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Abstract Applications in environmental monitoring,

surveillance and patrolling typically require a network

of mobile agents to collectively gain information regard-

ing the state of a static or dynamical process evolv-

ing over a region. However, these networks of mobile

agents also introduce various challenges, including in-

termittent observations of the dynamical process, loss of

communication links due to mobility and packet drops,

and the potential for malicious or faulty behavior by

some of the agents. The main contribution of this paper

is the development of resilient, fully-distributed, and

provably correct state estimation algorithms that simul-

taneously account for each of the above considerations,

and in turn, offer a general framework for reasoning

about state estimation problems in dynamic, failure-

prone and adversarial environments. Specifically, we de-

velop a simple switched linear observer for dealing with

the issue of time-varying measurement models, and re-

silient filtering techniques for dealing with worst-case

adversarial behavior subject to time-varying communi-

cation patterns among the agents. Our approach con-

siders both communication patterns that recur in a de-

terministic manner, and patterns that are induced by
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random packet drops. For each scenario, we identify

conditions on the dynamical system, the patrols, the

nominal communication network topology, and the fail-

ure models that guarantee applicability of our proposed

techniques. Finally, we complement our theoretical re-

sults with detailed simulations that illustrate the effi-

cacy of our algorithms in the presence of the technical

challenges described above.
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1 Introduction

Consider a dynamical process evolving over a geograph-

ical region. Measurements of this process are available

at certain sensing locations distributed over the region.

A set of mobile agents is tasked with collectively esti-

mating the state of the dynamical process by executing

patrols that visit the various sensing locations, and ex-

changing information with each other over a communi-

cation medium.

There are various challenges that arise in enabling

the agents to achieve the above task. The first chal-

lenge arises from the fact that the agents are mobile,

and hence, do not have continuous access to the mea-

surements from any given sensing location. Thus, even

when the monitored dynamical process is described by a

time-invariant system, the measurement model for any

given mobile agent is time-varying. The second chal-

lenge arises from the fact that agents may be assigned

to different portions of the overall region, and execute

persistent patrols that visit only a subset of the sensing

locations. Thus, each agent can only directly estimate
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a portion of the overall state, and must rely on (care-

fully crafted) information exchanges with other agents

in order to recover the entire state. Such information

exchange rules must not only account for time-varying

communication links between the agents (due to mobil-

ity and communication losses), but also for malicious

agents that seek to disrupt the state estimation algo-

rithm. Such malicious behavior can arise, for example,

due to some agents being compromised by an attacker

who causes the agents to report incorrect information,

deviate from their patrols [1], or drop out of the net-

work altogether [2]. Indeed, as we show in Example 1

later in the paper, without accounting for such behav-

ior, a single adversarial agent can potentially disrupt

the overall state estimation process.

Given the problem and associated challenges listed

above, the goal of this paper is to formulate re-

silient distributed state estimation algorithms

that allow networks of mobile agents to esti-

mate the state of the monitored dynamical pro-

cess, despite time-varying measurement mod-

els, time-varying communication links, and ma-

licious adversaries.

Applications: The framework developed in this pa-

per can be employed for the purpose of environmental

monitoring [3–6], oceanographic explorations [7–9], and

surveillance with civilian [10] and military [11, 12] ap-

plications. Essentially, the task of monitoring the state

of a changing environment using autonomous mobile

agents falls within the purview of our present analy-

sis. For instance, one might be interested in monitoring

spatio-temporal processes where a non-negative scalar

quantity (e.g., temperature, oil, dirt, salinity or traffic

congestion) constitutes the state of interest (see [6–8]).

One of the key applications of our framework, however,

pertains to mission-critical scenarios where adversar-

ial attacks on the mobile agents can have far-reaching

consequences. A specific example of such a scenario in-

volves the use of autonomous mobile robots for esti-

mating radiation concentrations around nuclear plants,

following leakages that are either accidental or due to

malicious intent [13–15]. Emergency response in such

hazardous environments dictates the need for attack-

immune distributed approaches, and therein lies the

practical motivation of our work.

1.1 Related Work

To highlight the specific contributions made by this pa-

per, we now provide a comprehensive discussion of the

similarities and differences existing between our prob-

lem formulation and various related domains.

Persistent Monitoring: When monitoring the state

of a process that grows over time, it is necessary to per-

sistently visit locations where information regarding the

process is available. This leads to the notion of persis-

tent monitoring, a problem that has been extensively

studied in the robotics community [16–21]. Typically,

the persistent monitoring literature aims to design the

trajectories of the mobile agents so as to accomplish the

persistent task in an optimal manner. In contrast, our

main focus is centered around estimating the state of

an underlying dynamical process, despite time-varying

measurement models, communication losses, and adver-

sarial attacks. In particular, our analysis reveals various

conditions to be met by the patrol so as to guarantee

stability of the estimation error dynamics (based on our

proposed strategy). These conditions are a combination

of system-theoretic requirements, network-connectivity

requirements, and requirements dictated by the adver-

sarial and communication loss models. In this sense,

our work complements the existing literature on per-

sistent monitoring by providing insights into the design

of joint patrolling and state estimation schemes in dy-

namic, failure-prone and adversarial environments.

Sensor Scheduling and Active Information Gath-
ering: Given a dynamical system affected by noise,

and a set of sensors measuring the states of the system,

the sensor scheduling literature [22–25] aims to design

a rule for choosing sensors sequentially (in time) so as

to minimize a metric that appropriately captures per-

formance against noise. Most of the sensor scheduling

literature [23–25] focuses on the finite-horizon version

of the problem, and hence, stability of the error pro-

cess is not a major concern in these works. A notable

exception is the very recent work in [26] that provides

exact conditions under which an infinite-horizon sen-

sor schedule leads to an uniformly bounded sequence of

error covariance matrices.

There are various similarities between the sensor

scheduling problem as described above, and the prob-

lem of active information gathering in mobile robotics

[27–29]. Indeed, the design of a patrol visiting the var-

ious sensing locations in the latter is analogous (to a

certain extent) to the design of a sensor scheduling

policy in the former. The formulations in [27–29] dif-

fer from the standard sensor scheduling setup by ex-

plicitly accounting for the motion models of the mo-

bile sensors under consideration. However, the focus

still remains on finite-horizon settings. In contrast to

the sensor scheduling literature and the active infor-

mation gathering formulations, our primary goal is to

identify conditions on the patrols that guarantee sta-

bility of the estimation error dynamics of each (uncom-
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promised) mobile agent. The recent work [29] extends

the approach and results in [28] to a scenario where a

certain number of mobile sensors are under attack. In

addition to various other differences, our formulation

involves a distributed setup (where the communication

network plays a key role) unlike the decentralized setup

considered in [28] and [29].

Distributed State Estimation: The problem of esti-

mating the state of a (linear time-invariant) dynamical

process using a network of static sensors has been stud-

ied by several researchers over the past decade [30–37].

However, single-time-scale algorithms that solve such

problems under the most general conditions on the sys-

tem and network have been proposed only recently in

[38–44]. While the works stated above primarily cater

to time-invariant communication graphs, the authors

in [45] propose a hybrid observer that accounts for a

broad class of time-varying networks. Although these

papers provide a rich variety of approaches, none of

them deal with the aspect of adversarial agents. Pre-

liminary attempts towards addressing adversarial be-

havior in the context of distributed state estimation

were undertaken in [46, 47], but without any theoreti-

cal guarantees. Recently, the authors in [48] developed

an H∞-based filtering approach for detecting biasing

attacks in sensor networks. While the analysis in [48]

was limited to a certain class of attack inputs, much

more general adversarial models were considered in our

prior work [49, 50], albeit for time-invariant networks

and measurement models.

Resilient Distributed Algorithms: Recent years

have witnessed a significant amount of research dedi-

cated towards the design of resilient distributed algo-

rithms, with applications to consensus [51, 52], opti-

mization [53,54], hypothesis testing [55], static parame-

ter estimation [56] and broadcasting [57]. Researchers in

the robotics community have also looked into the prob-

lem of forming and maintaining robust mobile-robot

formations that facilitate resilient consensus [58–64].

Thus, a key aspect of such problems is the identifica-

tion of network topologies that are robust to different

adversarial models. Unlike the consensus scenario, the

results in [49, 50] indicate that when it comes to esti-

mating the state of an external dynamical system de-

spite adversarial behavior, one needs to incorporate re-

dundancy in not only the network topology, but also

the measurement structure of the sensors. However, as

mentioned earlier, the analysis in [49, 50] was limited

to time-invariant communication networks and static

agents. In light of the above discussion, the main con-

tributions of this paper are as follows.

Summary of Contributions: We consider a set of

mobile agents tasked with estimating the state of a lin-

ear time-invariant dynamical system. Each agent is as-

sumed to have a predefined patrol that visits a sub-

set of the sensing locations. In Section 3, we develop

a simple switched linear observer that allows a given

mobile agent to recover those states that can be de-

tected based on the measurements of the sensing lo-

cations it persistently visits. We establish asymptotic

stability of the proposed observer for a class of periodic

patrols. In Section 5, we consider a class of determinis-

tic communication loss patterns, and develop a resilient

distributed state estimation algorithm that allows each

agent to process the information received from other

agents to recover the true state, despite arbitrary ad-

versarial behavior. Our algorithm is inspired by recent

work that addresses the resilient consensus problem in

asynchronous settings [61, 65]. As a byproduct of our

analysis, we argue that our proposed algorithm prov-

ably works even in the presence of bounded (potentially

random, time-varying) communication delays. We also

characterize the convergence time of our algorithm in

terms of the system instability, the upper bound on the

delay, and certain properties of the communication net-

work topology.

In Section 7, we model the communication links

among the mobile agents as analog erasure channels

that randomly drop packets based on an i.i.d. Bernoulli

process. For this model, we propose a simple state es-

timate update rule, and identify conditions on the dy-

namical system, the network topology, and the erasure

probability that guarantee mean-square-stability of the

estimation error process. We show how a notion of net-

work robustness (suitable for the problem under consid-

eration) known as ‘strong-robustness’ allows one to deal

with high packet drop probabilities, while still guaran-

teeing stability. We support our theoretical results via

detailed simulations discussed in Section 8. Finally, we

emphasize that all our results apply to a sophisticated

and worst-case adversarial model (termed Byzantine

adversaries) which is typically considered in the litera-

ture on resilient distributed algorithms [51,52,66]. From

an implementation standpoint, the results obtained in

this paper provide guidelines for designing patrols that

account for each of the technical challenges discussed

in this section.

We reported certain preliminary results in [67]. In

this paper, we significantly expand upon the content

in [67] by considering mobile agents instead of static

agents (which leads to the aspect of time-varying mea-

surement models), providing full proofs of all results,

and supporting such results with illustrations and de-

tailed simulations.
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2 Problem Formulation

In this section, we will first clarify the notation to be

used throughout the paper. Subsequently, we will de-

scribe each of the constituent models needed to formally

define the problem of interest.

Notation: A directed graph is denoted by G = (V, E),

where V = {1, · · · ,m} is the set of nodes and E ⊆ V×V
represents the edges. An edge from node j to node i,

denoted by (j, i), implies that node j can transmit infor-

mation to node i. The neighborhood of the i-th node is

defined as Ni , {j | (j, i) ∈ E}. The notation |V| is used

to denote the cardinality of a set V. Throughout the

rest of this paper, we use the terms ‘edges’ and ‘com-

munication links/channels’ interchangeably. The set of

all eigenvalues (or modes) of a matrix A is denoted by

sp(A) = {λ ∈ C | det(A − λI) = 0} and the set of all

marginally stable and unstable eigenvalues of A is de-

noted by ΛU (A) = {λ ∈ sp(A) | |λ| ≥ 1}. The notations

N and N+ are used to denote the set of all non-negative

integers and positive integers, respectively. For a ran-

dom variable X, its expected value is denoted by E[X].

Dynamical System Model: Throughout this paper,

we will focus on a linear time-invariant dynamical pro-

cess of the form

x[k + 1] = Ax[k], (1)

where k ∈ N is the discrete-time index, x[k] ∈ Rn is the

state vector and A ∈ Rn×n is the system matrix. Mea-

surements of the dynamical process (1) are available

at N sensing locations distributed over a geographical

region. The notation Q = {1, . . . , N} will be used to

denote the set of all sensing locations. At each location

i ∈ Q, measurements of a portion of the state x[k] are

available via the following observation model:

y(i)[k] = C(i)x[k], (2)

where y(i)[k] ∈ Rri and C(i) ∈ Rri×n. We denote y[k] =[
y(1)[k]

T · · · y(N)[k]
T
]T

, and C =
[
C(1)T · · · C(N)T

]T
.

For a set S ⊂ {1, . . . , N}, C(S) will be used to denote

the collective measurement matrix corresponding to the

sensing locations in the set S. Such linear (in state) dy-

namical and observational models are standard in the

literature on state estimation [27–29].

An eigenvalue λ ∈ ΛU (A) is said to be a detectable

eigenvalue w.r.t. the pair (A,C(i)) if

rank

[
A− λI

C(i)

]
= n. (3)

An eigenvalue with magnitude strictly less than one is

considered to be detectable w.r.t. any measurement set.

Although we consider noiseless dynamics for clarity of

exposition (like [35, 36, 38–42, 45]), the techniques de-

veloped in this paper guarantee bounded mean square

estimation error in the presence of i.i.d. process and

measurement noise with bounded second moments.

Mobile Agent Model: A set V = {1, . . . ,m} of m

mobile agents is tasked with collaboratively estimating

the state x[k] of the process (1) by persistently visiting

the N sensing locations. Specifically, each agent i ∈ V
is assigned a persistent patrol through a subset of the

sensing locations. Over the course of its patrol, each

agent can communicate with certain other agents (e.g.,

when the distance between the agents is less than some

communication radius). In the absence of any commu-

nication losses, a directed graph G = (V, E) is used to

model the flow of information between the m mobile

agents. Specifically, the graph G captures the set of all

possible agent interactions across time. In other words,

(i, j) ∈ E implies that agent i will be in a position to

directly transmit information to agent j infinitely of-

ten while executing its patrol. The graph G will be re-

ferred to as the baseline communication graph. The loss

of communication between agents (due to agent move-

ments or packet drops) is modeled by a time-varying

graph G[k] = (V, E [k]), where E [k] ⊆ E for all k ∈ N.

Remark 1 The notion of ‘sensing locations’ and ‘mo-

bile agents’ as discussed above can be used to capture

the following different scenarios. (1) In the first sce-

nario, one can assume that physical static sensors are

located at each of the N sensing locations, and that the

mobile agents obtain measurements from such sensors

on visiting the corresponding sensing locations. (2) In

the second scenario, one can envision sensors installed

on the mobile agents themselves. The sensing locations

can then be interpreted as informative points in the

geographical region where a mobile sensor can obtain

non-zero measurements of the state. Specifically, a mo-

bile sensor present at the i-th location would generate a

measurement model of the form (2). In either case, the

measurements acquired by a mobile agent are a func-

tion of its movement pattern (patrol). The mathemat-

ical framework developed in this paper applies identi-

cally to each of the above physically different scenarios.

For the rest of the paper, we will stick to the first inter-

pretation (for the purposes of illustration), i.e., static

ground sensors positioned at the sensing locations com-

municate with mobile agents passing by.

Adversary Model: A subset A ⊂ V of the mobile

agents are adversarial. We assume that the adversarial
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agents possess complete knowledge of the dynamical

system model, the time-varying communication graph

topology, the patrolling strategy and any estimation al-

gorithm employed by the non-adversarial agents. Ad-

versarial agents are not only allowed to update and

transmit state estimates in an arbitrary manner, but

also to deviate from the rules of any patrolling algo-

rithm. Furthermore, following the Byzantine fault model

[66], adversaries are allowed to send differing state es-

timates to different neighbors at the same instant of

time. Adversaries can also choose not to transmit any

estimates at all to agents within communication radius.

This assumption of omniscient adversarial behavior is

motivated by the aim of providing theoretical guar-

antees against “worst-case” adversarial behavior. We

point out that such Byzantine models have been com-

monly studied in the context of distributed consensus

and optimization problems in [51–54]. In return for en-

dowing the adversaries with such worst-case capabili-

ties, we assume that there are at most f adversarial

agents in the neighborhood of any non-adversarial agent

in the baseline communication graph G, for some con-

stant f ∈ N. This property will be referred to as the

‘f -local’ property of the adversarial set. Summarily, the

adversary model described thus far will be called an f -

local Byzantine adversary model. The non-adversarial

mobile agents will be referred to as regular agents and

be represented by the set R = V\A. Finally, we remark

that the number and identities of the adversarial agents

are not known to the regular agents. The regular agents

are only aware of the upper bound f on the number of

adversaries in their neighborhood (in the baseline com-

munication graph G).

Given the above setup, we can now describe the

problem studied in this paper.

Objective: Suppose we are given the LTI system (1),

the measurement model (2), a set of m mobile agents

with a baseline communication graph G executing a pa-

trol, and an f -local Byzantine adversary model. Our ob-

jectives are (i) to develop distributed state estimation

algorithms that account for time-varying measurement

models, communication losses and worst-case attacks,

and (ii) to analyze under what conditions (on the dy-

namical model, the baseline communication graph, the

patrols and the communication loss patterns) the pro-

posed algorithms provably enable each regular mobile

agent to asymptotically estimate the true state of the

system (in a deterministic or stochastic sense).

Achieving the above objective is non-trivial, due to

the need to simultaneously address the three challenges

(time-varying measurement models, time-varying net-

works, and adversarial agents). In this paper, we take

a significant step in this direction.

At this stage, we should clarify the answer to the

following important question: Based on the problem

formulated above, what can one expect from the

theoretical results in this paper, when it comes

to the aspect of designing the motion plan of

the mobile agents? Briefly, our main results (namely,

Proposition 1, Theorem 1, and Theorem 2) lay down

various rules that need to be met by the patrols so

that they effectively complement the estimation tech-

niques developed in the paper. These rules are tailored

to meet the specific technical challenges considered in

this work, and answer questions such as: (i) How of-

ten does a mobile agent need to visit a sensing location

that provides critical information regarding the process

of interest? (ii) Given that certain agents can be un-

der attack, how many mobile agents should visit each

such location? (iii) How often should agents exchange

information amongst themselves? (iv) Given that cer-

tain agents can be under attack, how can one resiliently

diffuse information across the mobile agent network?

While our answers to the above questions provide

high-level specifications that significantly inform the

process of patrol design, there are various questions that

are left open. For instance, consider the following alloca-

tion problem. We are given a fixed number of sensing lo-

cations and mobile agents. Constraints are placed that

limit the sensing regions of the mobile agents, i.e., each

agent can only visit a subset of the sensing locations in

the region. Given such constraints, how does one allo-

cate mobile agents to sensing locations while meeting

the specifications laid down by our theoretical results?

Can such a patrol be designed in the first place? What

is the minimal number of mobile agents that is needed

to achieve the distributed state estimation task?1 Such

questions are inherently of a combinatorial nature, and

addressing them comprehensively is beyond the scope

of the present paper. In Section 8, we do, however, dis-

cuss a simple strategy for designing patrols that meet

the required specifications. Finally, note that the rules

imposed by our results can either be used as a guideline

when synthesizing patrols, or alternatively as a check-

list when given predefined patrols.

To avoid cumbersome notation and to clearly present

the key ideas, we make the following assumption on the

system matrix in (1).

1 In the absence of any constraints placed on the sensing
capabilities or movement patterns of an agent, one can just
have each mobile agent patrol all the sensing locations. How-
ever, such an assumption would in general be impractical,
thereby necessitating inter-agent communication. Note that
it is precisely the need for inter-agent communication that
makes the issues of communication losses and adversarial at-
tacks studied in this paper relevant.
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Assumption 1. The system matrix A has real, dis-

tinct eigenvalues.

While we make the above assumption, the results

obtained in this paper can be generalized to system

matrices with arbitrary spectrum via a more detailed

technical approach (e.g., as outlined in [50], which con-

sidered the effects of adversarial behavior for networks

with time-invariant topologies and measurements, as

opposed to the more general setting that we consider

in this paper). The assumption of real eigenvalues, in

particular, considerably simplifies the structure of the

resilient filtering algorithms studied in Sections 5 and 7,

and hence, facilitates a better understanding of our core

algorithmic ideas. Note that the assumption of a real

spectrum applies to various relevant dynamical models

including (but not limited to) the discretized double

integrator moving target model considered in [29], the

methane gas concentration model considered in [27],

and the diffusion dynamics models studied in [68–70].

Regarding the observation model (2), we assume

that the pair (A,C) is detectable. Clearly, this is a ba-

sic necessary condition for state estimation even in the

absence of time-varying measurement models, packet

drops, or attacks. It should be pointed out that for any

given location i ∈ Q, we do not assume detectability of

the pair (A,C(i)). In a similar spirit, we do not assume

that the set of sensing locations visited by any agent

during its patrol is informative enough to allow that

agent to recover the entire state.

Having introduced the main problem and its specific

technical challenges, we now proceed to develop a solu-

tion that addresses these challenges in the subsequent
sections.

3 Periodic Patrols for Estimating Locally

Detectable States

There are two main goals that we seek to achieve in this

section. First, we will focus on the design of a simple

switched linear observer that enables each regular agent

to estimate those states that are detectable w.r.t. the

measurements of the sensing locations it persistently

visits. Second, we will identify conditions on the patrol

that guarantee asymptotic stability of the error dynam-

ics induced by the proposed switched linear observer.

Once the aforementioned objectives are met, a regular

agent can be viewed as a source agent for the states

that are detectable via the sensing locations it visits.

3.1 Design of Switched Linear Observers

To achieve the objectives stated above, we first note

that based on Assumption 1, one can perform a co-

ordinate transformation z[k] , Vx[k] on (1) with an

appropriate non-singular matrix V to obtain

z[k + 1] = Mz[k] = diag(λ1, · · · , λn)z[k],

y(i)[k] = C̄(i)z[k], ∀i ∈ {1, . . . , N}
(4)

where sp(A) = {λ1, . . . , λn}, M = VAV−1 and C̄(i) =

C(i)V−1. Commensurate with this decomposition, the

j-th component of the state vector z[k] will be denoted

by z(j)[k], and will be referred to as the component cor-

responding to the eigenvalue λj . Since a non-singular

transformation maps z[k] to x[k], we focus on estimat-

ing z[k]. Consider any regular agent i ∈ R, and let

the subset of sensing locations it visits be denoted by

Pi = {i1, . . . , i|Pi|}, where Pi ⊂ Q. Let O(ir) denote the

eigenvalues of A that are detectable w.r.t. the measure-

ments available at location ir (i.e., O(ir) denotes the set

of detectable eigenvalues of the pair (A,C(ir))). Thus,

the set of all eigenvalues that are detectable w.r.t. the

set of sensing locations Pi is given by Oi ,
⋃|Pi|
r=1O(ir)

(in other words, Oi denotes the set of all eigenvalues

of A that are detectable w.r.t. the collective measure-

ment set C(Pi)). Our goal is to design an observer that

enables agent i to asymptotically estimate all the com-

ponents of z[k] corresponding to the eigenvalues in Oi.
To achieve this goal, we will build a partial observer for

each location visited by agent i. Specifically, the par-

tial observer at location ir ∈ Pi will be designed to

recover the states of z[k] corresponding to the eigenval-

ues in O(ir). Let such states be denoted by v(ir)[k].2

We make two simple observations at this point. First,

if J(ir) represents the diagonal matrix with the eigen-

values in O(ir) on its diagonal, then we have

v(ir)[k + 1] = J(ir)v(ir)[k]. (5)

The above equation follows directly from the definitions

of each of the components involved in the equation, and

the decoupled nature of the dynamics (4). The second

observation is as follows:

y(ir)[k] = C̃(ir)v(ir)[k], (6)

where C̃(ir) contains the columns of C̄(ir) correspond-

ing to the matrix J(ir). The second observation follows

from the fact that for a system with distinct eigenval-

ues, a given unstable or marginally stable eigenvalue

2 We resort to such a notation here since the superscript on
the z[k] states are reserved for eigenvalues, and the subscripts
are reserved for mobile agents. Thus, we introduce the nota-
tion v[k], with a superscript on v[k] pointing to a location
number.
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is detectable if and only if the column of the measure-

ment matrix corresponding to that eigenvalue is non-

zero [71]. Let σi : N→ J = {1, . . . , N, ω} be a function

that records the location of the i-th mobile agent at

time-step k. Specifically, for i ∈ {1, . . . , N}, σi[k] = ir
implies that the i-th mobile agent is at location ir at

time-step k, whereas σi[k] = ω implies that it is com-

muting between locations at time-step k. We are now in

position to propose the following switched linear partial

observer for estimating v(ir)[k]:

v̂
(ir)
i [k + 1] = F

(ir)
σi[k]v̂

(ir)
i [k] + α

(ir)
σi[k]L

(ir)
i y(ir)[k], (7)

where

F
(ir)
σi[k] =

{
(J(ir) − L

(ir)
i C̃(ir)) if σi[k] = ir,

J(ir) if σi[k] 6= ir,

α
(ir)
σi[k] =

{
1 if σi[k] = ir,

0 if σi[k] 6= ir.

(8)

In the above equations, v̂
(ir)
i [k] represents the estimate

of v(ir)[k] maintained by the i-th mobile agent, and

L
(ir)
i represents an output-injection gain that needs to

be designed appropriately to guarantee asymptotic sta-

bility of the estimation error dynamics.3 The purpose

of the partial observer given by equations (7) and (8)

is to allow the i-th mobile agent to recover the states

that are detectable w.r.t. the measurements of location

ir, namely, the states aggregated in the vector v(ir)[k].

From the structure of the observer, we note that the

i-th mobile agent switches between a Luenberger-style

update rule and an open-loop update rule, depending

upon its current position.

3.2 Periodic Patrols and Stability Analysis

As indicated by the above discussion, the stability of the

proposed observer depends critically upon the move-

ment patterns of the mobile agents. In what follows,

we will restrict our attention to periodic patrols; such

patrols are commonly considered in the literature (e.g.,

[16, 72]), and offer structure that can be leveraged to

simplify our analysis. To formally characterize a peri-

odic patrol, recall that Pi = {i1, . . . , i|Pi|} represents

the set of sensing locations visited by the i-th mobile

agent. With each such location ir ∈ Pi, we associate a

non-negative integer τ
(ir)
i and a positive integer T

(ir)
i

such that σi[τ
(ir)
i + qT

(ir)
i ] = ir,∀q ∈ N. Here, τ

(ir)
i

represents the first time location ir is visited by the i-

th mobile agent, and T
(ir)
i represents the time-period

3 The gains L
(ir)
i are agent-specific, since different agents

might visit the same location with different frequencies.

with which agent i visits location ir. We say that the

i-th mobile agent executes a feasible periodic patrol

if: (i) the mobile agent is never at more than one sens-

ing location at any given point in time, (ii) each loca-

tion in the set Pi is visited infinitely often, and (iii) a

given location ir ∈ Pi is visited at time-step k only if

k = τ
(ir)
i + qT

(ir)
i , for some q ∈ N. Notice that the first

two constraints place certain limitations on the values

that τ
(ir)
i and T

(ir)
i can take on. For instance, we must

have T
(ir)
i 6= 1, ∀ir ∈ Pi (assuming |Pi| > 1). The third

property of a feasible periodic patrol implies that a mo-

bile agent does not stay at any location in Pi for more

than a single time-step.

Let the vector zOi [k] =
[
v(i1)[k]

T · · ·v(i|Pi|)[k]
T
]T

aggregate the components of z[k] that correspond to

the set Oi (recall that Oi denotes the set of detectable

eigenvalues w.r.t. the pair (A,C(Pi))). Our objective is

to identify conditions on the time-periods {T (ir)
i } that

enable the i-th regular mobile agent to asymptotically

recover zOi [k]. To this end, we need the following result.

Lemma 1 Consider a detectable pair (A,C), where A

satisfies Assumption 1. Then, for any positive odd in-

teger T̄ , the pair (AT̄ ,C) is also detectable.

Proof. Perform a similarity transformation that brings

the pair (A,C) to the form (M, C̄), where M represents

the Jordan canonical form of A. Detectability of (A,C)

then implies detectability of (M, C̄). If T̄ is a positive

odd integer, then based on Assumption 1, MT̄ is a diag-

onal matrix with real distinct eigenvalues.4 Detectabil-

ity of (MT̄ , C̄) follows as a consequence of the PBH

test [71], and the detectability of (M, C̄). Since a sim-

ilarity transformation maps (MT̄ , C̄) back to (AT̄ ,C),

the pair (AT̄ ,C) is also detectable.

Proposition 1 Suppose we are given the LTI system

(1) and the measurement model (2) such that the sys-

tem matrix A is non-singular and satisfies Assumption

1. Let each regular mobile agent i execute a feasible pe-

riodic patrol characterized by the parameters τ
(ir)
i and

T
(ir)
i , ir ∈ Pi, such that each time-period T

(ir)
i is a

positive odd integer. Additionally, let each regular mo-

bile agent i implement the observer given by (7) and

(8). Then, for each such agent i ∈ R, there exists a

choice of output-injection gains {L(ir)
i } that guarantees

asymptotic convergence of ẑOi [k] to zOi [k], where ẑOi [k]

represents the estimate of zOi [k] maintained by agent i.

4 Essentially, an odd period ensures that eigenvalues that
are equal in magnitude, but opposite in sign in A, remain so
in AT̄ . Thus, if the eigenvalues of A are distinct in magnitude,
then clearly no restrictions need to be imposed on the time-
period T̄ .
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Proof. For a given mobile agent i ∈ R, establishing that

ẑOi [k] converges to zOi [k] asymptotically requires us to

establish that the estimation error dynamics associated

with each location in Pi converges to zero asymptoti-

cally. In other words, our aim is to prove that for each

ir ∈ Pi, limk→∞ ‖v̂(ir)
i [k] − v(ir)[k]‖ = 0. To this end,

fix a location ir, and let e
(ir)
i [k] , v̂

(ir)
i [k] − v(ir)[k]

denote the estimation error associated with location ir.

Based on (5), (6), (7), and (8), we obtain:

e
(ir)
i [k + 1] = F

(ir)
σi[k]e

(ir)
i [k]. (9)

Recalling that τ
(ir)
i represents the first time agent i

visits location ir, T
(ir)
i represents the time-period with

which agent i visits location ir, and using (9), we obtain

the following periodic error dynamics:

e
(ir)
i [τ

(ir)
i +(k+1)T

(ir)
i +1] = M

(ir)
i e

(ir)
i [τ

(ir)
i +kT

(ir)
i +1],

(10)

where k ∈ N, and

M
(ir)
i = (J(ir) − L

(ir)
i C̃(ir))(J(ir))

T
(ir)
i −1

= (J(ir))
T

(ir)
i − L

(ir)
i C̃(ir)(J(ir))

T
(ir)
i −1

.

(11)

To establish asymptotic stability of the periodic error

dynamics (10), we need to argue that L
(ir)
i can be cho-

sen to make M
(ir)
i Schur stable. Based on (11), this

is equivalent to establishing detectability of the pair

((J(ir))
T

(ir)
i , C̃(ir)(J(ir))

T
(ir)
i −1

). In other words, we need

to show that

rank

 (J(ir))
T

(ir)
i − sI

C̃(ir)(J(ir))
T

(ir)
i −1

 = n(ir), ∀s ∈ C s.t. |s| ≥ 1,

(12)

where n(ir) represents the dimension of J(ir). Based on

our construction, sp(J(ir)) ⊆ sp(A), and hence, J(ir)

is non-singular since A is assumed to be non-singular.

Thus, the following is true for all s ∈ C:

rank

 (J(ir))
T

(ir)
i − sI

C̃(ir)(J(ir))
T

(ir)
i −1


= rank

[(J(ir))
T

(ir)
i −1

0
0 I

] (J(ir))
T

(ir)
i − sI

C̃(ir)(J(ir))
T

(ir)
i −1

((J(ir))
T

(ir)
i −1

)−1


= rank

[
(J(ir))

T
(ir)
i − sI

C̃(ir)

]
.

(13)

Since the pair (J(ir), C̃(ir)) is detectable by construc-

tion, the eigenvalues of J(ir) are real and distinct (since

sp(J(ir)) ⊆ sp(A) and A satisfies Assumption 1), and

the time-period T
(ir)
i is an odd positive integer, we in-

fer that the pair ((J(ir))
T

(ir)
i , C̃(ir)) is also detectable

by appealing to Lemma 1. Based on the foregoing dis-

cussion, referring to equations (12) and (13) reveals de-

tectability of the pair ((J(ir))
T

(ir)
i , C̃(ir)(J(ir))

T
(ir)
i −1

).

Thus, the observer gain L
(ir)
i can indeed be chosen

appropriately to stabilize the periodically sampled er-

ror dynamics (10). Notice that the quantity β
(ir)
i ,

max{‖(J(ir) − L
(ir)
i C̃(ir))‖, ‖J(ir)‖} is finite since all

matrices under consideration have finite norm. Since

the time-period T
(ir)
i is also finite, the maximum error-

norm amplification (β
(ir)
i )

T
(ir)
i

of the error dynamics

(9), over any time-period, is also finite. Asymptotic sta-

bility of the periodic error dynamics (10) then readily

implies asymptotic stability of the error dynamics (9).

This completes the proof.

Remark 2 Based on Proposition 1, we see that a given

mobile agent i ∈ R is able to asymptotically estimate

the portion of the state z[k] that corresponds to the

detectable subspace of the pair (A,C(Pi)) (namely, the

portion that we refer to as zOi [k]). Furthermore, agent

i is able to achieve this without communicating with

any other mobile agent. In this sense, the detectable

subspace of (A,C(Pi)) can be viewed as the locally de-

tectable portion of agent i, and agent i can be viewed

as the source of information for all the states that cor-

respond to its locally detectable eigenvalues (namely,

the set of eigenvalues Oi). It is important, however, to

make a clear distinction between the notion of ‘local

detectability’ used here, and that used in [39, 40, 45].

In these works, the task of distributed state estimation

is performed collaboratively by a network of static sen-

sors. As mentioned in the introduction, our present for-

mulation is applicable to more general settings (the gen-

eralization arising due to the issue of intermittent obser-

vations) where the distributed state estimation task is

executed either by a network of mobile agents that visit

static sensors, or by a network of mobile sensors. Thus,

while the locally detectable portion of a static sensor

is simply the portion of the state space detectable via

the measurements of that specific sensor, the locally de-

tectable portion of a moving agent is the portion of the

state space that is detectable w.r.t. the collective mea-

surements of the sensing locations it persistently visits.

Remark 3 The assumption of non-singularity of A in

Proposition 1 is not restrictive. For a system with dis-

tinct eigenvalues, the component of the state corre-

sponding to the zero eigenvalue will stay at zero for

all time. Hence, the existence of an eigenvalue at zero

does not affect our objective of asymptotic state recon-

struction.
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Remark 4 Note that it is possible for sensors located

at distinct sensing locations to share common detectable

eigenvalues. In terms of our observer design, this would

cause a mobile agent to maintain multiple estimates of

the same state corresponding to different sensing loca-

tions. Specifically, for a given mobile agent i, the vectors

v̂
(ip)
i [k] and v̂

(iq)
i [k] corresponding to two distinct sens-

ing locations ip, iq ∈ Pi might contain common compo-

nents. One can readily eliminate this redundancy via

a slight modification of the approach presented here.

However, this comes at the expense of cluttering the

exposition with more notation, and hence, we do not

delve into such details in this paper.

4 Preliminaries for Resilient Distributed State

Estimation

As pointed out earlier, a given mobile agent will be able

to estimate only a portion of the system state by persis-

tently visiting its set of sensing locations. To estimate

its locally undetectable portion, it is reliant on the in-

formation received from its neighbors in the baseline

communication graph G (note that due to communica-

tion losses and agent movements, the neighborhood of

a given agent at any time-step will in general only be

a subset of its neighborhood in the baseline graph). It

is precisely this aspect of the problem that dictates the

need for robustness against adversarial attacks coupled

with communication losses. The focus of this section

will be to introduce some of the key ideas and termi-

nology required to address the above issues. To this end,

we introduce the notion of source mobile agents.

Definition 1 (Source Mobile Agent) A mobile agent

i ∈ V is said to be a source mobile agent for an eigen-

value λj ∈ ΛU (A), if λj is detectable w.r.t. the pair

(A,C(Pi)), i.e., if λj ∈ Oi. The set of all source mobile

agents for λj ∈ ΛU (A) is denoted by Sj .

In words, an agent is a source mobile agent for an

unstable or marginally stable eigenvalue of the system

if such an eigenvalue is detectable w.r.t. the collective

measurements available from the agent’s sensing loca-

tions.5 Recall that the set of locally detectable eigen-

values of agent i is denoted by Oi, and let UOi =

sp(A) \ Oi. Our goal in the subsequent sections will

be to design resilient state estimation algorithms that

allow agent i to estimate the components of z[k] corre-

sponding to the eigenvalues in UOi. Such algorithms,

5 Since we are considering system matrices with dis-
tinct eigenvalues, an eigenvalue is detectable w.r.t. the pair
(A,C(Pi)) if and only if it is detectable w.r.t. (A,C(ir)), for
some ir ∈ Pi. The ‘only if’ part of the statement may not be
true for system matrices with repeated eigenvalues.

x[k + 1] = ax[k]

s1 s2

w1 wmwi· · · · · ·
Fig. 1 A scalar unstable plant is monitored by a clique of
m + 2 agents, where s1 and s2 are the only source agents.
A single adversary corrupting either of the two sources can
render the distributed state estimation problem impossible,
irrespective of the choice of algorithm.

however, need to be complemented by incorporating ad-

equate redundancy in not only the communication net-

work topology, but also in the measurement structure.6

A simple illustration of this fact is as follows.

Example 1 Consider a scalar unstable plant monitored

by a clique of m + 2 agents, as depicted in Figure 1.

Agents s1 and s2 are the only agents with access to non-

zero measurements, i.e., they are the source agents for

this system. Although this network is fully connected,

the presence of a single adversarial agent makes it im-

possible for any algorithm to guarantee estimation of

x[k] for every regular agent. Specifically, if the adver-

sary compromises one of the two source agents, then it

can behave in a way that makes it impossible for the

non-source agents to distinguish between two different

state trajectories of the system, due to the conflicting

information from the two source agents.7

In our prior work [49], we proposed an algorithm

that made use of certain directed acyclic subgraphs

in addressing the resilient distributed state estimation

problem (using static sensors over time-invariant com-

munication graphs). To understand the properties of

such subgraphs, let ΩU (A) ⊆ ΛU (A) denote the set of

eigenvalues of A for which V \ Sj is non-empty.

Definition 2 (Mode Estimation Directed Acyclic

Graph (MEDAG)) Consider a mode λj ∈ ΩU (A).

Suppose there exists a spanning subgraph Gj = (V, Ej)
of G with the following properties for all f -local sets A
in G (and corresponding R = V \ A).

6 This is one of the key differences of our present formu-
lation with the resilient consensus literature. In the latter
setting, there is no external state that needs to be tracked,
and [73,74] have shown that making the network sufficiently
connected suffices to facilitate resilient consensus.

7 Details of such an attack strategy can be found in [50].
For centralized systems where f sensors are compromised,
[75,76] have shown that for recovering the state of the system
asymptotically, the system must remain detectable after the
removal of any 2f sensors.
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(i) If i ∈ {V \ Sj} ∩ R, then |N (j)
i | ≥ 2f + 1, where

N (j)
i = {l|(l, i) ∈ Ej} represents the neighborhood

of agent i in Gj .
(ii) There exists a Tj ∈ N+ such that R can be parti-

tioned into the sets {L(j)
0 , . . . ,L(j)

Tj
}, where L(j)

0 =

Sj ∩ R, and if i ∈ L(j)
q (where 1 ≤ q ≤ Tj), then

N (j)
i ∩R ⊆

⋃q−1
r=0 L

(j)
r . Furthermore, N (j)

i = ∅,∀i ∈
L(j)

0 .

Then, we call Gj a Mode Estimation Directed Acyclic

Graph (MEDAG) for λj ∈ ΩU (A).

Although the concept of a MEDAG was originally

developed for a network with static nodes, we can in-

stead view the MEDAG as a special information flow

structure between the mobile agents in our present con-

text. With this in mind, we elaborate on the key prop-

erties of this graph structure. First, it should be noted

that Tj and the levels L(j)
0 to L(j)

Tj
can vary across dif-

ferent f -local sets. For a given f -local set A, we say

a regular agent i ∈ L(j)
m “belongs to level m”, where

the levels indicate the distances of the regular agents

from the source set Sj , in the baseline communication

graph G. Consider a state z(j)[k] that grows exponen-

tially with time. To estimate such a state despite ad-

versarial actions, there must exist a secure medium of

information flow from the corresponding source set Sj
to the rest of the mobile agents (who do not patrol re-

gions providing information about z(j)[k]). A MEDAG

Gj is a subgraph with properties that fulfill this require-

ment. Specifically, the first property of a MEDAG in-

dicates that every regular agent i ∈ V \ Sj has at least

(2f+1) neighbors in the subgraph Gj , while the second

property indicates that all its regular neighbors in such

a subgraph belong to levels strictly preceding its own

level. Our estimation scheme (described later) requires

an agent i to listen to only its neighbors in N (j)
i for esti-

mating z(j)[k]. The second property of a MEDAG then

indicates that agents in level m only use estimates of

regular agents in levels 0 to m−1 for recovering z(j)[k].

Before proceeding further, we need to understand

the properties of the baseline communication graph G
that guarantee the existence of a MEDAG Gj ,∀λj ∈
ΩU (A). To this end, we require the following definitions

and result from [50].

Definition 3 (r-reachable set) For a graph G = (V, E),

a set S ⊂ V, and an integer r ∈ N+, S is an r-reachable

set if there exists an i ∈ S such that |Ni \ S| ≥ r.

Definition 4 (strongly r-robust graph w.r.t. Sj) For

r ∈ N+ and λj ∈ ΩU (A), a graph G = (V, E) is strongly

r-robust w.r.t. to the set of source agents Sj , if for any

non-empty subset C ⊆ V \ Sj , C is r-reachable.

1

2 3

4

5 6

7

8 9

x[k + 1] = Ax[k]

{λ
1 , λ

2 }

{
λ

3
,λ

4 } {λ5
, λ

6
}

Fig. 2 The above figure depicts an LTI process with 6 states
that satisfies Assumption 1. The red crosses indicate sens-
ing locations, and the mobile agents are represented by the
blue circles. The dashed rectangles are used to demarcate the
patrolling regions of the agents. A directed path from one
rectangle to another indicates that every agent in the former
can transmit information to every agent in the latter in the
baseline communication graph. Modes λ1 and λ2 of the sys-
tem are detectable w.r.t. the measurements available from the
left-most rectangular region. Thus, agents 1, 2 and 3 act as
the source mobile agents for modes λ1 and λ2. Source agents
for the other modes can be described similarly.

Lemma 2 Consider an eigenvalue λj ∈ ΩU (A). The

graph G contains a MEDAG Gj if and only if G is

strongly (2f + 1)-robust w.r.t. Sj.

Given a λj ∈ ΩU (A), there might be more than one

subgraph that satisfies the definition of a MEDAG Gj .
In [49], we proposed a distributed algorithm that al-

lowed each node i to identify the sets N (j)
i ,∀λj ∈ UOi,

by explicitly constructing a specific MEDAG Gj for

each λj ∈ UOi. In this paper, we assume that these

MEDAGs have already been constructed during a de-

sign phase using such an algorithm. In other words,

we work under the assumption that each agent i is in-

formed of the set N (j)
i ,∀λj ∈ UOi. It will be important

to keep in mind that the sets N (j)
i are time-invariant

as they correspond to specific MEDAGs in the time-

invariant baseline communication graph G; however, we

will allow for the possibility that each regular agent

i ∈ R can only communicate with a subset of the agents

in N (j)
i at each time-step, due to communication losses

and agent mobility.

5 Resilient Distributed State Estimation over

Time-varying Networks

In this section, we develop an algorithm that enables

each regular mobile agent to estimate its locally unde-

tectable portion subject to arbitrary adversarial attacks

and intermittent communication losses. We will focus

our attention on communication losses that satisfy the

following criterion.
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1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

· · ·

(a) k = 0 (b) k = 1 (c) k = 2 (d) k = 3 (e) k = 4

Fig. 3 Consider the scenario described by Figure 2, and a 1-local adversarial model (i.e, f=1). The MEDAG G1 corresponding
to mode λ1 is depicted by (a). The subsequent figures show one example sequence of how the communication pattern evolves
over time. Agents 1, 2 and 3 are the source agents for mode λ1, and are at level 0 of G1, agents 4, 5 and 6 are at level 1 of G1,
and agents 7, 8 and 9 are at level 2 of G1. With T = 2, the figure illustrates a communication pattern satisfying Assumption 2
for mode λ1. Specifically, ∀k ≥ 2, the union graph

⋃2
τ=0 G[k − τ ] contains the MEDAG G1.

Assumption 2. There exists T ∈ N+ such that ∀k ≥
T,
⋃T
τ=0 G[k−τ ] contains the MEDAG Gj for each λj ∈

ΩU (A).

Assumption 2 places certain design constraints on

the patrols of the agents. In particular, based on the

definition of a MEDAG in Definition 2, the following

observations can be made regarding Assumption 2. (i)

The patrols should be sufficiently informative, i.e., there

should exist at least (2f + 1) source mobile agents for

each λj ∈ ΩU (A). Coupled with Proposition 1, this re-

quires at least (2f + 1) mobile agents to periodically

visit each informative location (i.e., locations providing

information regarding unstable modes of the system) in

the geographical region. (ii) The patrols should ensure

that the mobile agents are able to exchange information

sufficiently often, and along sufficiently many differ-

ent paths (i.e., as specified by the MEDAG structure).

Thus, loosely speaking, periodic patrols that lead to

densely connected communication networks over time

are key to our subsequent development. In a latter sec-

tion (namely Section 7), we will consider packet drop-

ping scenarios that do not necessarily satisfy Assump-

tion 2.

An illustration of some of the concepts introduced

in the previous section is shown in Figure 2. Based on

the scenario described in Figure 2, a communication

loss pattern satisfying Assumption 2 is illustrated in

Figure 3. From Figure 3, we notice that G[k] may not

contain the specific MEDAGs constructed during the

design phase for some (or all) k, thereby precluding di-

rect use of the technique developed in [49]. However,

such MEDAGs will be preserved in the union graph

over the interval [k− T, k],∀k ≥ T . For our subsequent

development, we assume that all estimates being trans-

mitted by regular agents are properly time-stamped.

We now propose the following algorithm.

Let ẑ
(j)
i [k] denote the estimate of z(j)[k] maintained

by agent i at time-step k. Then, for each λj ∈ UOi, a

regular agent i updates ẑ
(j)
i [k] in the following manner.

1. At every time-step k, agent i collects the most recent

estimate of z(j)[k] received from each agent l ∈ N (j)
i ,

along with the corresponding time-stamp φil[k] ∈
N. It then evaluates the delay τil[k] = k − φil[k]

and computes the quantity z̄
(j)
il [k] , λj

τil[k]ẑ
(j)
l [k −

τil[k]].8 Prior to receiving the first estimate from an

agent l ∈ N (j)
i , the value z̄

(j)
il [k] is maintained at 0

by agent i.9

2. The values z̄
(j)
il [k] are sorted from largest to small-

est; subsequently, the largest f and the smallest f

of such values are discarded (i.e., 2f values are dis-

carded in all) and ẑ
(j)
i [k] is updated as

ẑ
(j)
i [k + 1] = λj

 ∑
l∈M(j)

i [k]

w
(j)
il [k]z̄

(j)
il [k]

 , (14)

where M(j)
i [k] ⊂ N (j)

i represents the set of agents

whose (potentially) delayed estimates are used by

agent i at time-step k after the removal of the 2f

aforementioned values. Agent i assigns the consen-

sus weight w
(j)
il [k] to agent l at time-step k for es-

timating the component of the state corresponding

to the eigenvalue λj . The weights w
(j)
il [k] are non-

negative and satisfy
∑
l∈M(j)

i [k]
w

(j)
il [k] = 1,∀λj ∈

UOi, and ∀k ∈ N.

We refer to the above algorithm as the Sliding Win-

dow Local-Filtering based Resilient Estimation (SW-

LFRE) algorithm. We comment on certain features of

8 For notational simplicity, while considering the eigenvalue
λj , we drop the superscript ‘j’ on the time-stamp φil[k] and
the delay τil[k].

9 If agent i receives an estimate without a time-stamp from

some agent in N (j)
i ∩ A, it simply assigns a value of 0 to

such an estimate (without loss of generality). Note that based
on Assumption 2, agent i is guaranteed to receive a time-

stamped estimate from every regular agent l in N (j)
i at least

once over every interval of the form [k − T, k], ∀k ≥ T , i.e.,

for each l ∈ N (j)
i ∩ R, z̄

(j)
il [k] will necessarily be of the form

λjτil[k]ẑ
(j)
l [k − τil[k]], ∀k ≥ T .
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this algorithm and then proceed to analyze its conver-

gence properties.

Remark 5 Like the LFRE algorithm in [50], the SW-

LFRE algorithm also relies on a two-stage filtering strat-

egy. Specifically, the first stage of filtering corresponds

to a regular agent i ∈ V \ Sj listening to only its neigh-

bors N (j)
i ⊆ Ni in the MEDAG Gj . This operation

ensures a uni-directional flow of information from the

source agents Sj (some of whom might also be adver-

sarial) to the rest of the network. The second stage

of filtering requires agent i to discard certain extreme

values received from agents in N (j)
i . Whereas the first

stage of filtering is specific to our distributed state es-

timation approach, the second stage of filtering is sim-

ilar to the W-MSR algorithm employed in the resilient

consensus literature [51], [52]. A key point of difference

between the LFRE and SW-LFRE algorithms is that in

the latter algorithm, at each time-step k, agent i needs

to process the most recent (potentially) delayed state

estimate received from each neighbor in N (j)
i . Account-

ing for such delayed state estimates (of an unstable dy-

namics) requires us to make careful modifications to the

design and analysis of the LFRE algorithm. Also, un-

like the LFRE algorithm, implementing the SW-LFRE

algorithm requires the agents to possess adequate mem-

ory, for reasons that follow from the above discussion.

Remark 6 Our approach does not require the agents

to possess a priori knowledge of the value of T in As-

sumption 2.

Remark 7 Our results will continue to hold if in step 2

of the SW-LFRE algorithm, agent i simply uses the me-

dian value of z̄
(j)
il [k], l ∈ N (j)

i , in the update rule (14).

Although this can reduce computation, the present ap-

proach offers a degree of freedom in choosing the weights

w
(j)
il [k], that can be potentially leveraged to account for

issues like noise.

Remark 8 As alluded to earlier in the introduction,

this communication-loss model offers the adversaries

the additional opportunity of sending false information

regarding the time-stamps of their estimates.10 Never-

theless, as we establish in the next section, our proposed

algorithm is immune to such misbehavior.

6 Analysis of the SW-LFRE Algorithm

The following is the main result of this section.

10 In other words, due to false time-stamp information, the

quantity ẑ
(j)
l [k − τil[k]] may not represent the true estimate

of an adversarial agent l at time (k− τil[k]). Thus, we resort
to a slight abuse of notation here.

Theorem 1 Given an LTI system (1) and a measure-

ment model (2), suppose all the conditions stated in

Proposition 1 are met. Additionally, let the baseline

communication graph G be strongly (2f+1)-robust w.r.t.

Sj ,∀λj ∈ ΩU (A), and let the communication patterns

satisfy Assumption 2. Then, the proposed SW-LFRE al-

gorithm guarantees the following despite the actions of

any set of f -local Byzantine adversaries.

– (Asymptotic Stability) Each regular agent i ∈ R
can asymptotically estimate the state of the plant,

i.e., limk→∞ ‖x̂i[k]− x[k]‖ = 0,∀i ∈ R, where x̂i[k]

is the estimate of x[k] maintained by agent i.

– (Rate of Convergence) Let e
(j)
i [k] = ẑ

(j)
i [k] −

z(j)[k] denote the error in estimation of the com-

ponent z(j)[k] by a regular agent i ∈ V \Sj. Suppose

agent i belongs to level q of the MEDAG Gj. Then,

there exist constants β(j) > 0 and γ(j) ∈ (0, 1), such

that the estimation error e
(j)
i [k] can be bounded as

follows ∀k ≥ (T + 1)q:

|e(j)
i [k]| ≤ β(j)

(
|λj |
γ(j)

)q(T+1)

(γ(j))
k
. (15)

Proof. For each regular agent i, the state vector z[k] can

be partitioned into the components zOi [k] and zUOi [k]

that correspond to the locally detectable and locally

undetectable eigenvalues, respectively, of agent i. Since

the conditions stated in Proposition 1 are met, agent

i can asymptotically recover zOi [k] via persistent pa-

trolling and by implementing the observer given by (7)

and (8). It remains to show that agent i can recover

zUOi [k], or in other words, for each λj ∈ UOi, we need

to prove that limk→∞ |ẑ(j)
i [k] − z(j)[k]| = 0. Equiva-

lently, we show that for each λj ∈ ΩU (A), every regular

agent i ∈ V \ Sj can asymptotically recover z(j)[k].

Consider any f -local adversarial set A and let R =

V\A. Consider an eigenvalue λj ∈ ΩU (A). Since E [k] ⊆
E for all k, Assumption 2 can hold only if the baseline

graph G contains Gj . The latter follows from the con-

ditions of the theorem and Lemma 2. Next, based on

Assumption 2, note that for all k ≥ T , the union of the

graphs over the interval [k−T, k] contains the MEDAG

Gj . Recall that the sets {L(j)
0 ,L(j)

1 , · · · ,L(j)
q , · · · L(j)

Tj
}

form a partition of the set of regular agents R in such

a MEDAG. We prove the desired result by inducting

on the level number q. For q = 0, L(j)
0 = Sj ∩ R by

definition, and hence all agents in level 0 can estimate

z(j)[k] asymptotically by virtue of Proposition 1. Next,

consider a regular agent i in L(j)
1 and let e

(j)
i [k] ,

ẑ
(j)
i [k] − z(j)[k]. We first analyze the SW-LFRE up-

date rule (14). To this end, at each time-step k, let the
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neighbor set N (j)
i of agent i be partitioned into the sets

U (j)
i [k],M(j)

i [k] and J (j)
i [k], where U (j)

i [k] and J (j)
i [k]

contain f agents each, with the highest and the lowest

values of z̄
(j)
il [k] respectively, and M(j)

i [k] contains the

remaining agents in N (j)
i . At any instant k, we can ei-

ther haveM(j)
i [k]∩A = ∅ orM(j)

i [k]∩A 6= ∅. In the for-

mer case, all agents inM(j)
i [k] belong to L(j)

0 = Sj ∩R.

Now consider the latter case when agent i uses values

transmitted by adversarial agents in its update rule. It

follows from the SW-LFRE algorithm, the f -locality of

the adversary model, and the fact that |N (j)
i | ≥ (2f+1),

that for each l ∈ M(j)
i [k] ∩ A, there exists an agent

u ∈ U (j)
i [k] and an agent v ∈ J (j)

i [k] such that both

u, v ∈ L(j)
0 , and z̄

(j)
iv [k] ≤ z̄

(j)
il [k] ≤ z̄

(j)
iu [k], i.e., z̄

(j)
il [k]

can be expressed as a convex combination of z̄
(j)
iu [k] and

z̄
(j)
iv [k].11 Based on the above discussion and (14), it fol-

lows that for all k, ẑ
(j)
i [k+1] belongs to the convex hull

formed by λj z̄
(j)
il [k], l ∈ L(j)

0 . Specifically, there exist

weights w̄
(j)
il [k] such that

∑
l∈N (j)

i ∩L
(j)
0
w̄

(j)
il [k] = 1, and

ẑ
(j)
i [k + 1] = λj

 ∑
l∈N (j)

i ∩L
(j)
0

w̄
(j)
il [k]z̄

(j)
il [k]

 . (16)

Since
∑
l∈N (j)

i ∩L
(j)
0
w̄

(j)
il [k] = 1, and z(j)[k+1] = λjz

(j)[k]

based on (4), simple manipulations imply

z(j)[k+1] = λj

 ∑
l∈N (j)

i ∩L
(j)
0

w̄
(j)
il [k]λj

τil[k]z(j)[k − τil[k]]

 .

(17)

Based on Assumption 2 and step 1 of the SW-LFRE

update rule, we have that for all k ≥ T , z̄
(j)
il [k] =

λj
τil[k]ẑ

(j)
l [k − τil[k]], l ∈ N (j)

i ∩ L(j)
0 . Subtracting (17)

from (16), we then obtain the following error dynamics

for all k ≥ T :

e
(j)
i [k+1] = λj

 ∑
l∈N (j)

i ∩L
(j)
0

w̄
(j)
il [k]λj

τil[k]e
(j)
l [k − τil[k]]

 .

(18)

Noting that the weights w̄
(j)
il [k] are non-negative, the

delay terms τil[k] are upper bounded by T for l ∈

11 Explicit dependence of u, v on the parameters represented
by i, j, l and k is not shown to avoid cluttering of the exposi-
tion.

N (j)
i ∩ R, λj satisfies |λj | ≥ 1, and using the trian-

gle inequality, we obtain the following based on (18) for

all k ≥ T :

|e(j)
i [k+1]| ≤ |λj |(T+1)

 ∑
l∈N (j)

i ∩L
(j)
0

w̄
(j)
il [k]|e(j)

l [k − τil[k]]|

 .

(19)

For every l ∈ L(j)
0 , since e

(j)
l [k] converges exponen-

tially12 based on Proposition 1, there exist constants

c
(j)
l > 0 and γ

(j)
l ∈ (0, 1) such that |e(j)

l [k]| ≤ c(j)l (γ
(j)
l )

k
,

for all k ∈ N. Let β(j) , max
l∈L(j)

0
c
(j)
l and γ(j) ,

max
l∈L(j)

0
γ

(j)
l . Then, we obtain the following inequal-

ity based on (19) for all k ≥ T :

|e(j)
i [k + 1]| ≤ |λj |(T+1)β(j)(γ(j))

(k−T )
, (20)

where we have used the fact that
∑
l∈N (j)

i ∩L
(j)
0
w̄

(j)
il [k] =

1. Thus, we obtain (15) for q = 1, implying exponential

stability of the error dynamics (18) for all agents in level

1, since γ(j) ∈ (0, 1).

Suppose exponential stability holds for agents in all

levels from 0 to q (where 1 ≤ q ≤ Tj − 1). It is easy

to see that the result holds for all agents in L(j)
q+1 as

well, by noting that (i) a regular agent i ∈ L(j)
q+1 has

N (j)
i ∩ R ⊆

⋃q
r=0 L

(j)
r , and (ii) any value z̄

(j)
il [k] used

by agent i in the update rule (14) lies in the convex

hull formed by z̄
(j)
iu [k], u ∈

⋃q
r=0 L

(j)
r . Based on the in-

duction hypothesis, exponential stability can then be

argued using the same reasoning as the q = 1 case. Ver-

ifying (15) is a matter of straightforward algebra.

We now focus on the impact of bounded commu-

nication delays between mobile agents when the com-

munication graph among them remains unchanged over

time. Here, by a bounded communication delay we im-

ply that if (i, j) ∈ E [k] and i, j ∈ R, then any estimate

transmitted by agent i to agent j at time-step k is re-

ceived by agent j no later than time-step k + T , for

some T ∈ N+. It turns out that the arguments used

in the proof of Theorem 1 can be used almost identi-

cally to analyze the impact of bounded communication

delays (potentially random, time-varying) in the pres-

ence of adversaries, for time-invariant communication

networks. We formalize this observation below.

Corollary 1 Given an LTI system (1) and a measure-

ment model (2), suppose all the conditions stated in

12 Although we only establish asymptotic stability of the er-
ror dynamics in Proposition 1, verifying exponential stability
is fairly straightforward, and hence, not explicitly proven.
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Proposition 1 are met. Additionally, let G[k] = G ∀k,

where G is strongly (2f + 1)-robust w.r.t. Sj ,∀λj ∈
ΩU (A). Furthermore, let communication delays between

any pair of regular agents in G be bounded by some

T ∈ N+. Then, the proposed SW-LFRE algorithm pro-

vides identical guarantees as in Theorem 1.

We summarize the implications of Theorem 1 and

Corollary 1 in the following remarks.

Remark 9 For a given mode λj ∈ ΩU (A), the con-

stants β(j) and γ(j) are indicative of the time of con-

vergence of the estimation errors (corresponding to the

state z(j)[k]) of the source agents Sj . In other words,

these constants are dictated by the observer equations

(7) and (8). While β(j) encompasses the effects of the

patrol time-periods and the initial state estimation er-

rors, γ(j) essentially represents the slowest rate of con-

vergence among the source agents Sj . In this context,

Theorem 1 relates the time of convergence of the non-

source agents to that of the source agents, and shows

how the instability of the mode under consideration,

the maximum delay T , and distances from the source

set (captured by the different levels of the MEDAG)

feature in such a relation.

Remark 10 When it comes to addressing the effect

of network-induced delays in the context of distributed

state estimation (using static sensors and in the absence

of any adversarial attacks), there is limited literature

that provides any theoretical guarantees. Approaches

such as the one outlined in [77] typically seek to account

for delays and packet-drops by formulating LMI-based

conditions that do not in general provide any graph-

theoretic insights. In contrast, the proposed SW-LFRE

algorithm allows one to deal with bounded delays in a

much simpler manner by exploiting the uni-directional

flow of information that is inherent to our approach.

We conjecture that our results pertaining to bounded

delays will carry over to more general system and mea-

surement models, such as those considered in [38,40,41].

7 Resilient Distributed State Estimation over

Analog Erasure Channels

In the previous section, we analyzed a communication

failure model where the patterns described by Assump-

tion 2 recurred in a deterministic manner. In this sense,

the time-varying communication patterns considered in

the previous section can be attributed to agent move-

ments. In contrast, the focus of this section will be

to analyze time-varying communication patterns that

are a consequence of imperfections in the communica-

tion channel. We model such imperfections as random

packet drops that can potentially lead to a violation

of the conditions stated in Assumption 2. To isolate

the impact of random packet drops, we will assume

for the remainder of this section that the patrols have

been designed to ensure that the baseline communi-

cation topology is retained at every time-step in the

absence of packet drops. In other words, in this sec-

tion, we assume that such packet drops are the sole

cause of communication losses. The task of analyzing

time-varying communication patterns that are a con-

sequence of both agent movements and random packet

drops is left as future work.

With these points in mind, we now explore a sce-

nario where each communication link between the mo-

bile agents is modeled as an analog erasure channel as

defined in [78]. In particular, the transmission of in-

formation across any link (i, j) ∈ E is governed by a

random process ξij [k] that is memoryless, i.e., ξij [k] is

i.i.d. over time. Furthermore, across space, the packet

dropping processes over different links are independent.

For any k, the random variable ξij [k] follows a Bernoulli

fading distribution, i.e., ξij [k] = 0 with erasure prob-

ability p and ξij [k] = 1 with probability (1 − p); the

implications of ξij [k] assuming the values 0 and 1 will

be discussed shortly.

Our objective in this section will be to design an

estimation protocol that guarantees mean-square sta-

bility of the estimation error dynamics for each regular

agent, in the following sense.

Definition 5 (Mean-Square Stability (MSS)) The

estimation error dynamics of the regular agents is said

to be mean-square stable if limk→∞E[‖ei[k]‖2] = 0,∀i ∈
R, where ei[k] = x̂i[k] − x[k], and the expectation is
taken with respect to the packet dropping processes

ξij [k], (i, j) ∈ E .

7.1 Channels with no delay

We first consider the case where ξij [k] = 1 implies

that any data packet transmitted by agent i at time

k is received perfectly by agent j at time k, and when

ξij [k] = 0, such a packet is dropped completely. For

this model, we propose a simple algorithm described as

follows.

For each λj ∈ UOi, a regular agent i updates its

estimate of z(j)[k] in the following manner.13

13 Unlike the SW-LFRE algorithm developed in Section 5,
the algorithm we propose here is memoryless, i.e., at each
time-step, an agent acts only on the information that it ac-
quires (via measurements and from neighboring agents) at
that time-step. We do this primarily to simplify the analysis.



Resilient Distributed State Estimation with Mobile Agents 15

– At each time-step k, if it receives estimates from at

least (2f+1) agents in N (j)
i , it runs the LFRE algo-

rithm, i.e., it removes the largest f and the smallest

f estimates ẑ
(j)
l [k], l ∈ N (j)

i and updates ẑ
(j)
i [k] as

ẑ
(j)
i [k + 1] = λj

(∑
l∈M(j)

i [k]
w

(j)
il [k]ẑ

(j)
l [k]

)
, (21)

where the set M(j)
i [k] and the weights w

(j)
il [k] are

defined as in the description of the SW-LFRE algo-

rithm in Section 5. Otherwise, it runs open-loop as

follows:

ẑ
(j)
i [k + 1] = λj ẑ

(j)
i [k]. (22)

The above algorithm provides the following guarantees.

Theorem 2 Given an LTI system (1), and a measure-

ment model (2), suppose all the conditions stated in

Proposition 1 are met. Let the baseline communication

graph G be strongly (mf + 1)-robust w.r.t. Sj ,∀λj ∈
ΩU (A), where m ∈ N+ is a constant. For each (i, j) ∈
E, let ξij [k] be a Bernoulli packet dropping process with

erasure probability p, that is i.i.d. over time and inde-

pendent of packet dropping processes over other links.

Suppose m ≥ 3 and that the following is true:14

ρ2p̄ < 1, (23)

where ρ is the spectral radius of A, and

p̄ , 1−
(m−1)f+1∑
l=(2f+1)

(
(m− 1)f + 1

l

)
(1− p)lp(m−1)f+(1−l).

(24)

Then, the estimation algorithm described by the update

rules (21) and (22) guarantees mean-square stability in

the sense of Definition 5, despite the actions of any f -

local set of Byzantine adversaries.

Proof. Note that the packet dropping processes do not

affect the estimation of the locally detectable portions

of the state, i.e., each regular mobile agent i can re-

cover zOi [k] asymptotically since the conditions stated

in Proposition 1 are satisfied. Consider any f -local ad-

versarial set A and let R = V \ A. Consider an eigen-

value λj ∈ ΩU (A). Since G is strongly (mf + 1)-robust

w.r.t. Sj , a trivial extension of Lemma 2 implies that

there exists a MEDAG Gj with |N (j)
i | ≥ (mf + 1),∀i ∈

{V \Sj}∩R. We induct on the level numbers q of such

a MEDAG Gj present in the baseline communication

graph G. Let i be an agent in level 1. Let Ii[k] be an

14 The choice of m ≥ 3 is justified later in Remark 13.

indicator random variable15 such that Ii[k] = 1 if agent

i uses the update rule (22) and Ii[k] = 0 if agent i uses

the update rule (21). To make the presentation clear,

we make the following assumption. Suppose agent i re-

ceives estimates from more than (2f+1) agents in N (j)
i

at a certain time-step k. Then, after removing 2f esti-

mates based on the LFRE algorithm, it listens to only

a single agent l picked arbitrarily from M(j)
i [k], while

running (21).16 Combining (21) and (22), we obtain

ẑ
(j)
i [k + 1] = λj

(
Ii[k]ẑ

(j)
i [k] + (1− Ii[k])ẑ

(j)
l [k]

)
, (25)

where l ∈ M(j)
i [k].17 It is easy to see that the error

e
(j)
i [k] = ẑ

(j)
i [k]− z(j)[k] follows the dynamics:

e
(j)
i [k + 1] = λj

(
Ii[k]e

(j)
i [k] + (1− Ii[k])e

(j)
l [k]

)
. (26)

Defining σ
(j)
i [k] , E[(e

(j)
i [k])

2
], and using (26), we ob-

tain:

σ
(j)
i [k + 1] =λ2

jE[I2
i [k]]σ

(j)
i [k] + λ2

jE[(1− Ii[k])2(e
(j)
l [k])

2
]

+ 2λ2
jE[(Ii[k]− I2

i [k])(e
(j)
i [k])(e

(j)
l [k])]︸ ︷︷ ︸

g[k]

,

≤λ2
jp

(j)
i [k]σ

(j)
i [k] + λ2

j (1− p
(j)
i [k]) max

r∈N (j)
i ∩L

(j)
0

σ(j)
r [k],

≤ (λ2
j p̄)σ

(j)
i [k] + λ2

j ( max
r∈N (j)

i ∩L
(j)
0

σ(j)
r [k]),

(27)

where p
(j)
i [k] is the probability that Ii[k] = 1. We now

justify each of the above steps. For arriving at the first

equality, we used the fact that e
(j)
i [k] is independent

of Ii[k] for any i ∈ R, based on the update rules (21)
and (22), and the nature of the packet dropping pro-

cesses. Notice that when agent l is adversarial, it may

have precise knowledge of the number of packets re-

ceived by agent i at time-step k; the estimate ẑ
(j)
l [k]

it transmits to agent i might then be influenced by

such knowledge. Regardless of this fact, whenever l ∈
M(j)

i [k], based on the LFRE update rule (21) and the

f -locality of the adversarial model, it follows from ar-

guments identical to those in Theorem 1 that e
(j)
l [k]

can be expressed as a convex combination of e
(j)
u [k]

and e
(j)
v [k], for some u, v ∈ N (j)

i ∩ L(j)
0 . Since such

agents are regular, their errors at time k are indepen-

dent of Ii[k]. The above discussion combined with the

15 To avoid cluttering the exposition, we drop the super-
script ‘j’ on Ii[k] and certain other terms throughout the
proof, since they can be inferred from context.
16 The result continues to hold for the general update rule
(21).
17 The set M(j)

i [k] is not well-defined when Ii[k] = 1. For

such a case, l can be taken to be any node in the set N (j)
i ∩R.



16 Aritra Mitra, John A. Richards, Saurabh Bagchi, and Shreyas Sundaram

fact that g[k] = 0 (since Ii[k] is an indicator random

variable) leads to the second inequality in (27). Observe

that since L(j)
0 = Sj ∩R, it follows from Proposition 1

that limk→∞max
r∈N (j)

i ∩L
(j)
0
σ

(j)
r [k] = 0.

For arriving at the final inequality, we first note that

p
(j)
i [k] can potentially vary over time and across differ-

ent agents since the adversarial agents are allowed to

behave arbitrarily. In particular, a compromised agent

may choose not to transmit estimates even if all out-

going communication links from such an agent are in-

tact. Thus, since it is impossible to exactly compute

p
(j)
i [k], we instead seek to upper-bound it. To this end,

note that the probability that Ii[k] = 0, i.e., the prob-

ability that agent i receives estimates from at least

(2f + 1) agents in N (j)
i at time k, is lower bounded

by the probability that it receives estimates from at

least (2f + 1) agents in N (j)
i ∩ R at time k. The lat-

ter probability can be further lower bounded by (1− p̄)
(where p̄ is given by (24)) by noting that |N (j)

i ∩R| ≥
((m−1)f+1) based on the f -locality of the fault model.

In light of the above discussion, we have p
(j)
i [k] ≤ p̄,

leading to the last inequality in (27). Finally, equation

(23) implies that λ2
j p̄ < 1, and in turn guarantees that

limk→∞ σ
(j)
i [k] = 0, based on Input to State Stability

(ISS) and the foregoing discussion.

Suppose limk→∞ σ
(j)
i [k] = 0 for all agents in levels

0 to q. Consider an agent i ∈ L(j)
q+1[k]. Its error dynam-

ics can be bounded as in (27), with g[k] = 0 for rea-

sons discussed above, and e
(j)
l [k] = α

(j)
il [k]e

(j)
u [k] + (1−

α
(j)
il [k])e

(j)
v [k], for some α

(j)
il [k] ∈ [0, 1], and some u, v ∈⋃q

r=0 L
(j)
r . The last argument follows from the LFRE

update rule (21). Consider the term E[(e
(j)
u [k])(e

(j)
v [k])]

appearing in σ
(j)
l [k]. Since σ

(j)
u [k] and σ

(j)
v [k] converge

to 0 based on the induction hypothesis, we can use the

Cauchy-Schwartz inequality to bound E[(e
(j)
u [k])(e

(j)
v [k])]

as follows:

E[(e(j)
u [k])(e(j)

v [k])] ≤
√
σ

(j)
u [k]σ

(j)
v [k]. (28)

This implies limk→∞ σ
(j)
l [k] = 0,∀ l ∈ M(j)

i [k]. The

rest of the proof can be completed following similar

arguments as the q = 1 case.

The term p̄ appearing in (23) and (24) can be inter-

preted as the effective packet drop/erasure probability

for the problem under study. With this in mind, the im-

plications of the above result are described as follows.

Remark 11 (Increasing ‘network robustness’ re-

duces ‘effective packet drop probability’) Given

3 4 5 6
0

1

2

3

4
p=0.5

p=0.3

p=0.1

Fig. 4 Plot illustrating how the effective packet drop prob-
ability p̄ can be reduced by increasing the level of robustness
m. For this example, ρ = 2 and f = 3.

knowledge of the spectral radius ρ of A, an upper-

bound f on the number of adversaries in the neigh-

borhood of any regular agent, and the erasure proba-

bility p of the communication medium, suppose we are

faced with the problem of designing a communication

topology that guarantees mean-square stability in the

sense of Definition 5. Theorem 2 provides an answer

to this problem by quantitatively relating our notion

of ‘strong-robustness’ in Definition 4 to the effective

packet drop probability p̄. For instance, as shown in

Figure 4, given the parameters ρ, f and p, one can gen-

erate a plot for ρ2p̄ offline, and choose m to satisfy the

MSS criterion ρ2p̄ < 1. Subsequently, one can proceed

to design a network that is strongly (mf + 1)-robust

w.r.t. Sj , λj ∈ ΩU (A). It is easy to verify that p̄ is

monotonically increasing in p, and monotonically de-

creasing in m. In other words, for a fixed ρ and f , one

can tolerate higher erasure probabilities p by increasing
the robustness parameter m. In the context of the mo-

bile agents that we are considering in this paper, this

corresponds to changing the patrols of the individual

agents so that they encounter the other agents in such

a way that the baseline communication network (con-

taining the set of all agent interactions over time) is

sufficiently robust.

Remark 12 Note that when f = 0, i.e., in the ab-

sence of adversaries, equation (23) reduces to ρ2p < 1.

This condition is reminiscent of the MSS criterion for

remote stabilization of an LTI system over a Bernoulli

packet dropping channel [79]. This observation can be

explained by viewing the contribution due to the LFRE

update (21) (that helps stabilize the error dynamics

(26)) as an analogue of the stabilizing input in the re-

mote stabilization problem.

Remark 13 We now justify the need for m ≥ 3 in

Theorem 2. Suppose the network is strongly (mf + 1)-

robust with m ≤ 2. In this case, each adversarial agent
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may follow the simple strategy of never transmitting

its estimate. If the adversaries compromise f agents in

some set N (j)
i , where i ∈ R and λj ∈ UOi, then such

a strategy might cause the regular agent i to run open-

loop forever based on the algorithm described by the

update rules (21) and (22). Instead of running open-

loop, suppose that if a regular agent i does not hear

from some neighbor in N (j)
i at time k, it assigns a value

of 0 to the corresponding estimate, and then employs

the LFRE update rule (21). Such an approach will in

general not work either, due to the following reason. Un-

like the communication loss model studied in Section 5,

where each regular agent was guaranteed to eventu-

ally receive estimates from ‘enough’ regular neighbors,

no such guarantees can be claimed for the analog era-

sure channel model studied here. Thus, while strongly

(2f+1)-robust networks sufficed in Section 5, the choice

of m ≥ 3 is in fact necessary in the present context for

achieving MSS based on our specific approach. How-

ever, m = 2 does suffice for certain variants of the ana-

log erasure channel model, as we discuss next.

7.2 Channels with erasure and delay

In this section, we consider a variant of the analog era-

sure channel that accounts for the presence of random

delays. To this end, let (i, j) ∈ E , and let v[k] be a mes-

sage transmitted by agent i to agent j at time-step k.

Then, a channel with delay and erasure causes agent j

to receive the following message:

r[k] = ξij [k]v[k] + (1− ξij [k])v[k − τij [k]], (29)

where ξij [k] is the memory-less packet dropping pro-

cess described earlier, τij [k] ∈ N+ is a random delay

satisfying 1 ≤ τij [k] ≤ T , and T ∈ Z>0. In words, the

channel output r[k] is either equal to the present chan-

nel input v[k] with probability (1 − p), or equal to a

delayed channel input with probability p, where the de-

lay is upper bounded by some positive constant T . It

should be noted that the erasure channel model con-

sidered here is a generalization of the erasure channel

with delay in [78], where the delays are constant. For

this model, we have the following result.

Proposition 2 Given an LTI system (1) and a mea-

surement model (2), suppose all the conditions stated

in Proposition 1 are met. Let the baseline communica-

tion graph G be strongly (2f +1)-robust w.r.t. Sj ,∀λj ∈
ΩU (A). Let each communication link of G be modeled

as a channel with delay and erasure as described by

equation (29). Then, the SW-LFRE algorithm provides

identical guarantees as Theorem 1, with probability 1.

Proof. The proof follows from the following simple ob-

servation. Based on the channel model (29), note that

for each λj ∈ ΩU (A), every regular agent i ∈ V \ Sj is

guaranteed to receive a state estimate that is at most T

time-steps delayed, from each of its regular neighbors in

N (j)
i , at every time-step k, ∀k ≥ T . This corresponds to

a special case of the bounded delay model in Corollary

1, and the result thus follows.

8 Simulation Study

In this section, we substantiate our theoretical results

via a detailed simulation study. To this end, we first de-

scribe our general simulation setup, and then propose a

simple patrolling strategy that meets the design speci-

fications laid down by the theoretical results developed

in this paper.

Simulation Model and a Simple Patrolling Strat-
egy: Our general setup is as follows. We consider a geo-

graphical region partitioned into K cells, with r sensing

locations distributed within each cell. A dynamical pro-

cess evolves within each cell, and the processes across

different cells are assumed to be decoupled. A network

of mobile agents is deployed over this region; the task

of each agent is to gain global situational awareness by

estimating the state of the dynamical process in every

cell (i.e., not only the state of the process within the

cell that it is patrolling). Suppose (i) the sensing capa-

bilities and movement patterns of any given agent are

limited to a single cell, i.e., an agent can persistently

visit all the sensing locations within its own cell, but

not cross over to adjacent cells, and (ii) the commu-

nication radius is such that each agent in a given cell

can nominally communicate with all agents in each ad-

jacent cell. However, such communication is subject to

random packet drops based on the model described in

Section 7.1.

Based on the above setting, and the development

in Section 7, it is clear that we need at least (3f + 1)

mobile agents patrolling each cell, and hence, a total of

(3f + 1)K mobile agents monitoring the overall region.

The nominal communication patterns can be viewed as

arising from a preferential attachment type mechanism

(where each new agent attaches itself to (3f + 1) exist-

ing agents), and ensure that the baseline communica-

tion graph is strongly (3f + 1)-robust w.r.t. every rele-

vant source set [50].18 Thus, for the scenario described

above, the overall patrolling strategy simply boils down

18 The need for strong (3f + 1)-robustness in the baseline
network was provided in Remark 13, and will also be justified
explicitly via simulations.



18 Aritra Mitra, John A. Richards, Saurabh Bagchi, and Shreyas Sundaram

Fig. 5 This figure illustrates the general simulation setup
comprising of a region partitioned into 4 cells. Each cell has
10 randomly distributed measurement locations represented
by the red crosses, and 4 mobile agents patrolling within the
cell. Cell 1 is patrolled by agents 1–4, Cell 2 is patrolled by
agents 5–8, Cell 3 is patrolled by agents 9–12, and Cell 4
is patrolled by agents 13–16. The edges depict the baseline
communication graph, representing the fact that each agent
in a given cell can nominally communicate with all agents in
adjacent cells. However, all communication links are subject
to random packet drops.

to persistent periodic intra-cell patrols (with the peri-

ods chosen appropriately based on Proposition 1). In

what follows, we demonstrate how such patrols comple-

ment the estimation techniques developed in this paper

by considering a specific instance of the above setup.

Let K=4, and r=10. In each of the 4 cells, the 10

sensing locations are randomly distributed. For all our

simulations, we consider a 1-local Byzantine adversary

model. There are (3f+1) = 4 mobile agents within each

cell. As detailed above, each agent executes a periodic

patrol that persistently visits each of the sensing loca-

tions within its own cell, without crossing over to adja-

cent cells. This scenario is depicted in Figure 5, where

Cell 1 is patrolled by agents 1–4, Cell 2 is patrolled by

agents 5–8, Cell 3 is patrolled by agents 9–12, and Cell 4

is patrolled by agents 13–16. Figure 5 depicts the base-

line communication graph pattern where each agent in

Cell 1 can communicate with all agents in Cells 2 and

4 (adjacent cells), but with no agent in Cell 3; the com-

munication patterns for the other cells can be described

similarly. Finally, we emphasize that the baseline com-

munication graph in Fig. 5 may not be retained entirely

at each time-step, due to random packet drops.

Information Flow Patterns: Based on the discus-

sion in Section 3, since each mobile agent persistently

visits every sensing location within its own cell, it acts

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Cell 1

Cell 2 Cell 4

Cell 3

Fig. 6 This figure illustrates the MEDAG (in the baseline
communication graph) that dictates the flow of information
for estimating the states of the process evolving in Cell 1.
The agents in Cell 1 act as source agents (level 0), the agents
in Cells 2 and 4 are at level 1, while agents in Cell 3 are at
level 2 of this MEDAG. A directed edge from Cell i to Cell j
indicates that each agent in Cell i has a directed edge to each
agent in Cell j in the baseline graph.

2 1

3 4

2 1

3 4

(a) (b)

2 1

3 4

2 1

3 4

(c) (d)

Fig. 7 This figure illustrates the information flow patterns
for the estimation of the different inter-cell processes. Each
cell is represented by a single square node, and the dashed
edges indicate how agents communicate among themselves
for estimating the various states. Specifically, figures (a), (b),
(c) and (d) represent the way estimates are processed for
recovering the states in Cells 1, 2, 3 and 4, respectively.

as a source of information for all the states associated

with its own cell. Figure 6 shows the MEDAG that dic-

tates the flow of information among the mobile agents

for estimating the states evolving in Cell 1. Specifically,

this MEDAG will have all agents in Cell 1 at level 0

(source agents), all agents in Cells 2 and 4 at level 1,

and all agents in Cell 3 at level 2. This information

flow is compactly represented in Figure 7(a). In a simi-

lar manner, MEDAGs for Cells 2, 3 and 4 are compactly

represented via Figures 7(b)-(d), respectively.
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(d) Error Norms for Cell 4 Agents

Fig. 8 Plots of the estimation error norms for the scenario described in Section 8.1. The erasure probability is set to its

maximum allowable value 0.32 (to ensure MSS) and agent 5 in Cell 2 acts as an adversarial agent. The notation ‖e(ij)
q [k]‖ is

used to indicate the estimation error norm of agent q in Cell i, w.r.t. the dynamics in Cell j, at time-step k.

8.1 Tracking Unstable Dynamical Processes

In our first simulation study based on the setup de-

scribed above, we consider identical unstable dynami-

cal processes evolving in each cell. Processes in differ-

ent cells start out from different initial conditions and

hence evolve differently across cells. For each cell, we

consider a 20-dimensional LTI system with a diagonal

system matrix (any system matrix satisfying Assump-

tion 1 can be diagonalized). The system has real, dis-

tinct eigenvalues distributed uniformly from 0.5 to 1.2,

i.e., the spectral radius of the system is ρ = 1.2. Since

all eigenvalues are of the same sign and distinct (i.e., of

distinct magnitude), Lemma 1, Proposition 1 and Foot-



20 Aritra Mitra, John A. Richards, Saurabh Bagchi, and Shreyas Sundaram

0 100 200
0

0.5

1

1.5

2 106

0 100 200
0

5000

10000

0 100 200
0

1

2

3 1011

0 100 200
0

1

2

3 104

0 100 200
0

1

2

3 1011

0 100 200
0

2

4

6

8 1012

0 100 200
0

1

2

3 1011

0 100 200
0

5

10

15 1011

0 100 200
0

1

2

3

4 105

0 100 200
0

5

10 1010

0 100 200
0

5000

10000

0 100 200
0

1

2

3

4 109

0 100 200

0

1000

2000

3000

0 100 200

0

0.5

1

1.5

2
10

10

0 100 200

0

2

4

6
10

5

0 100 200

0

5

10
10

5

Fig. 9 Illustration of certain inter-cell estimation error plots for the scenario described in Section 8.1, corresponding to high
erasure probability. For this example, the erasure probability is p = 0.8. However, all agents are regular.

(a) k = 50 (b) k = 100 (c) k = 150 (d) k = 200

(e) k = 50 (f) k = 100 (g) k = 150 (h) k = 200

Fig. 10 Illustration of dynamically changing communication links at different time-steps k. Figures (a)-(d) represent the case
when the erasure probability p is 0.32. Figures (e)-(h) represent the case when the erasure probability p is 0.8.
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Fig. 11 Illustration of the need for strong-(3f + 1) robust-
ness, as pointed out in Remark 13. Adversarial agents choos-
ing not to transmit estimates (omissive attacks) can cause
the estimation errors to grow unbounded with time.

note 4 indicate that the time-period with which each

location is visited can be chosen arbitrarily (as long as

they induce feasible periodic patrols as defined in Sec-

tion 3). The 10 measurement locations within each cell

are numbered from 1 to 10, and the measurement vec-

tor at the i-th location is taken to be a row vector with

entries of 1 at the (2i−1)-th and 2i-th positions. Thus,

precisely two eigenvalues of the system are observable

from each location within each cell. Locations in Cells

1, 2, 3 and 4 are visited with time-periods 13, 14, 14,

and 14, respectively (each location within a given cell

is visited by all mobile agents patrolling that cell with

the same time-period). The observer gains are designed

based on the procedure outlined in the proof of Propo-

sition 1. The initial conditions for states in Cells 1, 2,

3 and 4 are 0.07, 0.05, 0.03 and 0.01, respectively (all

the states in the same cell start at the same value). All

state estimates are initialized from zero. We now study

various aspects of the problem.

Effect of Random Packet Drops: We first focus on

the impact of random packet drops coupled with adver-

sarial attacks. For this case, since ρ = 1.2, f = 1, and

the baseline communication graph is strongly (mf+1)-
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(d) Error Norms for Cell 4 Agents

Fig. 12 Plots of the estimation error norms for the scenario described in Section 8.2. The erasure probability is set to p = 0.8,
and agent 5 in Cell 2 acts as an adversarial agent.

robust with m = 3, the condition for MSS stated in

Theorem 2 indicates that the erasure probability can

be at most 0.32. The erasure probability is set to this

maximum value, and agent 5 in Cell 2 is considered

to be adversarial. Specifically, at any given time-step,

if the communication link from agent 5 to some other

agent i is intact, then agent 5 does the following. It

adjusts its state estimate transmitted to agent i to be

equal and opposite to the sum of the other state es-

timates being used by agent i at that time-step. This

action is intended to keep the state estimates of agent

i static. Note that none of the other agents know that

agent 5 is adversarial. We will discuss the specific reper-

cussions of such an adversarial attack in the example

discussed in Section 8.2. For now, we focus on the effect

of the erasure probability p.
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Fig. 13 Illustration of a Byzantine attack for the diffusion
dynamics model considered in Section 8.2. Agent 5 in Cell 2 is
a Byzantine adversary, and transmits estimates that keep the
estimates of the regular agents static. Although the network is
strongly (3f + 1)-robust w.r.t. every source set and there are
no packet drops, a non-resilient state estimation algorithm
fails to achieve asymptotic stability of the error dynamics
(i.e., the errors do not converge to zero).

The simulation results for the case described above

are shown in Figure 8. The notation ‖e(ij)
q [k]‖ is used

to indicate the estimation error norm of agent q in Cell

i, w.r.t. the dynamics in Cell j, at time-step k. Despite

adversarial attacks and random packet drops, we see

that the error plots corroborate the theory developed

in this paper. The decaying spikes in the intra-cell error

norm plots are a consequence of the periodic motions

of the mobile agents. The inter-cell error norm plots

inherit this trend coupled with the effect of random

packet drops and adversarial injections.

The effect of a high erasure probability is shown

in Figure 9. For this case, the erasure probability is

p = 0.8. To isolate the effect of random packet drops,

we assume that all agents are regular for this specific

illustration. Even so, some of the inter-cell estimation

error norms grow unbounded with time, as shown in

Figure 9. Figure 10 illustrates the dynamically changing

communication links between the different agents, for

both high and low erasure probabilities.

Effect of Omissive Attacks: We illustrate the need

for (3f + 1)-strong robustness, as discussed in Remark

13. Consider a scenario where agents in Cell 3 cannot

communicate with agents in Cell 4. Furthermore, sup-

pose each agent in Cell 3 can communicate with only

agents 5−7 in Cell 2. This communication pattern leads

to a (2f + 1)-strongly robust network w.r.t. the agents

in Cell 1. Suppose agent 5 is compromised and follows

the simple strategy of never transmitting estimates to

agents in Cell 3. For this scenario, the estimation error

plots for agents in Cell 3 are shown in Figure 11. These

plots justify our claim that (3f + 1)-strong robustness

is necessary for achieving MSS based on the algorithm

described in Section 7.1.

8.2 Tracking a Diffusion Process

As pointed out in the Introduction, one of the main

applications of the theory developed in this paper is

environmental monitoring. In particular, one might be

interested in monitoring the concentration of a phys-

ical quantity (such as a gas) that evolves based on a

spatio-temporal process. Such processes are commonly

described by the Laplacian dynamics in continuous-

time [68–70]. For our purpose, we consider a discrete-

time version of the Laplacian dynamics for which the

system matrix is of the form I− εL, where ε is a small

number that is indicative of the sampling period, and

L is the graph Laplacian matrix induced by the sens-

ing locations. For our simulations, we take ε = 0.01.

We consider decoupled diffusion processes evolving in

each cell. For each cell, the Laplacian matrix induced

by the sensing locations within the cell is constructed as

follows. Locations that are within a certain Euclidean

distance (taken to be 15 distance units) are considered

to be connected. This connectivity pattern defines the

adjacency matrix between the sensing locations, and

in turn defines the Laplacian dynamics. Based on our

choice of the threshold distance, the sensing locations

within each cell induce an undirected connected graph.

Since the Laplacian matrix corresponding to an undi-

rected connected graph has precisely one eigenvalue at

zero, it follows that the dynamics matrix I − εL as-

sociated with each cell has precisely one eigenvalue at

1, and all other eigenvalues non-negative with magni-

tude strictly less than 1 (the latter statement follows

from basic properties of a Laplacian matrix). In other

words, the dynamics in each cell are marginally stable.

Within each cell, we assume that the i-th component

of the state is measured by the i-th location. All other

parameters (the number and positions of the sensing lo-

cations, the time-periods of the patrols, the adversarial

model etc.) are the same as the first simulation exam-

ple. Based on our analysis in Section 7.1, for marginally

stable systems, MSS is guaranteed as long as the era-

sure probability is strictly less than 1. To validate this

claim, we consider an erasure probability as high as 0.8.

The simulation results for this case as shown in Figure

12 corroborate the developed theory.

Effect of Byzantine Attacks: Finally, to emphasize

the importance of the resilient filtering techniques de-

veloped in the paper, we consider a scenario when there

are no packet drops, and the baseline communication

graph is retained at every time-step. Our goal will be

to illustrate that although the communication network

satisfies the robustness conditions needed for countering

adversarial behavior, the absence of a resilient state es-
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timation algorithm prevents some of the regular agents

from tracking the true state. To this end, we need to

consider a state estimation algorithm that does not ac-

count for adversarial behavior, such as those proposed

in [38, 40, 41, 45]. For the sake of illustration, we con-

sider the algorithm developed in [40]. Unlike the two-

stage filtering techniques described in Sections 5 and

7.1, the approach in [40] focuses only on maintaining a

uni-directional flow of information from the source mo-

bile agents to the non-source mobile agents. In other

words, for some λj ∈ UOi, an agent i ∈ R simply

takes a convex combination of the state estimates of

its neighbors belonging to the set N (j)
i , for updating

ẑ
(j)
i [k]. In the absence of adversarial attacks or com-

munication losses, convergence of such an update rule

can be established using similar arguments as in [40].

For the present scenario, suppose agent 5 in Cell 2 is

adversarial. Since adversarial agents are assumed to be

omniscient, agent 5 is aware of the state estimates being

transmitted to each agent at every time-step, and the

weights placed on such estimates. For any regular agent

i, if agent 5 belongs to the set N (j)
i , it simply transmits

an estimate to agent i that cancels out the effect of the

other estimates corresponding to the set N (j)
i . This at-

tack has the effect of keeping the state estimate ẑ
(j)
i [k]

static. Illustration of such an attack is shown in Figure

13 where asymptotic stability of the error dynamics is

not achieved.

9 The Path to Implementation

The framework for distributed state estimation with

mobile agents that we have established in this paper en-

compasses a wide range of real-world considerations, in-

cluding time-varying measurement models (due to agent

mobility), time-varying communication links between

agents (due to probabilistic packet drops, agent mobil-

ity, and limited communication ranges), and Byzantine

agents (which are capable of capturing both benign fail-

ures and malicious compromises by attackers). The de-

tailed simulations that we provided in the previous sec-

tion incorporate all of these features, and demonstrate

that the theoretical guarantees that we provide do, in

fact, hold under the stated assumptions on the under-

lying dynamical processes and the multi-agent system.

The generality of our framework, coupled with the val-

idation provided by our simulations, indicates that our

approach holds promise for real-world implementations.

To achieve a full real-world implementation, the first

step (and challenge) will be to deploy a set of mo-

bile robots, each executing a patrol in such a way that

the baseline graph satisfies the conditions that we have

identified for our resilient distributed state estimation

algorithms (for instance, (3f+1)-strong robustness with

respect to each set of source agents for the random

packet drop scenario). The patrolling strategy described

in our simulation section is a promising (and relatively

simple) candidate for implementation, as it only re-

quires the entire region to be partitioned into disjoint

cells, and to have (3f+1) agents executing periodic pa-

trols within each cell, with the ability to communicate

with all agents in adjacent cells (notwithstanding inter-

mittent packet drops). Given an upper bound on the

transmission range of the individual robots, the sizes of

the cells can be scaled down appropriately in order to

satisfy this communication constraint.

The second step will be to create a dynamical pro-

cess for the mobile agents to monitor. A simple diffu-

sion process (e.g., a gas spreading over a region starting

from a given point) like the one studied in Section 8.2

would be a promising candidate, as this process can be

approximated via an LTI system of the form (1), where

the system matrix A is a graph Laplacian [69,70]. The

concentration of gas at different points in the region can

be sensed by ground-based sensors [80], which trans-

mit their information to the mobile agents that pass by

during their patrols. Several disjoint diffusion processes

can be instantiated, one for each cell in the region. Once

these processes are instantiated and the mobile agent

patrols are implemented, the switched linear observers

described in Section 3 can be implemented to test the

ability of each agent to asymptotically track the state

of the system within its cell (i.e., the concentrations of

gas at various points in the cell).

Once each agent is able to estimate the gas concen-

trations in its own cell, the third step will be to en-

able the agents to exchange information with agents in

neighboring cells. This can be done by constructing the

MEDAGs described in Section 4, and having the agents

run the SW-LFRE algorithm for the deterministic fail-

ure model considered in Section 5, or the algorithm de-

scribed in Section 7.1 for the random packet drop sce-

nario. The MEDAGs and the estimation algorithms can

be programmed into the agents before deployment. As

a first test, the ability of the algorithm to enable global

state estimation can be verified in the absence of any

malicious agents (i.e., by having all agents participate

in the algorithm as programmed). Once that has been

verified, one of the agents can then be programmed to

deviate from the algorithm in an arbitrary manner (e.g.,

by broadcasting random or large values to its neighbors

at certain time-steps). The ability of the algorithm to

provide resilience to such malicious behavior can then

be verified.

Aside from additional hardware challenges that would

be inherent to any real-world implementation, we an-



24 Aritra Mitra, John A. Richards, Saurabh Bagchi, and Shreyas Sundaram

ticipate that the above pathway (and associated mile-

stones) will lead to a successful demonstration of the

resilient distributed state estimation framework that we

have established in this paper.

10 Summary and Future Work

In this paper, we studied the problem of estimating the

state of a dynamical process evolving over a certain re-

gion with a team of mobile agents. We assumed that

each agent visits a subset of sensing locations via a pe-

riodic patrol; at each sensing location, the agent obtains

a measurement of a portion of the state of the system.

We showed how to construct observers for each agent

to asymptotically recover the locally detectable parts

of the system state, and formulated state exchange and

update rules for agents to recover the locally unde-

tectable parts of the state. Our algorithms provide re-

silience to a certain number of worst-case (Byzantine)

agents under certain conditions on the baseline network

topology. Our framework encompasses intermittent ob-

servations due to agent patrols, time-varying communi-

cation networks due to packet drops and agent mobility,

and Byzantine behavior by the agents. We illustrated

the efficacy of our approach via detailed simulations,

and described a path to a real-world implementation.

In addition to implementing our algorithm, a nat-

ural next step would be to formulate patrol strate-

gies that provide the required robustness conditions on

the baseline network while also allowing the individ-

ual agents to recover the state. We provided one ex-

ample of such a patrol strategy in our simulations, and

anticipate that the insights from that strategy (along

with results about robustness of different networks pro-

vided in [58, 59, 62, 81, 82]) can be leveraged to develop

additional classes of patrolling strategies. We plan on

studying the effect of incorporating memory (like the

SW-LFRE approach) in the state estimation algorithm

described in Section 7.1 for the random packet drop sce-

nario. While we established MSS based on the memory-

less algorithm described in Section 7.1, it would be in-

teresting to investigate if other forms of stochastic sta-

bility (such as almost sure convergence) can be estab-

lished for the analog erasure channel model considered

in Section 7.1, subject to adversarial attacks. For more

general system and observation models than the ones

considered in this paper, the problem of designing a per-

sistent patrol that guarantees stability of the estimation

error dynamics is challenging. Recent results along this

direction are available in [83]. Finally, while the delays

considered in this paper were network-induced, one can

also investigate the impact of measurement delays (in

a distributed setup) leveraging recent results on this

topic [84,85].
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