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Abstract

We develop a graph-theoretic characterization of controllability and observability of linear systems

over finite fields. Specifically, we show that a linear system will be structurally controllable and

observable over a finite field if the graph of the system satisfies certain properties, and the size of

the field is sufficiently large. We also provide graph-theoretic upper bounds on the controllability and

observability indices for structured linear systems (over arbitrary fields). We then use our analysis to

design nearest-neighbor rules for multi-agent systems where the state of each agent is constrained to

lie in a finite set. We view the discrete states of each agent as elements of a finite field, and employ a

linear iterative strategy whereby at each time-step, each agent updates its state to be a linear combination

(over the finite field) of its own state and the states of its neighbors. Using our results on structural

controllability and observability, we show how a set of leader agents can use this strategy to place all
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agents into any desired state (within the finite set), and how a set of sink agents can recover the set of

initial values held by all of the agents.

Index Terms

Structured system theory, linear system theory, finite fields, structural controllability, structural ob-

servability, quantized control, multi-agent systems, distributed consensus, distributed function calculation

I. INTRODUCTION

The emergence of sensor and robotic networks has prompted a tremendous amount of research

into the problems of distributed control and information dissemination in multi-agent systems

[1], [2], [3], [4], [5]. The topics of distributed consensus (where all agents converge to a common

decision after interactions with their neighbors) and multi-agent control (where the agents are

driven to some desired state by some leader agents) are examples of canonical problems in

this setting [2], [3], [6], [7], [8], [9], [10], [11]. Researchers have also started to consider what

happens when the interactions and dynamics in the system are constrained in various ways. One

of the main thrusts along these lines has been to investigate the problem of quantization, where

the agents can only occupy a fixed number of states, or can only exchange a finite number of

bits with their neighbors (e.g., due to bandwidth restrictions in the communication channels). In

the context of distributed consensus, various works (including [12], [13], [14], [15], [16], [17])

have revealed that nearest-neighbor rules can be adapted in different ways in order to obtain

agreement despite the quantized nature of the interactions. The proposed solutions range from

using gossip-type algorithms (where an agent randomly contacts a neighbor and then the two

bring their values as close together as possible, under the quantization constraint) [12], [16],

[17], to incorporating quantization steps into (otherwise) linear update strategies for each agent

[13], [14], [15], [18], [19]. Along similar lines, the topic of logical consensus (where agents are

expected to reach agreement on a Boolean function of various Boolean inputs) has been studied

in [20].

Related approaches for transmitting information (as opposed to reaching consensus) in net-

works have also been extensively studied by the communications community under the moniker

of network coding [4], [21]. Much of the work in this area focuses on the topic of sending
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streams of information from a set of source nodes to a set of sink nodes in the network, and

uses finite (algebraic) fields in order to deal with bandwidth constraints in the communication

channels. More specifically, information is transmitted in packets consisting of a finite number

of bits, and each group of bits is viewed as an element of a finite field, allowing ease of

analysis [4], [22]. Linear network codes (where each node repeatedly sends a linear combination

of incoming packets to its neighbors) can be viewed as linear systems over finite fields; by

analyzing the transfer function of these systems using graph-theoretic concepts (such as the

Max-Flow-Min-Cut theorem), linear network codes have been shown to achieve the maximum

rate of transmission in multicast networks [4]. These concepts have also been extended to the

problem of disseminating static initial values to some or all nodes via a gossip algorithm [22],

[23]. For real-valued transmissions, [24], [25] showed that the problem of transmitting static

initial values via a linear strategy is equivalent to the notion of linear system observability, and

introduced structured system theory as a means of analyzing linear dynamics in networks.

Compelled by the fact that the multi-agent control and information dissemination problems are

equivalent to the problems of controllability and observability in linear systems (over the field

of complex numbers, and with appropriately defined nearest-neighbor rules) [7], [8], [9], [10],

[11], [24], in this paper we ask the following question. Is it possible to maintain linear dynamics

(and the paradigm of linear system controllability and observability) in multi-agent systems

even when the state-space of the agents is constrained to be finite? Although this constraint

precludes the use of analysis techniques for controllability of continuous-time continuous-state

systems presented in previous works (as we will explain in further detail later in the paper),

partly inspired by the finite-field paradigm adopted by the communications community, we show

that linearity can be maintained by viewing the discrete states of the agents as elements of an

appropriately chosen finite field. Specifically, we devise a nearest-neighbor rule whereby at each

time-step, each agent updates its state to be a linear combination (over the finite field) of its

state and those of its neighbors. We show that this approach allows the finite-state multi-agent

system to be conveniently modeled as a linear system over a finite field. With this motivating

insight, we start by considering the general problem of controllability of linear systems over finite

fields, and develop a graph-theoretic characterization of controllability by extending existing

theory on structured linear systems over the field of complex numbers to the finite-field domain.

As we show, existing proof methods for structural controllability do not translate directly to
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linear systems over finite fields, and thus we use a first-principles approach to establish this

characterization.

Using the duality of control and estimation in linear systems, we also show how our results

can be applied to the problem of quantized information dissemination in networks. In this setting,

each agent is assumed to have an initial value in some finite set, and is only able to transmit

or operate on values from that set. Certain “sink” agents wish to recover the initial values (or

some function of them) by examining the transmissions of their neighbors over the course of

the linear iterative strategy. Viewing the discrete set as a finite field, we show that the linear

iterative strategy allows the sink agents to obtain the initial values of all other agents after at

most N time-steps (where N is the number of agents in the network), provided that each agent

has a path to at least one sink agent, and that the size of the discrete set is large enough. This

guaranteed upper bound on accumulation time (in fixed and known networks) is a benefit of

this strategy over the work on quantized consensus and gossip-based network coding, where the

expected convergence time can be much larger1 than the number of nodes in the network [19],

[12], [22], [23].

The contributions of this paper are as follows. First, we develop a theory of structured

linear systems over finite fields, providing graph-theoretic conditions for properties such as

controllability and observability to hold. Second, we provide an improved upper bound on

the generic controllability and observability indices of linear systems based on their graph

representations. This characterization holds for standard linear systems over the field of complex

numbers as well, and thus extends existing results on structured system theory [26]. Third, we

introduce the notion of using finite fields as a means to represent finite state-spaces in multi-agent

systems, and apply our results on structured system theory to analyze such systems.

II. NOTATION AND BACKGROUND

We use ei,l to denote the column vector of length l with a “1” in its i-th position and “0”

elsewhere, and IN to denote the N ×N identity matrix. The notation diag (·) indicates a block

matrix with the diagonal blocks given by the quantities inside the brackets, and zero blocks

1It should be noted, however, that the higher cost in terms of convergence time is counter-balanced by the key benefit of

gossip-based network coding, which is that it can operate in unknown and potentially time-varying networks.
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elsewhere. The transpose of matrix A is denoted by A′. The set of nonnegative integers is

denoted by N. For a sequence of vectors u[k], k ∈ N, and two nonnegative integers k1, k2 with

k2 ≥ k1, we use u[k1 : k2] to denote
[
u′[k1] u′[k1 + 1] · · · u′[k2]

]′
. We denote the cardinality

of a set S by |S|.

A. Graph Theory

A graph is an ordered pair G = {X , E}, where X = {x1, x2, . . . , xN} is a set of vertices,

and E is a set of ordered pairs of different vertices, called directed edges.2 The nodes in the

set Ni = {xj|(xj , xi) ∈ E} are said to be neighbors of node xi, and the in-degree of node xi

is denoted by degi = |Ni|. A subgraph of G is a graph H = {X̄ , Ē}, with X̄ ⊆ X and Ē ⊆ E
(where all edges in Ē are between vertices in X̄ ).

A path P from vertex xi0 to vertex xit is a sequence of vertices xi0xi1 · · ·xit such that

(xij , xij+1
) ∈ E for 0 ≤ j ≤ t − 1. The nonnegative integer t is called the length of the

path. A graph is strongly connected if there is a path from every node to every other node. The

distance between node xj and node xi is the length of the shortest path between node xj and

node xi in the graph. A path is called a cycle if its start vertex and end vertex are the same, and

no other vertex appears more than once in the path. A graph is called acyclic if it contains no

cycles. A graph G is a spanning tree rooted at xi if it is an acyclic graph where every node in

the graph has a path from xi, and every node except xi has in-degree exactly equal to 1. The

set of nodes with no outgoing edges are called the leaves of the tree. A branch of the tree is

a subtree rooted at one of the neighbors of xi. Similarly, a graph is a spanning forest rooted

at R = {xi1 , xi2 , . . . , xim} if it is a disjoint union of a set of trees, each of which is rooted at

one of the vertices in R. Examples of the above concepts are shown in Fig. 1. Analogously, a

spanning forest topped at R is a forest that is obtained by reversing the direction of all edges

in a spanning forest rooted at R. In other words, all nodes in a spanning forest topped at R
have a path to exactly one node in R. Note that spanning forests in graphs can be easily found

via a simple breadth- or depth-first search starting at any node in the root set, and proceeding

through all other nodes in the root set until all nodes in the graph have been included.

2In this paper, we will be dealing with graphs with at most one edge from one vertex to another; later we will permit self-edges

from a vertex to itself.
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Definition 1: Let G = {X , E} denote a graph, and for any set R ⊂ X , consider a subgraph

H̄ of G that is a spanning forest rooted at R, with the property that the number of nodes in the

largest tree in H̄ is minimal over all possible spanning forests rooted at R. We call H̄ an optimal

spanning forest rooted at R. Similarly, an optimal spanning forest topped at R is obtained by

reversing the directions of all edges in an optimal spanning forest rooted at R.

x1x1x1

x2

x2

x2

x3

x3

x3

x4

x4x4 x5x5

x5 x6x6x6

x7

x7 x8x8

(a) (b) (c)

Fig. 1. (a) Spanning tree rooted at x1. Nodes x2, x5, x6, x7 and x8 are the leaves of the tree. The tree has three branches,

consisting of the nodes {x2}, {x3, x5, x6, x7} and {x4, x8}. (b) A spanning forest rooted at {x1, x2, x3}. (c) A spanning tree

rooted at x1 with two branches, both of which are paths.

B. Finite Fields

In this section, we briefly review the notion of a finite algebraic field. Further details can be

found in standard texts, such as [27].

An algebraic field F is a set of elements, together with two operations written as addition (+)

and multiplication3 (×), satisfying the following properties [28]:

1) Closure (i.e., a+ b ∈ F and ab ∈ F for all a, b ∈ F).

2) Commutativity (i.e., a+ b = b+ a and ab = ba for all a, b ∈ F).

3) Associativity (i.e., a + (b+ c) = (a + b) + c and a(bc) = (ab)c for all a, b, c ∈ F).

4) Distributivity (i.e., a(b+ c) = ab+ ac for all a, b, c ∈ F).

5) The field contains an additive identity and a multiplicative identity, denoted 0 and 1,

respectively (i.e., a + 0 = a and 1a = a for all a ∈ F).

6) For each element a ∈ F, there is an additive inverse denoted by −a ∈ F such that

a + (−a) = 0. Similarly, for each element a ∈ F \ {0}, there is a multiplicative inverse

denoted by a−1 ∈ F such that aa−1 = 1.

3We will denote the multiplicative operator by simply concatenating the operands (i.e., a× b is written as ab).
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The closure property will play an important role in the scheme proposed in this paper. The

number of elements in a field can be infinite (such as in the field of complex numbers), or finite.

The finite field of size q is unique up to isomorphism, and is denoted by Fq. When q = p for some

prime number p, the finite field Fp can be represented by the set of integers {0, 1, . . . , p− 1},

with addition and multiplication done modulo p. For example, the addition and multiplication

tables for F3 = {0, 1, 2} are given by

+ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

× 0 1 2

0 0 0 0

1 0 1 2

2 0 2 1

A key fact about finite fields is that they can only have sizes that are of the form q = pn for

some prime p and positive integer n [27]. Every element of the field Fpn can be represented by

a polynomial4 of degree n−1 in an arbitrary variable α, where each coefficient is an element of

Fp. Under this representation, addition or subtraction of two elements from Fpn can be performed

by adding or subtracting their polynomial representations, and reducing each of the coefficients

modulo p. To multiply elements of Fpn , one first chooses an arbitrary polynomial f(α) of degree

n that is irreducible over the field Fp (i.e., it does not factor into a product of polynomials of

smaller degree over Fp). For any elements a, b ∈ Fpn , the product ab is obtained by multiplying

together their polynomial representations, reducing all coefficients modulo p, and then taking

the remainder of the polynomial modulo f(α). This produces a new polynomial of degree n−1

or less with coefficients in Fp, which corresponds to a unique element of Fpn .

III. PROBLEM FORMULATION

Consider a network of agents (nodes) modeled by the directed graph G = {X , E}, where

X = {x1, x2, . . . , xN} is the set of agents and the directed edge (xj , xi) ∈ E indicates that

agent xi can receive information from agent xj . The state of each agent xi is restricted to be an

element from the finite set {0, 1, . . . , q − 1}, for some q ∈ N. At each time-step k, each agent

is allowed to update its state as a function of its previous state and those of its neighbors. We

study two scenarios in this paper.

4For instance, any element of F23 can be represented by a polynomial a2α2 + a1α+ a0, where ai ∈ {0, 1} for i ∈ {0, 1, 2}.
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1) A set of leader agents L ⊂ X wish to cooperatively update their states (within the confines

of the discrete state-space) in order to make all of the other agents achieve a certain

configuration (i.e., reach a certain state in {0, 1, . . . , q − 1}N ).

2) A set of sink agents S ⊂ X wish to examine the state evolutions of their neighbors and

use this information to collectively determine the initial states of all agents.

Throughout the paper, we will refer to the fact that the states of each agent must lie in the

set {0, 1, . . . , q − 1} as a quantization constraint. Thus, we will refer to the first scenario as

the Quantized Multi-Agent Control (QMAC) problem, and the second scenario as the Quantized

Multi-Agent Estimation (QMAE) problem.5 We will provide a novel solution to these problems

by viewing the discrete states of the agents as elements of a finite field, and performing all

operations within that field.6 Specifically, we assume (for now) that q is of the form pn for some

prime p and positive integer n, and treat the set {0, 1, . . . , q − 1} as Fq (the finite field of size

q); we will discuss generalizations of this later in the paper. To develop the theory, we will

also assume that all agents have identical state-spaces, and that the network is fixed; we leave

relaxations of these assumptions for future work.

To solve the above problems, we study a linear iterative strategy of the form

xi[k + 1] = wiixi[k] +
∑
j∈Ni

wijxj[k],

where xi[k] is the state of agent xi at time-step k, and the wij’s are a set of weights7 (constant

elements) from the field Fq. Note that all operations in the above equation are done over the

finite field Fq, guaranteeing that the state xi[k + 1] will be in the set {0, 1, . . . , q − 1} for all

k ∈ N (by the closure property of finite fields). For ease of analysis, the states of all nodes at

time-step k can be aggregated into the state vector x[k] =
[
x1[k] x2[k] · · · xN [k]

]′
, so that

5Note that the QMAE problem can be viewed as an abstraction for the problem of data accumulation in networks [29].

For instance, the initial state of the agents can represent a certain piece of information (such as a temperature measurement,

or a vote) which must be transmitted via the network to the sink agents. Similarly, the QMAC problem can be viewed as an

abstraction for the problem of broadcasting a different value to each agent from the set of leaders.

6Note that this differs from the usual method of quantization, where all operations are first performed over the field of real

numbers and then the result is mapped to the nearest quantization point. Instead, our approach will be to perform all operations

within the confines of the discrete set; for convenience, we will use the term quantization as an allusion to the constrained

nature of the system, keeping in mind the philosophical difference between the two methodologies.

7We will discuss appropriate ways to choose the weights later in the paper.
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the nearest-neighbor update for the entire system can be represented as

x[k + 1] = Wx[k], (1)

for k ∈ N, where entry (i, j) of matrix W is equal to the weight wij if j ∈ Ni, the diagonal

entries are equal to the self-weights wii, and all other entries are zero.

A. Quantized Multi-Agent Control Problem

Since each leader agent in the quantized multi-agent control problem is allowed to modify its

state in arbitrary ways (subject to the quantization constraints), we can model this in the linear

iterative strategy by simply including an “input” term8 for each agent, i.e.,

xl[k + 1] = wllxl[k] +
∑
j∈Nl

wljxj [k] + ul[k], xl ∈ L .

Letting L = {xl1 , xl2 , . . . , xl|L|}, the system model (1) becomes

x[k + 1] = Wx[k] +
[
el1,N el2,N . . . el|L|,N

]
︸ ︷︷ ︸

BL

⎡
⎢⎢⎢⎢⎢⎣
ul1 [k]

ul2 [k]
...

ul|L| [k]

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
uL[k]

. (2)

The explicit statement of the Quantized Multi-Agent Control Problem is as follows.

Problem 1: Find conditions on the network topology, a set of weights w ij ∈ Fq (with the

constraint that wij = 0 if xj /∈ Ni ∪ {xi}), and a set of updates uL[k] ∈ F
|L|
q , k ∈ N, so that the

state of the agents x[k] at some time-step k achieves some desired state x̄ ∈ FN
q , starting from

any given initial state x[0].

B. Quantized Multi-Agent Estimation Problem

Let ys[k] denote the vector of states that sink agent xs ∈ S views at the k–th time-step. Since

xs has access to its own state as well as the states of its neighbors, we can write

ys[k] = Csx[k], xs ∈ S , (3)

8We can leave the nearest-neighbor rule in the update for each leader without loss of generality because it can effectively be

canceled out by choosing ul[k] ∈ Fq appropriately.
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where Cs is the (degs+1)×N matrix with a single “1” in each row denoting the positions of

the vector x[k] that correspond to the neighbors of xs, along with xs itself. The overall system

model for the Quantized Multi-Agent Estimation Problem is given by equations9 (1) and (3).

The explicit statement of the Quantized Multi-Agent Estimation Problem is as follows.

Problem 2: Find conditions on the network topology, a set of weights w ij ∈ Fq (with the

constraint that wij = 0 if xj /∈ Ni∪{xi}), and a strategy for the set S of sink nodes to follow so

that they can collectively obtain the initial states of all of the other agents via {ys[0 : L], s ∈ S},

for some L ∈ N.

C. Discussion

Problems 1 and 2 are precisely the notions of controllability and observability in linear systems,

with the salient point being that we are working with systems over finite fields. In particular,

we are interested in investigating how the topology of the network affects these properties, and

therefore we will develop a graph-theoretic characterization of controllability and observability

of linear systems over finite fields to solve Problems 1 and 2.

Note that the above problems assume that the nearest-neighbor rules are designed for the

agents based on a given network. In other words, we allow different agents to potentially use

different weights in their update; this is in contrast to previous work on controllability of multi-

agent systems [7], [11], where each agent applies the same nearest-neighbor rule (i.e., with

identical weights). Our approach will generally require more overhead to “setup” the system

(by choosing the weights), but we will show that there is additional flexibility that is gained in

return. We will first show how a network designer (with knowledge of the topology) can select

a (deterministic) set of weights for each agent to apply, depending on the location of the agent

in the network. We will then show how a random choice of weights can be used to solve the

above problems; this will have several benefits, one of which is that the agents can choose their

weights in a distributed manner (at the cost of requiring a larger number of states that each agent

can occupy). We will discuss this issue further in Section VI.

Note also that the input sequence ul[k], xl ∈ L, k ∈ N applied by leader xl to solve Problem 1

will generally depend on the network topology, the weights wij , and the inputs applied by the

9One can also consider including input terms of the form in (2) into this model. If the inputs are known, their influence can

readily be subtracted out from the values received by each sink agent.
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other leaders. Knowledge of the network parameters will also be required by the sink nodes in

order to solve Problem 2. Thus we will assume in this paper that the leaders and sink nodes

know the matrix W and coordinate with each other to apply inputs, or recover the initial values,

respectively. As we will discuss later in the paper, it is possible for the leaders and sink nodes

to discover W via a distributed algorithm, under mild conditions on the network topology.

IV. LINEAR SYSTEMS OVER FINITE FIELDS

Consider a linear system of the form

x[k + 1] = Ax[k] +Bu[k] ,

y[k] = Cx[k] ,
(4)

with state vector x ∈ FN , input u ∈ Fm and output y ∈ Fr (for some field F). The matrices

A, B and C (of appropriate sizes) also have entries from the field F. Such systems have

been extensively studied over several decades, both over the field of complex numbers by the

control systems community (e.g., [30]), and over finite fields, particularly in the context of

linear sequential circuits, convolutional error correcting codes and finite automata (e.g., [31],

[32], [33], [34], [35], [36], [37], [38]). We will now review some important concepts for such

systems, and explain how they differ from standard linear systems over the field of complex

numbers. In the next section, we will use the intuition gained from this analysis to develop one

of the key contributions of this paper, namely, a graph-theoretic characterization of controllability

and observability for linear systems over finite fields.

Starting at some initial state x[0], the state of the system at time-step L (for some positive

integer L) is given by

x[L] = ALx[0] +
[
B AB · · · AL−1B

]
︸ ︷︷ ︸

CL−1

u[0 : L− 1].

Similarly, when u[k] = 0 for all k, the output of the system over L time-steps (for some positive

integer L) is given by

y[0 : L− 1] =
[
C′ (CA)′ · · · (CAL−1)′

]′
︸ ︷︷ ︸

OL−1

x[0].

If one wishes the state x[L] to be any arbitrary vector in FN , then one must ensure that the

controllability matrix CL−1 has full rank over the field F; in this case the pair (A,B) (or, more
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loosely, the system) is said to be controllable.10 Analogously, if one wishes to determine the initial

state x[0] uniquely from the output of the system over L time-steps, one requires the observability

matrix OL−1 to have rank N over the field F, in which case the pair (A,C) (or the system) is

said to be observable. Note that the ranks of CL−1 and OL−1 are nondecreasing functions of L,

and bounded above by N . Suppose μ is the first integer for which rank(Cμ) = rank(Cμ−1). This

implies that there exists a matrix K such that AμB = Cμ−1K. In turn, this implies that

Aμ+1B = AAμB = ACμ−1K

=
[
AB A2B · · · AμB

]
K ,

and so the matrix Aμ+1B can be written as a linear combination of the columns in Cμ. Continuing

in this way, we see that the rank of CL monotonically increases with L until L = μ−1, at which

point it stops increasing. In the linear systems literature, the integer μ is called the controllability

index of the pair (A,B). Similarly, the first integer ν for which rank(Oν) = rank(Oν−1) is called

the observability index of the pair (A,C).

The above concepts and terminology hold regardless of the field F under consideration [39].

However, when one considers arbitrary fields, some of the further theory that has been developed

to test controllability and observability of linear systems over the complex field will no longer

hold. For example, consider the commonly used Popov-Belevitch-Hautus (PBH) test [30].

Theorem 1 (PBH Test): The pair (A,B) (over the field of complex numbers) is uncontrollable

if and only if there exists a complex scalar λc such that rank
[
λcIN −A B

]
< N . The pair

(A,C) (over the field of complex numbers) is unobservable if and only if there exists a complex

scalar λo such that rank
[
λoIN−A

C

]
< N .

One might expect that this theorem will also apply to linear systems over finite fields, perhaps

by taking the scalar λ to be an element of that field and then evaluating the rank of the resulting

matrix over the field. However the following example shows that this is not necessarily the case.

Example 1: Consider the linear system operating over the finite field F2 = {0, 1}, with system

matrices A =
[
1 1 0
1 0 0
0 0 1

]
, B = e3,3. The controllability matrix for this system is CN−1 =

[
0 0 0
0 0 0
1 1 1

]
,

which only has rank 1 over the field F2 (recall that multiplications and additions are performed

10If the system is controllable, an input (or control) sequence taking the system from any initial state x[0] to any desired final

state x[L] can be found simply by solving the linear system of equations x[L] −ALx[0] = CL−1u[0 : L − 1]; note that this

requires knowledge of the initial states of the system, as well as the controllability matrix CL.
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modulo 2 in this field). However, the PBH matrix for this system is given by
[
λIN −A B

]
=[

λ+1 1 0 0
1 λ 0 0
0 0 λ+1 1

]
; note that −1 = 1 in F2. One can readily verify that the above matrix has full

row rank (equal to 3) over F2 for any λ ∈ {0, 1}. In other words, the PBH condition is satisfied

(over this field), but the system is clearly not controllable. The reason for the test failing in this

case is that finite fields are not algebraically closed, which means that not every polynomial

with coefficients from a finite field will have a root in that field (this also implies that not all

N ×N matrices in a finite field will have N eigenvalues) [40].

This PBH test plays a key role in much of the previous work on multi-agent controllability

[7], [8], [9], [11]. It also features heavily in graph-theoretic characterizations of controllability

and observability that have been developed in the structured linear systems literature [41], [26],

[24]. However, since this test is not sufficient to treat linear systems over finite fields, we will

now use a first-principles approach to derive a graph-theoretic characterization of controllability

over finite fields.

V. CONTROLLABILITY OF STRUCTURED LINEAR SYSTEMS OVER FINITE FIELDS

While much of linear system theory deals with systems with given (numerically specified)

system matrices, there is frequently a need to analyze systems whose parameters are not exactly

known, or where numerical computation of properties like controllability is not feasible. In

response to this, control theorists have developed a characterization of system properties based

on the structure of the system. Specifically, a linear system of the form (4) is said to be structured

if every entry in the system matrices is either zero or an independent free parameter (traditionally

taken to be real-valued) [26]. A property is said to hold structurally for the system if that property

holds for at least one choice of free parameters. In fact, for real-valued parameters (with the

underlying field of operation taken as the field of complex numbers), structural properties will

hold generically (i.e., the set of parameters for which the property does not hold has Lebesgue

measure zero). Previous works in this area typically rely on the PBH test to derive graph-theoretic

characterizations of the controllability of structured systems (with real-valued parameters) [41],

[26], [24], but as we have seen, such derivations do not directly extend to systems over finite

fields.

To further illustrate the difference between structural controllability over finite fields and

over the complex field, consider the pair A =

[
0 0 0 0
a b 0 0
c 0 d 0
e 0 0 f

]
, B = e1,4. The nonzero entries in A
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are independent free parameters, and thus A is a structured matrix. After some algebra, the

controllability matrix C3 for this pair can be shown to have determinant ace(f−d)(f−b)(d−b),

and thus the system is structurally controllable if and only if a, c and e are nonzero, and b, d

and f are all different. Clearly, one can satisfy this condition by choosing parameters from the

field of complex numbers. However, one can also see that there does not exist any choice of

parameters from the binary field F2 = {0, 1} for which the system will be controllable (since

this field only has two elements, at least two of b, d and f must be the same). Thus, this system

is structurally controllable over C, but not over F2.

In this section, we will develop a characterization of structural controllability over finite fields.

We will start by investigating controllability of matrix pairs of the form (A, e1,N), where A is

an N×N matrix, and e1,N is a column-vector of length N with a 1 in its first position and zeros

elsewhere. Matrix A may be structured (i.e., every entry of A is either zero, or an independent

free parameter to be chosen from a field F), or it may be numerically specified. As in standard

structured system theory [26], our analysis will be based on a graph representation of matrix A,

denoted by H, which we obtain as follows. The vertex set of H is X = {x1, x2, . . . , xN}, and

the edge set is given by E = {(xj , xi) | Aij �= 0}. The weight on edge (xj , xi) is set to the

value of Aij (this can be a free parameter if A is a structured matrix).

A. Controllability of a Spanning Tree and Spanning Forest

Theorem 2: Consider the matrix pair (A, e1,N), where A is an N ×N matrix with elements

from a field F of size at least N . Suppose that the following two conditions hold:

• The graph H associated with A is a spanning tree rooted at x1, augmented with self-loops

on every node.

• The weights on the self-loops are different elements of F for every node, and the weights

on the edges between different nodes are equal to 1.

Then the pair (A, e1,N) is controllable over the field F, with controllability index equal to N .

Proof: Since the graph associated with A is a spanning tree rooted at x1, there exists a

numbering of the nodes such that the A matrix is lower-triangular, with the self-loop weights

on the diagonal [42]. Denote the self-loop weight on node xi by λi. Since all of the self-loop
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weights are different, this matrix will have N distinct eigenvalues (given by λ1, λ2, . . . , λN ),

with N corresponding linearly independent eigenvectors (this holds for arbitrary fields [43]).

Consider the eigenvalue λi. Let xl be any leaf node in the graph such that the path from x1

to xl passes through xi (if xi is a leaf node, we can take xl = xi). Let Ni denote the number

of nodes in this path, and reorder the nodes (leaving x1 unchanged) so that all nodes on the

path from x1 to xl come first in the ordering, and all other nodes come next. Let Pi denote the

permutation matrix that corresponds to this reordering, and note that PiAP′
i has the form

PiAP′
i =

⎡
⎣ Ji 0

Ā1 Ā2

⎤
⎦ , (5)

for some matrices Ā1 and Ā2. The matrix Ji has the form Ji = diag(λ1, λ2, · · · , λNi
) + SNi

,

where λ1, λ2, . . . , λNi
are different elements of F, and SNi

is an Ni × Ni matrix with ones on

the main subdiagonal and zeros everywhere else. Note that there exists some t ∈ {1, 2, . . . , Ni}
such that λt = λi (where λi is the eigenvalue that we are considering in matrix A). It is easy to

verify that the left-eigenvector vt of Ji associated with the eigenvalue λt is given by

vt =
[
1 (λt − λ1) (λt − λ1)(λt − λ2) · · ·

· · ·
∏t−1

s=1(λt − λs) 0 · · · 0
]

,

and thus the left-eigenvector corresponding to eigenvalue λt for the matrix PiAP′
i in equation (5)

is given by wt =
[
vt 0

]
. Next, note that the left-eigenvector corresponding to eigenvalue λt

(or equivalently, λi) for matrix A will be given by wtPi. Since Pi is a permutation matrix, and

node x1 was left unchanged during the permutation, the first column of Pi is given by the vector

e1,N . This means that the first element of the eigenvector wtPi will be “1” (based on the vectors

wt and vt shown above). Since the above analysis holds for any eigenvalue λi, we can conclude

that all left-eigenvectors for the matrix A will have a “1” as their first element. Let V be the

matrix whose rows are these left-eigenvectors (so that each entry in the first column of V is

“1”); since the eigenvectors are linearly independent, this matrix will be invertible over the field

F. We thus have VAV−1 = Λ, where Λ = diag(λ1, λ2, . . . , λN), and furthermore, Ve1,N = 1N

(the length-N column vector of all 1’s). The controllability matrix for the pair (Λ, 1N) is a

Vandermonde matrix in the parameters λ1, λ2, . . . , λN [44]. Such matrices are invertible over a

field F if and only if all of the parameters are distinct elements of that field [44], and thus the
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above controllability matrix has rank N over F. This means that the pair (A, e1,N) will also

be controllable.11 Since the controllability matrix
[
e1,N Ae1,N · · · AL−1e1,N

]
only has L

columns, it is obvious that the matrix obtains a rank of N at L = N .

Theorem 3: Consider the matrix pair (A,B), where A is an N × N matrix with elements

from a field F, and B is a N ×m matrix of the form B =
[
ei1,N ei2,N · · · eim,N

]
. Suppose

the graph H associated with the matrix A satisfies the following two conditions:

• The graph H is a spanning forest rooted at {xi1 , xi2 , . . . , xim}, augmented with self-loops

on every node.

• No two nodes in the same tree have the same weight on their self-loops, and the weights

on the edges between different nodes are equal to 1.

Let D denote the maximum number of nodes in any tree in H. Then, the pair (A,B) is

controllable over the field F with controllability index equal to D.

The proof is directly obtained by noting that the system considered in the theorem corresponds

to a set of decoupled subsystems, each of which is of the form described in Theorem 2.

B. Controllability of Arbitrary Graphs

Corollary 1: Consider the matrix pair (A,B), where A is an N×N structured matrix, and B

is a N×m matrix of the form B =
[
ei1,N ei2,N · · · eim,N

]
. Suppose the graph H associated

with A satisfies the following two conditions:

• Every node can be reached by a path from at least one node in the set {xi1 , xi2 , . . . , xim}.

• Every node has a self-loop (i.e., the diagonal elements of A are free parameters).

Let H̄ be a subgraph of H that is a spanning forest rooted at {xi1 , xi2 , . . . , xim}. Let D denote

the size of the largest tree in H̄. Then if F has size at least D, there exists a choice of parameters

from F such that the controllability matrix corresponding to the pair (A,B) has rank N over

that field, with controllability index equal to D.

The proof of the above corollary is readily obtained by setting the values of all parameters

corresponding to edges that are not in H̄ to zero, and then choosing the weights for edges in H̄
to satisfy Theorem 3. The strategy inherent in the above corollary is to decompose the system

11Here, we are using the well-known fact that the pair (A, ei,N) is controllable if and only if the pair (VAV−1,Ve′
1,N) is

controllable, for any invertible matrix V [30]. It is easy to show that this fact also holds for arbitrary fields.
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into a set of disjoint systems, each of which is controlled by a different input. This is intuitively

appealing, and shows that one only needs a finite field of size D to control the system. Note that

D will be no larger than N−m+1; this is because in the worst case, the spanning forest consists

of one spanning tree (containing N − (m− 1) nodes) rooted at one node in {xi1 , xi2, . . . , xim}
and m − 1 isolated nodes (corresponding to the remaining nodes in the root set). By choosing

H̄ to be an optimal spanning forest (see Definition 1 in Section II-A), one obtains the smallest

value of D over all other choices of spanning forests.

C. Controllability using Arbitrary Fields

One can guarantee controllability of the pair (A,B) if the parameters of A are chosen from a

finite field of size at least D, as long as the two conditions in Corollary 1 are satisfied. However,

the following theorem shows that one can obtain controllability over finite fields of arbitrary

size (including the binary field F2 = {0, 1}), if the graph of matrix A satisfies certain additional

conditions. To maintain clarity, we will focus on the case where B = e1,N (i.e., a single input),

but the result can be easily generalized to the case of multiple inputs, each of which is a root

of a spanning tree of the form described in the theorem.

Theorem 4: Consider the matrix pair (A, e1,N ), where A is an N × N structured matrix.

Suppose the graph H associated with A satisfies the following two conditions:

• H contains a subgraph that is a spanning tree rooted at x1 with at most two branches.

• Each branch is a path, augmented with self-loops on every node.

Then, for any field F, there is a set of parameters from F such that (A, e1,N) is controllable.

Proof: Consider the subgraph of H that is a spanning tree rooted at x1 with at most two

outgoing branches, both of which are paths. Set all of the weights corresponding to edges that

are not in this spanning tree to zero, and set all edges between nodes in this spanning tree to 1.

We will now describe how to choose the self-weights for the nodes.

Let r− 1 denote the number of nodes in the first branch, and renumber the non-leader nodes

so that the nodes in the first branch are x2, x3, . . . , xr, and the nodes in the second branch are

xr+1, xr+2, . . . , xN . Set the self-weight wii for all nodes in the first branch (including x1) to be

0, and the self-weight for all nodes in the second branch to be 1. The matrix A then has the

form A =
[
J0 0
F J1

]
, where F =

[
e1,N−r 0

]
, J0 = Sr, J1 = IN−r + SN−r, and Sj is a j × j

matrix with ones on the main subdiagonal and zeros elsewhere.
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Consider the matrix P =
[
Ir 0
F J1

]
; note that this matrix is invertible over Fq since the matrix

J1 is invertible over that field (it has determinant equal to 1). Also note that FJ0 = 0 (from the

definition of these matrices given above). If we perform a similarity transformation on the pair

(A, e1,N) with P, we obtain PAP−1 =
[
J0 0
0 J1

]
and Pe1,N =

[
e′1,r e′1,N−r

]′
. The controllability

matrix for this transformed pair is⎡
⎣ e1,r J0e1,r J2

0e1,r · · · JN−1
0 e1,r

e1,N−r J1e1,N−r J2
1e1,N−r · · · JN−1

1 e1,N−r

⎤
⎦ .

One can readily verify that for J0 as given above, we have
[
e1,r J0e1,r J2

0e1,r · · · Jr−1
0 e1,r

]
=

Ir and Jk
0e1,r = 0 for k ≥ r. Thus, the above controllability matrix has the form

[
Ir 0
∗ T

]
, where

∗ represents unimportant quantities and

T =
[
Jr
1e1,N−r Jr+1

1 e1,N−r · · · JN−1
1 e1,N−r

]
= Jr

1

[
e1,N−r J1e1,N−r · · · JN−r−1

1 e1,N−r

]
︸ ︷︷ ︸

T̄

.

The matrix Jr
1 is full rank (since J1 has determinant 1 over any field). One can also readily

verify that the matrix T̄ is upper-triangular, with all diagonal entries equal to 1, and thus also

has full rank over any field. Thus, the matrix T is invertible over the field Fq, which means that

the pair (A, e1,N) is controllable over that field.

An example of the type of spanning tree discussed in the above theorem is shown in Fig. 1(c)

(with self-loops omitted). The above theorem also encompasses topologies where the nodes are

simply arranged in a path or a ring. For such systems, the proof of the theorem indicates that

one only needs a field with elements “0” and “1” in order to ensure controllability – one simply

finds the appropriate spanning tree, and assigns the self-loop parameters on one side of the tree

to be “1”, and the self-loop parameters on the other side to be “0”. Note that the difference

between Corollary 1 and Theorem 4 is that the latter focuses on graphs that contain a particular

kind of spanning tree, but does not require a lower bound on the field size.

While we have been able to show that certain graph topologies can be controlled with finite

fields of size smaller than D, the characterization of the smallest size required for controllability

of arbitrary graphs (in terms of their topology) is an open problem for research.
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D. Controllability with a Random Choice of Parameters

While the previous results allow us to obtain controllability over finite fields of relatively

small size (no greater than D in Corollary 1 and of arbitrary size in Theorem 4), they require

some manipulation of the system graph (i.e., to shape it into an appropriate tree or forest). We

now consider what happens if we choose the parameters for the matrix randomly (i.e., uniformly

and independently) from a field of sufficiently large size. The following theorem shows that this

allows us to obtain controllability with high probability, and with a controllability index that is

equal to (or better than) that provided by the optimal spanning forest. Furthermore, this will be

achieved without requiring any detailed analysis of the graph (which will make it amenable to

a decentralized implementation), but comes at the cost of working with finite fields of larger

sizes. The proof of the theorem is provided in the Appendix.

Theorem 5: Consider the matrix pair (A,B), where A is an N ×N structured matrix, and B

is a N×m matrix of the form B =
[
ei1,N ei2,N · · · eim,N

]
. Suppose the graph H associated

with the matrix A satisfies the following two properties:

• Every node can be reached by a path from at least one node in the set {xi1 , xi2 , . . . , xim}.

• Every node has a self-loop (i.e., the diagonal elements of A are free parameters).

Let H̄ be a subgraph of H that is an optimal spanning forest rooted at {xi1 , xi2 , . . . , xim}. Let D

denote the size of the largest tree in H̄. Then, if the free parameters in A are chosen uniformly

and independently from the finite field Fq of size q ≥ (D − 1)(N − m − D
2
+ 1), then with

probability at least 1− 1
q
(D− 1)(N −m− D

2
+ 1), the pair (A,B) will be controllable and the

controllability index will be upper bounded by D.

Remark 1: While the lower bound on the field size specified by the above theorem is in

terms of D, one does not actually need to know the value of D to apply it. More precisely, the

quantity (D− 1)(N −m− D
2
+1) is a concave function of D, and achieves its maximum value

at D = N −m+ 3
2
. However D is an integer and upper bounded by N −m+1, and substituting

this into (D − 1)(N − m − D
2
+ 1), we see that (N−m)(N−m+1)

2
≥ (D − 1)(N − m − D

2
+ 1).

Thus, if one chooses entries from a field of size q ≥ (N−m)(N−m+1)
2

, one is guaranteed to obtain

controllability with probability at least 1 − (N−m)(N−m+1)
2q

, without having to know the value

of D. However, note that the controllability index of the resulting system will still be upper

bounded by D (i.e., one can achieve the same, or better, controllability index as provided by the
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optimal forest, without having to know anything about the forest). It is also worth noting that

the upper bound of D on the controllability index also holds for systems over the field of real

or complex numbers; the proof carries over almost directly, with the exception that one does

not have to appeal to the Schwartz-Zippel Lemma (as we do for finite fields in the Appendix).

Instead, the set of parameters for which the controllability index exceeds D lies on an algebraic

variety, and thus has measure zero. In this case, the upper bound on the controllability index is

generic, falling in line with the kinds of results that are typically obtained for structured systems

over the field of complex and real numbers [26].

The above theorem has one apparent drawback in comparison to Corollary 1: the size of the

field specified by this theorem is much larger than the size specified in the corollary. However,

the theorem does provide some substantial benefits over the corollary. First, it does not require

the network to be analyzed and processed (i.e., by decomposing the network into a spanning

forest and setting non-tree edges to zero). Instead, each free parameter can simply be chosen

randomly, and with high probability (with increasing q), the system will be controllable. Second,

Theorem 5 shows that one can achieve a controllability index no greater than the one provided

by the optimal spanning forest, without needing to actually find such a forest. In fact, as the

following example shows, for certain topologies, one can obtain a controllability index that is

strictly smaller than the one provided by the optimal forest.

x1x1 x2x2

x3x3 x4x4 x5x5

x6x6

(a) (b)

Fig. 2. (a) Graph of matrix A with self-loops omitted. (b) A subgraph of the original network that is an optimal spanning

forest rooted at {x1, x2}.

Example 2: Consider the matrix pair (A,B), where A is a structured matrix with all diagonal

entries as free parameters and the remaining free parameters captured by the graph shown in

Fig. 2(a), and B =
[
e1,6 e2,6

]
. An optimal spanning forest rooted at {x1, x2} is shown in

Fig. 2(b) (this forest is not unique), with D = 4. Corollary 1 indicates that by choosing the
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parameters from a field of size q ≥ 4 so that no two self-loops in the same tree have the same

value, and by choosing the remaining parameters to adhere to the forest structure of Fig. 2(b),

the system will be controllable with controllability index equal to 4.

Now let us consider a random choice of free parameters, in accordance with Theorem 5.

Specifically, if each parameter is chosen uniformly and independently from a field of size q ≥
(N−m)(N−m+1)

2
= 10, the system will be controllable with probability at least 1− 10

q
. For example,

with q = 101 (which is a prime number), we obtain a probability of success at least 0.91. One

particular realization of random parameters from this field is A =

[ 82 0 93 8 0 0
0 48 0 5 47 0
94 0 76 0 0 0
35 84 0 79 0 61
0 59 0 0 16 0
0 0 0 13 0 66

]
. One can

verify that the controllability matrix C2 =
[
B AB A2B

]
for (A,B) has determinant 45

over the field F101 (recall that all multiplications and additions are done modulo 101 in this

field). Thus, the system is controllable with a controllability index of 3, which outperforms the

deterministic forest-based scheme described in Corollary 1. We will comment further on the

implications of this observation in the next section.

Choosing the parameters randomly also has benefits over a forest-based decomposition when

one would like to obtain controllability from each input acting on its own. Specifically, the

choice of weights indicated by Corollary 1 ensures that each input will control a subset of the

states (i.e., those states that correspond to nodes in the tree rooted at that input), but will not

influence any other states. However, in certain situations, it will be desirable for each input to

be able to control all of the states on its own (e.g., when some of the inputs fail). The random

choice of parameters described by Theorem 5 improves upon the forest-based decomposition of

Corollary 1 because it maintains the ability of each input to affect more states than simply those

in a particular tree. Starting with the bound provided by Theorem 5 (concerning the probability

that the system will be controllable from all inputs acting together), one can obtain a bound on

the probability that the system will be controllable from each input individually.

Theorem 6: Consider the matrix pair (A,B), where A is an N × N structured matrix, and

B is a N × m matrix of the form B =
[
ei1,N ei2,N · · · eim,N

]
for some distinct indices

{i1, i2, . . . , im}. Suppose the graph H associated with the matrix A satisfies the following two

properties:

• Every node can be reached by a path from each node in the set {xi1 , xi2 , . . . , xim}.

• Every node has a self-loop (i.e., the diagonal elements of A are free parameters).

March 26, 2013 DRAFT



22

If the free parameters in A are chosen uniformly and independently from the finite field Fq

of size q ≥ mN(N−1)
2

, then with probability at least 1 − mN(N−1)
2q

, the pair (A, eij ,N) will be

controllable for all j ∈ {1, 2, . . . , m}.

The proof is a straightforward consequence of Theorem 5 (with B = eij ,N ), Remark 1 (with

m = 1) and the union bound, and thus we omit the details here in the interest of space.

Remark 2: Note that the probability bounds obtained in Theorems 5 and 6 are potentially

quite loose because of several conservative assumptions in our derivation, such as the union

bound and the Schwartz-Zippel Lemma (which is used in the Appendix to derive Theorem 5).

It may be the case that one can use finite fields of smaller sizes than those specified by the

above theorems and still ensure that the system is controllable from every input with a specified

probability (e.g., see [45] where an improvement on the Schwarz-Zippel Lemma is provided). A

deeper investigation of the smallest field required to guarantee a certain probability of success

(in terms of achieving controllability or observability) under a random choice of parameters is

an open avenue for exploration.

VI. DESIGN OF NEAREST NEIGHBOR RULES FOR THE QMAC PROBLEM

We now return to Problem 1 (the Quantized Multi-Agent Control Problem) stated in Section III.

Recognizing that this is exactly a controllability problem over a finite field, we can immediately

apply the theorems developed in the previous section. For the sake of pedagogy, we will

demonstrate the application of Corollary 1. We will assume that each agent in the network

can be reached by a path from at least one of the leader agents (if this is not true for some

agent, it will be impossible for any leader to influence that particular agent). In the graph G of

the network, let H be the subgraph of the network that is an optimal spanning forest rooted at

the leader agents, and let D be the number of agents in the largest tree of that forest.

Theorem 7: Consider a multi-agent system with N agents described by the graph G = {X , E}.

Let L ⊂ X be a set of leader agents, and suppose that each agent in the network can be in one

of q discrete states, where q = pn for some prime p and positive integer n. Then, if each agent

in the network can be reached by a path from some leader agent, and if q ≥ D, there is a set

of weights wij ∈ Fq, j ∈ Ni ∪ {xi}, and a set of updates uL[k] ∈ F
|L|
q , k = 0, 1, . . . , D − 1 in

the nearest-neighbor rule (2) such that the state x[D] of the agents achieves any desired value

starting from any initial condition x[0].
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Proof: First, note that the weight matrix W in (2) is a structured matrix (since every element

is either identically zero or an independent free parameter). Since every agent in the network can

be reached by a path from a leader agent, and since each agent has a “self-loop” (i.e., it can use its

own current state in its update), we can appeal to Corollary 1. If the number of discrete states for

each agent satisfies q ≥ D, all of the conditions in this corollary are satisfied, and thus there exists

a specific assignment of weights from Fq such that the pair (W,BL) in (2) is controllable over

that field,12 with controllability index D. Then, we have x[D] = WDx[0] + CD−1uL[0 : D− 1],

and since we have shown that the matrix CD−1 has full rank over the field Fq, the updates for

the leader agents are

uL[0 : D − 1] = C†
D−1

(
x̄−WDx[0]

)
, (6)

where x̄ is any desired vector in FN
q and C†

D−1 is any right-inverse of CD−1. Thus, all agents can

be put into any desired configuration via the above set of updates by the leader, and by having

all other agents follow nearest-neighbor rules with an appropriate set of updates.

Remark 3: The above control law only ensures that the state of all agents reaches the desired

state at some time-step D. If one requires the agents to stay at that state for some period of time,

then one can have all agents simply stop following the nearest neighbor rule after time-step D

(assuming that all agents know the value of D). Alternatively, if for a given weight matrix W,

the desired state satisfies x̄ = (IN − W)−1Bū for some vector ū ∈ Rm, then the leaders can

maintain the state at x̄ by applying the input ū (as done in standard control problems).

A. Controlling Agents When q < D

Note that Theorem 7 only provides a sufficient condition for multi-agent controllability over

finite fields: as long as the number of states for each agent satisfies q ≥ D, and the leaders

have paths to every other node, then we can find a set of weights in Fq for each agent to use

in its nearest-neighbor rule. However, there will often be cases where the number of possible

states for each agent is less than D, preventing Theorem 7 from being applied directly. In these

instances, one can appeal to Theorem 4 as long as the network topology satisfies the conditions

12Namely, the self-loop weight for each agent can be set to a different element of the field Fq and all other weights in the

graph can be set to either 1 or 0 in order to obtain a spanning forest rooted at the leader nodes.
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in that theorem. For such networks, there is no lower bound on the number of possible states

for each agent (except for the constraint that q = pn, which we will relax shortly).

Example 3: Consider a set of N agents arranged in a grid, where each agent can only be in

one of two states, denoted by {0, 1}. For instance, these agents could represent a set of pixels

that can only be white or black, or a set of cameras that can only face north or south. For any

given agent xi, the grid network contains a subgraph that is a spanning tree rooted at xi with at

most two branches, where each branch is a path; Theorem 4 indicates that the entire network can

thus be controlled from xi. Once the weights are chosen according to that theorem, the resulting

matrix W can be used in equation (6) to produce the sequence of inputs to be applied by the

leader in order to cause the other agents to enter any desired state in {0, 1}N (e.g., to make the

cameras point in certain directions to ensure visual coverage of the environment, or to cause a

picture to appear in the grid of pixels).

The above analysis is worth comparing to previous works on multi-agent controllability in

the continuous-time and continuous-state setting [7], [8], [10], [11]. These investigations have

led to various characterizations of network topologies that are controllable by the leaders under

a specific set of nearest-neighbor rules (e.g., when the dynamics of the overall system are given

by the Laplacian of the graph [7]). The paper [7] showed that for these specific rules, certain

topologies are controllable from a single leader, while others are not. The authors of [8] extended

this result and showed that topologies that are “symmetric” from the perspective of the leader(s)

are not controllable, the intuition being that both sides of the symmetric topology will be affected

in exactly the same way by the leader nodes, and thus cannot be driven to different states.

Recently, [11] further generalized the above studies on controllability of Laplacian dynamics in

single-integrator networks by considering topological structures known as equitable partitions.

The Laplacian-based nearest-neighbor rules in those papers have the benefit of being uniform

for all agents in the network (i.e., the behavior of each agent depends solely on the number of

neighbors it has), but consequently does not break the symmetries in the network topology. In

our setting, however, we are effectively breaking any symmetries by allowing different nodes

to update their values in different ways, based on where they are in the network (i.e., they

are allowed to have different weights in their nearest neighbor rules). In other words, we are

designing the system in order to obtain controllability or observability from the leader and sink

agents, whereas these previous works considered a given set of dynamics on networks, and then

March 26, 2013 DRAFT



25

analyzed those dynamics for controllability and observability. We will discuss a possible method

for a distributed implementation of our scheme shortly.

B. Controlling Agents when q �= pn

Theorem 7 (or Theorem 4, when permitted by the network) is restricted to the case where

the number of possible states for each agent is of the form q = pn for some prime p; this is

due to the fact that finite fields only come in sizes of this form. However, one can also adapt

the finite-field framework that we have developed to handle multi-agents systems where q is

not of this form. First, factor q as q = pn1
1 pn2

2 · · · pnt
t , where p1, p2, . . . , pt are all distinct primes

and n1, n2, . . . , nt are positive integers. Now, each state xi[k] ∈ {0, 1, . . . , q− 1} can instead be

viewed as a t-tuple of states xi[k] = (x1
i [k], x

2
i [k], . . . , x

t
i[k]), where xj

i [k] ∈ F
p
nj
j

. Furthermore,

the final desired state for each agent is also an element of
∏t

j=1 Fp
nj
j

. Thus, each agent in the

network can apply a linear iterative strategy of the form described in the previous sections (e.g.,

Theorem 7) to each element of the t-tuple corresponding to its state (performing operations over

the field F
p
nj
j

for the j-th element), and can be placed in any desired state by the leader agents,

as long as there is a path from the leaders to every other agent, and each p
nj

j is sufficiently large.

C. Controlling Agents with a Random Choice of Weights

Recall from Section V-D and Example 2 that a random choice of parameters for a structured

system will potentially produce a smaller controllability index than a forest-based deterministic

approach. This reveals that partitioning the agents into different sets, each of which is controlled

by a different leader, might result in worse performance (in terms of time required to control the

agents) than having all leaders control all of the agents together. A more detailed exploration of

this phenomenon is a ripe area for future research.

It is also worth noting that a random choice of weights allows a completely distributed

implementation of the linear iterative strategy. Specifically, suppose that there is no centralized

designer to assign the weights in the network a priori, and to inform the leader agents of the

controllability matrix to use in controlling the system (via (6)). In this case, if each agent in

the network simply chooses the weights for itself and its incoming edges randomly (uniformly

and independently) from a field of sufficiently large size, and if the network has the required

paths from the leader agents, Theorem 5 indicates that the system will be controllable with high
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probability. The agents can then use a simple flooding protocol [3], or alternatively, a variant of

the distributed protocol described in [24],13 in order to allow the leader agents to discover the

weight matrix (and thus the controllability matrix). Note that this “discovery” phase has to be

run only once in time-invariant networks, and the cost of executing this phase will be amortized

over the number of times the linear iterative strategy is used to control the system.

A third benefit of a random choice of weights is that it can make the system fault-tolerant;

to demonstrate this, suppose that up to f agents can fail, whereby they stop participating in

the linear updates (i.e., they transmit the zero state to all their neighbors at each time-step). If

the connectivity of the network is f + 1 or higher (i.e., the graph remains strongly connected

even when any f nodes are removed), then the leader agent(s) will still have a path to all other

agents and the system will remain controllable with high probability. In this case, the fact that

certain agents have dropped out of the network will need to be conveyed to the leaders via an

appropriate mechanism, and this information can be used by the leaders to adjust their inputs

appropriately. However, the remaining agents in the network will not need to change the weights

that they have chosen for themselves (with high probability these weights will result in a full

rank controllability matrix for the remaining correctly functioning nodes in the network). Note

that we are assuming throughout that the leader agents are allowed to communicate with each

other to apply the appropriate control inputs to the system.

VII. DESIGN OF NEAREST NEIGHBOR RULES FOR THE QMAE PROBLEM

We now turn our attention to Problem 2 (the Quantized Multi-Agent Estimation Problem)

stated in Section III. As this is essentially an observability problem, we start by establishing

graph-theoretic results for observability of structured linear systems over finite fields.

A. Observability of Structured Systems Over Finite Fields

Using the results in Section V, we can obtain equivalent results for observability of structured

linear systems over finite fields based on the well known duality between control and estimation

[30]. Specifically, since the pair (A,C) for the linear system (4) is observable if and only if

13The protocol in [24] was developed to allow nodes to distributively discover the observability matrix for linear iterative

strategies with real-valued weights, but it also applies directly to linear iterative strategies over finite fields.
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the pair (A′,C′) is controllable, we can establish a graph-theoretic test for observability of the

pair (A,C), where A is a structured matrix, by applying our results from Section V to the pair

(A′,C′). We can also make these tests more direct by noting that the graph associated with the

matrix A′ is simply the graph of matrix A with the directions of all edges reversed. Thus, we

immediately obtain the following result (dual to Corollary 1).

Corollary 2: Consider the matrix pair (A,C), where A is an N×N structured matrix, and C

is a r×N matrix of the form C =
[
e′i1,N e′i2,N · · · e′ir ,N

]′
. Suppose the graph H associated

with A satisfies the following two conditions:

• Every node has a path to at least one node in the set {xi1 , xi2 , . . . , xir}.

• Every node has a self-loop (i.e., the diagonal elements of A are free parameters).

Let H̄ be a subgraph of H that is a spanning forest topped at {xi1 , xi2 , . . . , xir}. Let D denote

the size of the largest tree in H̄. Then if F has size at least D, there exists a choice of parameters

from F such that the observability matrix corresponding to the pair (A,C) has rank N over that

field, with observability index equal to D.

One can immediately obtain the duals of Theorems 4, 5 and 6 in the same way.

B. Application to the Quantized Multi-Agent Estimation Problem

Theorem 8: Consider a multi-agent system with N agents described by the graph G = {X , E}.

Let S ⊂ X be a set of sink agents, and suppose that each agent in the network has an initial state

from the set {0, 1, 2, . . . , q − 1}, where q = pn for some prime p and positive integer n. Also

suppose every agent in the network has a path to some sink agent, and let D denote the size of

the largest tree in some subgraph of G that is a spanning forest topped at
⋃

xs∈S {{xs} ∪ Ns}.

Then, if q ≥ D, there is a set of weights wij ∈ Fq, with wij = 0 if j /∈ Ni ∪ {xi}, such

that the sink agents can collectively determine the initial states of all agents after using the

nearest-neighbor updates provided by (1) for D time-steps.

Proof: First, note that the weight matrix W in (1) is a structured matrix (because every

element is either identically zero or an independent free parameter). Since every agent in the

network has a path to a sink agent, we can apply Corollary 2. Consider the spanning forest

topped at
⋃

xs∈S {{xs} ∪ Ns}, and let D denote the number of agents in the largest tree. Then,

from the field Fq (with q ≥ D), assign the self-loop weights so that no two agents in the same

tree have the same self-weight. Assign all other weights to be either 1 or 0, depending on whether
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or not that edge appears in the forest. For each sink node xs ∈ S, let Ts ∈ X correspond to

all agents that are in trees topped at nodes in {xs} ∪ Ns. If we rearrange the nodes X so that

the nodes in Ts come first in the ordering, we obtain a weight matrix of the form W = [ Ws 0
0 ∗ ],

where Ws is a |Ts| × |Ts| submatrix containing the weights in the tree Ts, and ∗ represents

unimportant quantities. The matrix Cs in (3) for sink node xs is of the form Cs =
[
C̄s 0

]
,

where C̄s is a (degs +1)× |Ts| matrix with a single “1” in each row denoting the nodes in Ts

that are in {xs} ∪ Ns; these are the nodes whose values are available to xs at each time-step.

Since the pair (W′
s, C̄

′
s) satisfies the conditions in Theorem 3, the pair (Ws, C̄s) is observable

with observability index at most D. Thus sink node xs can recover the initial values of all nodes

in Ts after running the linear iteration for at most D time-steps. Specifically, the values seen by

node xs over those time-steps are given by ys[0 : D − 1] =
[
Os,D−1 0

] [
xTs [0]
xT̄s [0]

]
, where xTs[0]

denotes the vector of initial states of nodes in Ts, xT̄s[0] denotes the vector of initial values of

nodes not in Ts, and Os,D−1 is the observability matrix for the pair (Ws, C̄s). The latter matrix

has full column rank (by the observability of the pair (Ws, C̄s)), and thus there exists a matrix

Γs such that ΓsOs,D−1 = I|Ts|. If node xs left-multiplies the set of values ys[0 : D − 1] by Γs,

it immediately obtains

Γsys[0 : D − 1] = Γs

[
Os,D−1 0

]⎡⎣xTs[0]

xT̄s[0]

⎤
⎦ = xTs[0] .

The same analysis holds for all sink nodes in S. Since every agent in the network belongs to

some tree topped at a sink node or its neighbor, we see that all of the sink nodes together obtain

the initial values of all agents in the network.

Remark 4: One can also obtain observability from the sink nodes (either collectively, or

individually) via a random choice of free parameters by applying the duals of Theorems 5 and

6. The latter can be used to treat the problem of distributed consensus with quantized values that

is commonly treated in the literature. Specifically, suppose S = X (i.e., the set of sink agents

is the set of all agents in the network), and assume that the network is strongly connected.

Then, Theorem 6 states that if the weights in the nearest-neighbor rule (1) are chosen randomly

(independently and uniformly) from a field of size q ≥ N2(N−1)
2

, the resulting linear system will

be observable from every agent (and its neighbors) with probability at least 1− N2(N−1)
2q

. Thus,

each agent will be able to obtain the initial state of all of the other agents after a sufficiently

large (but finite) number of time-steps, and therefore calculate any function of that state – if all
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agents calculate the same function of the initial state, they will reach consensus. Of course, this

assumes that the network is fixed and the nodes run a network discovery phase at initialization

(as described in Section VI-C). These assumptions are certainly stricter than that required in

other consensus protocols (e.g., [12], [16], [17], [13], [14], [15], [18], [19]), where the network

can be time-varying and unknown. However, if satisfied, the assumptions in this paper allow

the nodes to reach consensus on arbitrary functions of the initial values in a number of time-

steps that will generally be smaller than that required by protocols that are fully agnostic of the

network topology (as discussed in the Introduction).

Remark 5: It is worth comparing the linear strategies studied in this paper to a simple flooding

or broadcasting protocol. For instance, to place all agents in some desired state, the leader could

transmit a vector of desired states to its neighbors, which subsequently set their states to the values

denoted in the corresponding portion of the vector, and then pass the vector to their neighbors.

After a number of time-steps equal to the largest distance from the leader to any other node, all

agents will be in their desired positions. However, this scheme requires each agent to transmit a

large amount of information to its neighbors at a given time-step (proportional to the number of

agents in the network). If one restricts the amount of information that can be communicated per

time-step (e.g., due to bandwidth constraints), the number of time-steps required will generally

increase; a standard approach in this case is to decompose the network into a tree and schedule

transmissions along the various branches [29]. In the extreme case where each node can only

transmit a single value at each time-step, Example 2 shows that the linear strategy potentially

allows the nodes to be placed in their desired states in a number of time-steps strictly smaller

than that required by a tree-based scheme (corroborating analysis in the network coding literature

showing that linear coding can potentially outperform simple routing schemes in terms of rate

of information transmission [4]). Furthermore, the linear strategy also applies in cases where

agents are not able to transmit information to each other, but instead directly sense each other’s

states.

VIII. SUMMARY

We showed how to formulate a linear iterative strategy for a network of quantized agents

to follow so that they can be put into any desired configuration by a set of leader agents. We

obtained this result by viewing the states of the agents as elements of a finite field, and then
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developing a theory of structured system controllability (and observability) over these fields. For

arbitrary topologies, we showed that the system will be controllable provided that the number

of possible states for each agent is large enough, and that the leaders have a path to every agent.

We also obtained similar results for the problem of estimating the initial states of the agents in

the system by a set of sink agents. We provided both deterministic and randomized methods of

choosing the weights in the linear iteration in order to obtain controllability and observability,

and showed that random weights might outperform deterministic tree-based decompositions of

the network in terms of the time required to control or estimate the system state.
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APPENDIX

To prove Theorem 5, we will make use of the following lemma that is commonly applied in

the analysis of communication strategies over finite fields (e.g., see [45], [46]). In this lemma,

the total degree of a multivariate polynomial p(ξ1, ξ2, . . . , ξn) is defined as the maximum sum

of the degrees of the variables ξ1, ξ2, . . . , ξn in any term of the polynomial.

Lemma 1 (Schwartz-Zippel): Let f(ξ1, ξ2, . . . , ξn) be a nonzero polynomial of total degree d

with coefficients in the finite field Fq (with q ≥ d). If f is evaluated on an element (s1, s2, . . . , sn)

chosen uniformly and independently from Fn
q , then Pr[f(s1, s2, . . . , sn) = 0] ≤ d

q
.

We will now prove Theorem 5.

Proof: Let the free parameters of matrix A be given by λ1, λ2, . . . , λl ∈ Fq. Note that

these λi’s now refer to all of the free parameters in A and not just the diagonal ones (as in

the proof of Theorem 2). When convenient, we will aggregate these parameters into a vector

λ ∈ Fl
q. With this notation, the matrix A can also be denoted as A(λ) to explicitly show its

dependence on the free parameters. Any particular choice of the free parameters will be denoted

by λ∗ =
[
λ∗
1 λ∗

2 · · · λ∗
l

]
, with corresponding numerical matrix A(λ∗).

If the graph of matrix A satisfies the conditions in the theorem, then we know from Corollary 1

that there exists a choice of parameters λ∗ ∈ Fl
q such that the controllability matrix

C(λ∗)D−1 =
[
B A(λ∗)B A2(λ∗)B · · · AD−1(λ∗)B

]
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has rank N over the field Fq. This means that the controllability matrix C(λ∗)D−1 contains an

N×N submatrix (denoted by Z(λ∗)) whose determinant will be nonzero. Suppose (without loss

of generality) that Z(λ∗) is constructed by taking the first N columns of C(λ∗)D−1 that form

a linearly independent set. Note that the first m columns of Z(λ∗) are given by the matrix B.

Next, recall from Section IV that every set of columns of the form Ak(λ∗)B must increase the

rank of the controllability matrix by at least one. In the worst case, each such set of columns

increases the rank by exactly one, and the last set of columns AD−1(λ∗)B contributes the rest

of the rank. Thus, in the worst case, matrix Z(λ∗) has m columns from B, one column from

each of A(λ∗)B,A2(λ∗)B, . . . ,AD−2(λ∗)B, and N −m− (D− 2) columns from AD−1(λ∗)B.

Next, consider the matrix Z(λ) (which is obtained by reverting the special choice of parameters

λ∗ back to the original symbolic parameters). The determinant of Z(λ) will therefore be a

nonzero polynomial in these parameters (since this polynomial is nonzero after a specific choice

of parameters). Specifically, the determinant of an N ×N matrix is a sum of products, where no

two entries in any product come from the same row or column of that matrix. Thus, each product

in detZ(λ) will consist of an entry from each column of Z(λ). Now, note that the matrix Ak(λ)B

is simply a set of columns from Ak(λ) (from the form of B), and recall that entry (i, j) in Ak(λ)

is a polynomial in λ where every term corresponds to the product of weights on a path of length k

from node xj to xi (i.e., every term is a product of k parameters from λ) [42]. Since Z(λ) consists

of at least one column from matrices of the form A(λ)B,A2(λ)B, . . . ,AD−2(λ)B, and at most

N−m−D+2 columns from AD−1(λ)B, we see that each term in detZ(λ) will be a product of

at most 1+2+· · ·+D−2+(N−m−D+2)(D−1) = (D−1)
(
N −m− D

2
+ 1

)
free parameters.

Thus, detZ(λ) is a polynomial of total degree no greater than (D − 1)
(
N −m− D

2
+ 1

)
and,

as noted earlier, it is not identically zero over the field Fq. Using Lemma 1, we see that for

a random (uniform and independent) choice of parameters λ∗ from the field Fq of size q ≥
(D − 1)(N −m − D

2
+ 1), the polynomial detZ(λ∗) will be nonzero with probability at least

1− 1
q
(D− 1)(N −m− D

2
+ 1). Thus the controllability matrix will also have full rank with at

least this probability, and with controllability index no more than D.
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