state x. O

In the above definition, we are only interested in recov-
ering the first m ;) components of the input uy because of
our assumption that the subsystem selected by o[k] is only
affected by those components (from Section II). Furthermore,
the above definition incorporates knowledge of the state x(
in order to stay consistent with the notion of invertibility for
non-switched systems (e.g., see [7]). The following theorem
provides a characterization of the invertibility of the system
(D).

Theorem 1: The system in (1) is invertible with delay «
if and only if

rank [Ma[k::k-i-a]] — rank [Ma[k+l:k+a]] = Mgk (6)
for all switching paths o[k
rank [gi[[i]] . 0
By comparing (6) to the definition of M ;.11 4] in (4), we
note that equation (6) implies that the first m ;) columns of
M [k:+o) must be linearly independent of each other, and
of the remaining columns in Mg ;.- This interpretation
will be used in the proof of the theorem.
Proof: We start by proving necessity. Suppose condition
(6) does not hold for some switching path o[k : k + a.
Then for this switching path, there exists at least one column

k + o, where mgp =

within the first mg ) columns of M .14 ) that can be writ-
ten as a linear combination of other columns in Mo [x.x -
Thus there exists a sequence of inputs Ug.x4 With at least
one of the first m,[;; components of uy being nonzero such
that M (x:k+a)Uk:k+a = 0, and this is indistinguishable from
the case where Uj.x4+ = 0. Therefore, it is not possible to
uniquely determine the input by looking at the output of the
system over v+ 1 time-steps (given by equation (2)), which
concludes the proof of necessity.

For sufficiency, suppose (6) holds for all switching se-
quences o[k : k + a]. Then for each such sequence, there
exists a matrix Ry[p.x+q) such that

Ra[k:k+a]Ma[k:k+a] = [Im,gm o -- 0] . (7

Left-multiplying (2) by R, [x.x+q) and rearranging, we obtain

[Imff[k]

0] U = _Ra[k:k+a]®a[k:k+a]xk
+ Rokikta) Yekta - (8)

Substituting equation (8) into (1), we obtain

Tri1 = (Ao — Bor) 1 Rolkikta] Ookikta] ) Tk
+ Bog)1 Bokibra) Yekta > (9)

where B[y 1 is the first my(x) columns of B, [x). Since zg
is known, we can recover the first Mg[o] COmMponents of ug
uniquely from equation (8) by setting k£ = 0. We then use (9)
to obtain the value of x1, and the process can be repeated to
obtain the first m, ) components of wy for all k. Equations
(9) and (8) together form the inverse system. [ |

It is easy to show that the left side of (6) is a non-
decreasing function of «. Thus, when investigating the
invertibility of system (1), one can start with « = 0 and
increase « until a value is found that satisfies (6). In the
single system case (i.e., = {1}), it is known that if the
system is invertible, the upper bound on the delay in (6) will
not exceed « = n — q + 1, where ¢ is the dimension of
the nullspace of D [10]. However, it is not obvious how to
extend this result to the switched case.

We now comment briefly on the complexity of checking
condition (6) for a given «. At first glance, it appears
that checking invertibility with delay o would require that
we evaluate condition (6) for N@*+! different values of
M (1:k+a) (corresponding to the N e+l different choices of
olk : k+ «l). However, note that if condition (6) is satisfied
for some particular switching sequence Gk : k 4+ @], where
& < o, then the system will also be invertible for any
switching sequence o[k : k + o] where o[k : k+a] = d[k :
k + &]. This can be easily seen by examining the structure
of the matrix Mg x.11q) in equation (5). Specifically, if the
first mgx) columns of My y.x 4] are linearly independent of
each other and of the remaining columns in Mp;.5+4], then
for any switching sequence o[k : k+a] where o[k : k+a] =
ok : k+a], the matrix Mo j.p4q) Will have M p.145) as a
top-left subblock (from (5)). Since the top-right subblock in
M (k:4q) 1s simply the zero matrix, the first m, ) columns
of Mg (g:k+aq) Will still be linearly independent of each other



and of the remaining columns in the matrix. Intuitively, if
we can reconstruct the input from the output Yj.,15 when
the switching sequence is &[k : k+ @], then we can certainly
determine the input from Yj.x1o (@ > &) regardless of the
switching sequence from time-step k + & + 1 to time-step
k + «. Therefore, when checking invertibility with delay «,
we do not need to consider switching sequences for which
the system is invertible with delay less than «. The same
reasoning also applies to the matrices Ry [:x+q) in (7). This
observation can potentially reduce the number of matrices
that have to be computed in order to invert the system.

Example 1: Consider a switched linear system of the form
(1) that switches between two subsystems (i.e., Q = {1,2})
given by

[ 059 —1.08 0.14 2.1 -1
A _ | 030 060 010 1.4 B -1
= 1010 -030 020 07 | 7'~ | —05 |
| 0.10 —0.30 —0.10 1 —0.5
1 -2 1 0 0
Cl__o 1 -1 —1]’D1_M '
[ 07 —-0.3 —0.75 0.1 44
0.1 04 —0.60 0 3.2
Ay = 0 01 005 —o01 | BT 2 |
0 01 -035 05 1.2
[0 1 -1 -1 0
02__0 0 1 —1}’D2_[0}

We wish to determine if this system is invertible. Since
M,k = Do = [§] for any o[k] € Q, the system is
not invertible with delay 0. To investigate invertibility with
delay a = 1, we consider the matrix

_ | Do 0
Motk = [Ca[k+11Ba[k1 Do[k+1]}
Since Dy is zero for all k, we have rank [Ma[k:k+1]] -
rank [Mo[k-i-l:k—i-l]] = rank[C’U[kH]Bg[k]}. IfO'[k] = O’[k+1],
we have rank [Co[k+1}Bo[k}] =1, and so the inversion con-
dition given by (6) is satisfied for these switching sequences.
However, if o[k] # o[k + 1], we have C, 11 By = [D],
and so the system is not invertible with delay o = 1 (i.e., the
input cannot be uniquely identified for switching sequences
where o[k] # o[k + 1]).

Next, we consider switching sequences of length 3 (i.e.,
a delay of @« = 2). Since the system is invertible for
any switching sequence where o[k] = o[k + 1] (regard-
less of the value of o[k + 2]), we only have to inves-
tigate invertibility for the sequences ok k+ 2] €
{{1,2,1},{1,2,2},{2,1,1},{2,1,2}}. To check invertibil-
ity for these sequences, we need to consider the matrix

Mokt =
D) 0 0
Colk+1]Bolk Do k1] 0
Colk+2Aoter1]Bolk) - Colkt2)Bofk+1]  Dofrra)
For the four switching sequences listed above, we find that
rank[M (.5 12)] — rank[M [, 11:k42] = 1, and so the system

is invertible for all switching sequences of length 3 (i.e., the
system is invertible with delay o = 2).

Note that the inverse system (given by (9) and (8))
will only require six different values of the matrices
Rolk:ky2),  corresponding  to  switching  sequences
{{11*}{121}{122}{211}{212}{22*}}
where * represents an arbitrary switching value. For example,
for the switching sequence o[k : k + 2] = {1,1,%}, we
choose Ry11,; = [0 0 2 0 0 0], and this satisfies
the equation R{LL*}M{LL*} = [1 0 0}. The Rg[k;k+2]
matrices for the other switching sequences can be found in
a similar manner. O

Examining the inverse system specified by equations (9)
and (8), we see that the dynamic portion of the inverse system
(equation (9)) simply reconstructs the state zj, which is then
used to reproduce the input [, 0] u; in equation (8).
Furthermore, since we assumed knowledge of x(, equation
(9) will produce the exact value of the state at each time-
step. In the next section, we will drop the assumption that the
initial state z( is known, and try to construct a state observer
to asymptotically estimate the state of the system.

IV. STATE ESTIMATION

To estimate the system states, we consider an observer of
the form

i1 = Egpbta)Te T Kokikta) Yek+a (10)

where matrices E,[k.x4q)] and Ky [r.p1q) are chosen such
that £, — x as k — oo. Note that the form of the observer
is reminiscent of the standard Luenberger observer, with the
obvious extension to a switched system, together with delays
in the observer. Also note that the dynamic portion of the
system inverse (equation (9)) shares a similar form as well.
Using (2), the observer error is given by

€kt1 = Thg1 — Thyt

= Ea[k:k-&-a]jk + Ko’[k:k+a]Yk:k'+o¢ - Ao’[k]xk

= Bojuk

= Eqlk:k+a]Ck
+ (Eoipihta] — Aofk] + Kofkikta] Oolkkta)) Tk
+ (Kopknral Mofkikra) — [Boy 0]) Uk:k+a(l~1)

Since the unknown inputs and states can have arbitrary
values, they must be decoupled from the estimation error.
This means that the following two conditions must hold for
all time-steps k (i.e., for all switching paths o[k : k + «):

(12)
. (13)

Ko[k:k+a]Ma[k:k+a] = [Ba[k] o --.- 0] ,

Eolkikta) = Aok] — Kolkik+a)Oolkikta]

Furthermore, the matrix F;.;1q] must be chosen to ensure
that the estimation error decreases to zero, regardless of the
switching sequence. We refer to equation (12) as the input
decoupling condition, and we study it next. After we satisfy
the input decoupling condition, we will study the problem
of ensuring stability in (13).



A. Input Decoupling

The solvability of condition (12) is given by the following
theorem. The proof of the theorem is given in the Appendix.

Theorem 2: There exists a matrix Ko,[p.p1q) satisfying
(12) if and only if

rank [Ma[k:k-mﬂ — rank [Ma[k+1:k+a]] = rank {gz[[';]}]
for all switching paths o[k : k+ «] (i.e., the system must be
invertible with a delay of «). O

Remark 1: In [5], the authors consider the problem of
estimating the states in the switched system (1) with D) =
0 for all k, and construct an observer that estimates zj1
using the output yx4;. This corresponds to choosing o =
1 in our setup. Under these conditions, equation (6) be-
comes rank[Cy(x41)Bo[k)] = rank[B, ] for all k. However,
the condition provided in [5] to decouple the inputs is
rank[Cy, ) Bo[k)] = rank[B,y] for all k. This condition is
necessary (i.e., if o[k + 1] = ol[k]), but not sufficient to
guarantee the input decoupling condition, contrary to what
is stated in [5] (e.g., see Example 1). However, this error does
not affect the system considered in their example, because it
has a constant C' matrix. O

Theorem 2 implies that the first m,[) columns of
M (1:k+o) must be linearly independent, and cannot be writ-
ten as a linear combination of other columns in M, (1.5 4q]-
Let Na[k:Ha] be a matrix whose rows form a basis for
the left nullspace of the last (a + 1)m — m,[ columns
of My (k:k+q)- In particular, we can assume without loss of
generality that NV, (4.x1q) satisfies

0 0
Na[k:k+a]MU[k:k+a] = |:Im 0:| (14)

[¥]

Note that there exists an Ng[k:k+a] satisfying the above
equation if and only if (6) is satisfied. Just as in Section III,
we do not necessarily have to calculate N®*! different
values of N [y.54q]- In particular, if Mpy.4) satisfies (6)
for some @ < « and some switching sequence Gk : k + @,
then for that particular switching sequence, we can calculate
a matrix N&[k:k_}ra] such that

- 0 0
N&[k:k+a]M6[k:k+a] = |:Ima[k'] 0}
Then for all extensions of this switching sequence (i.e., for
all o[k : k+«] such that o[k : k+a] = &k : k+a]), we can
choose Ny (pta) = [Nopkta) 0], where the zero matrix
has appropriate dimensions.
Based on the property of /\/U[k:kJra] in equation (14), we
see that (12) will be satisfied if Ky [x.14q) is Of the form

Ka[k:k+a] = I?a[k:k—&-(x]No[k:k—&-a]

for some I?o[k’:k+a] = |:£a[k:k+a] I?a[k:k+a]i|’ where

K5 [k:k+a) has my[i) columns. Equation (12) then becomes

~ 0 0
Ea[kr:kJra] Ko’[k::k:Jra]:| |:Ima[k] 0:| = [Ba[k],l O] )

from which it is obvious that f(g[k;k_,_a] = B,g),1 and
Ly [k:k4a) 18 @ free matrix (recall that B,y = [Bo[k]J 0}).
Returning to the condition in equation (13), we have

Ea[k:k+a] = Aa[k} - Ka[k:k+a]®a[k:k+a]
= Aok

- [Lo[k:k—i-a] Ba[k],l} Na[k:k+a]®a[k:k+a] .
Defining

|:Ca[k:k+a] (15)

= NG H « (—)O' H (a7 )
q)a[k:k+a]:| [kik+a] Dolkik+a]
where @, (.44 q) has mg,[r) TOWs, we come to the equation

Ea[k:kJra] = (Ao[k] - Bg[k],l(ba[k:kJra])
- L:a[k:k+a]ca[k:k+(x] .

Substituting the above expression into the formula for the
error given in (11), we get

i1 = ((Aoik) = Bop),1Pokiktal)

7£U[k:k+a]ca[k::k+(x]) er . (16)

To analyze this equation, let 7' represent the number of
unique pairs (Acr[k] - Bo[k],l®0[k:k+o¢]7Ca[k:k+a])' Define
the surjective map p : Q“t! — W = {1,... T} that assigns
to each switching path of length o+ 1 a number from the set
v ldentlfylng the pair (Aa[k] - Bo[k],lq)a[k::k-‘r(x]7Ca[k:k+a])
corresponding to that path. For convenience, we will write
wlolk : k+al] as u[k]. Note that y is not necessarily injective
(one-to-one), since different switching paths could produce
the same pair (Ao — Bok)1 Pofkibral> Colkikta])- Thus,
for each switching path o[k : k + o], we can define the set
of matrices

Cu[k] = Co’[k:kJra] )
a7

Ak = Aok — Bolk),1 Pofkik+al»
Luk) = Lofkiktal -

Therefore, the expression for the error from (16) can be
written as

er+1 = (Al = LukCpm) ex - (18)

Note that (18) is a switched linear system under constrained
switching. To see this, note that since u[k] = ulo[k : k+ ]
and plk+1] = plo[k+1 : k+ «+1]], the switching signals
wlk] and plk + 1] are both functions of the switching path
olk+1:k+ ], and so the values of u[k] and p[k + 1] will
be related accordingly.

Example 2: We return to the system introduced in
Example 1. From the analysis in that example, we noted
that the minimum delay to invert the system is a = 2,
and so the state observer will also require a delay of
two time-steps (from Theorem 2). Furthermore, we
also noted in Example 1 that for switching sequences
that satisfy o[k] = o[k + 1], the system is invertible
with a delay of one time-step. Therefore, we only
need to calculate six different values for the Ng[r.ryg)
matrices in (14), corresponding to the switching sequences

{{1,1,%},{1,2,1},{1,2,2},{2,1,1},{2,1,2},{2,2, *}},



TABLE I
CHARACTERIZATION OF SWITCHING SIGNAL fi.

olk:k+2] | plk] | plk+1]
1,11 i 1,2,3
{1,2,1} 2 4,5
{1,2,2} 3 6
{2,1,1} 4 1
{2,1,2} 5 2,3
{2,2, %} 6 4,56

where =+ represents an arbitrary switching value. The
explicit values of these matrices are omitted in the
interest of space. In this example, each of the above
switching sequences corresponds to a different pair
(Aoi) = Boii)1®o ket Cofpekpg)) in (16). The map
ulo[k : k + 2]] which assigns a unique identifier to each
of these different pairs is shown in the second column of
Table I. Furthermore, for a given p[k], p[k + 1] can only
take on a restricted set of values, which are shown in the
third column of Table I. For example, consider the second
row of Table L. If plk] = 2, then o[k : k + 2] = {1,2,1}.
Therefore, the possible values for o[k + 1 : k + 3] are
given by {{2,1,1},{2,1,2}}, which correspond to the
identifiers {4,5}. The other entries of Table I are generated
by following the same reasoning. O

B. Stability

Consider the expression for the error in (18). We require
this error to asymptotically decay to zero, regardless of the
switching signal . If this property is satisfied, the error
is termed to be globally uniformly asymptotically stable
(GUAS). Unfortunately, there are no known necessary and
sufficient conditions to analyze the stability of (18) under
general conditions. However, there are various sufficient
conditions that will guarantee stability [4], and we can
attempt to use any of these conditions to choose the matrices
L,,[x) in order to make the error GUAS. For completeness, we
use the method in [2] as an example. This method uses the
following theorem to characterize the stability of switched
systems of the form (18).

Theorem 3: If there exists a set of symmetric matrices .S;
and some matrices R; and W, such that

W+ W — 5, WIA, - RTC,

ATW, — CTR; s >0,

19)

for all (¢,7) such that ¢ = plk] and j = p[k + 1], then the
switched system (18) will be GUAS and the resulting gains
are given by £; = (RiWi_l)T. O
When applying the above theorem, note that for a given 7 €
W, the parameter j can only take on a restricted set of values,
due to the constrained switching sequence p. As discussed in
[2], (19) is a Linear Matrix Inequality (LMI), which can be
efficiently solved by using convex optimization techniques.

Regardless of the method used, once we find a set of L;’s,
1 € WU, such that the error dynamics given in (18) are GUAS,

. . . . . . . . .
0 2 4 6 8 10 12 14 16 18 20
time-step (k)

Fig. 1. Switching sequence o|[k].
we can obtain the observer gains in (10) as

(20)
21

Eoliikra) = Auk) — Lk Culr) >
Ka[k:kJra] = [‘Cu[k] Bo[k],l] Na[k:kJra] )

and this will ensure that the state observer in (10) will
asymptotically estimate the state, regardless of the initial
state and the values of the unknown inputs.

Example 3: We return to the system investigated in Ex-
amples 1 and 2. Recall that the system is invertible with a
delay of o = 2, and the error dynamics switch between a
set of six different realizations (i.e., u[k] € ¥ = {1,...,6}).
To design a stable state estimator, we need to find a set of
matrices L;, i € U, so that the error dynamics given by (18)
are stable for any admissible switching sequence plk]. To
apply Theorem 3, we need to solve the LMIs given in (19)
for each possible value of u[k] and [k + 1]. From Table I,
we see that there will be twelve of these LMIs that have
to be solved simultaneously (i.e., three LMIs corresponding
to the case pulk] = 1, two LMIs corresponding to the case
w[k] = 2, and so forth). Using the LMI toolbox in MATLAB,
we find that the set of LMIs has a feasible solution, and
obtain the corresponding values of £;, i € U. We then use
these matrices to obtain the observer gains Fg.;12 and
K [1:1+2) from equations (20) and (21). We omit the explicit
values of these matrices in the interest of space. The final
observer is obtained from equation (10) as

Tht1 = Eoluinto)@h + Kopekyo) Yooz - (22)

To test the observer, we initialize the original system (1) with
a randomly chosen state ([—4 —2 -2 —2]T), and apply the
randomly chosen switching sequence o[k| shown in Fig. 1.
For the unknown input, we use the randomly chosen signal

ur = 0.1 (sin % + 0.9 cos 2;?) +re
where r, = 1 if 0 < k < 9, and zero otherwise. The
observer is initialized with zero initial state. The results of the
simulation are shown in Fig. 2, and we see that the estimated
state asymptotically catches up to the actual state. Note that
the estimated state should technically be delayed by two
time-steps (since the observer has a delay of a = 2), but we
have shifted the estimate forward to allow better comparison.
O
Now that we have constructed a state observer, we will
apply it to the problem of stable system inversion.

V. STABLE INVERSION

Suppose that the system is invertible, and the techniques
discussed in the last section produce an observer of the form
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Fig. 2. Actual and estimated states.
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Fig. 3. Actual and estimated inputs.

(10) that asymptotically estimates the state. Using (8) as a
guide, we can then write

ak = _Ra[k:k+a]@a[k:k’+o¢]§jk + Ra[k:k+a]Yk:k+a 5 (23)

where Zj, is the estimated state from equation (10). Since
I — x as k — oo, we see from equations (23) and (8) that
G — [Im,y; O] ugx as k — oo. Note also that Ro[k.jq]
can be any matrix that satisfies equation (7). In particular,
by examining the definition of the matrix Ng[k:kJra] in (14),
we see that we can simply choose R [y to be the last
M) TOWS of Nohiktal-

Example 4: In Example 3, we constructed the state ob-
server in equation (22). To estimate the inputs, we choose the
matrices Rx.,+2) as the last row of the matrices NU[;C; k+2)
(since mgpy) = 1 for all k). We then obtain an estimate of
uy, from equation (23), with o = 2. The convergence of
to the actual input uj (which was specified in Example 3)
is shown in Fig. 3. Once again, the estimated input should
technically be delayed by o = 2 time-steps, but we have
shifted it forward to allow better comparison. O

VI. CONCLUSIONS AND FUTURE WORK

We have studied the problem of estimating the states and
inputs in discrete-time switched linear systems with unknown
inputs. We started by constructing an inverse system to
reconstruct the inputs under the assumption that the initial
system state is known. We then removed our assumption
that the initial state is known, and we studied how to
build observers that asymptotically estimate the system state.

We then used this observer as the dynamic portion of the
system inverse, thereby obtaining asymptotic estimates of
the unknown inputs.

There are some interesting directions for future research.
For example, if the switching sequence is unknown, how
does one simultaneously estimate the state, unknown inputs
and switching sequence? It will also be interesting to study
the robustness of our estimators and inverters to parametric
uncertainties.
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APPENDIX

Proof: [Theorem 2] There exists a Koy[g.pqaq) Satis-
fying (12) if and only if the row space of the matrix
Ba[k] = [Ba[k] 0] is in the space spanned by the rows
Of My r:k4q)- This is equivalent to the condition

Mo k:k+
rank [ éa[k] N = rank [My ep o] (24)
Using (4), we get
rank |:Maik:k+a]:|
By
Dg[k] 0
= rank @U[kJrl:kJra]Ba[k] Ma[kJrl:kJra]
B, 0
(K]
= rank Boy + rank [My (k4 1:5+a]]
Da[k] olk+1:k+a]
Substituting this into (24) completes the proof. |
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