Multi-Layer Network Formation via a Colonel Blotto Game

Ebrahim Moradi Shahrivar and Shreyas Sundaram

Abstract—We introduce a two-player network formation game based on the classical Colonel Blotto game. We consider a scenario where there is a common set of nodes and each player in the game designs a network layer by purchasing a set of edges between these nodes. We assume that players have a limited budget with which to bid on each edge and the utility of a given set of edges to a player is a function of the resulting network layer. We characterize the ranges of player budgets for which the game admits pure Nash equilibria for utility functions that depend on the component sizes and diameter of the formed networks.

Index Terms—Multi-layer Network Formation, Game Theory, Nash Equilibrium, Colonel Blotto Game

I. INTRODUCTION

The characteristics of large-scale networks (such as the Internet, the power grid, social, economical and biological networks) have been actively studied over the past several decades. These networks demonstrate non-trivial structural properties (i.e., patterns of relationships and interactions between the various nodes) which play a fundamental role in their functioning. A classical approach to model the formation of such networks is to have each node connect to a random subset of the other nodes (chosen according to an appropriate probability distribution) [1], [2]. While this provides a tractable method for studying certain random phenomena (such as propagation of a disease in a society), it does not necessarily capture the driving principles beneath social, economic or engineered networks, where agents have discretion about connections that they form with other individuals. In other words, these kinds of networks are often formed strategically by one or more designers in order to maximize certain utility functions; the resulting network can be analyzed using game-theoretic notions of equilibria and efficiency [3]–[6].

The selection of an optimal configuration or design of a network occurs in many different application contexts including transportation, telecommunication and electric power systems. Many real-world networks inherently consist of multiple layers of relationships between the same set of nodes. Examples include friendship and professional relationships in social networks, policy influence and knowledge exchange in organizational networks [7], and coupled communication and energy infrastructure networks [8]. Despite numerous works on different aspects of multi-layer networks over the past few years [7], [9]–[11], the problem of strategic multi-layer network formation has been addressed only recently [12].

In this paper, we consider a scenario with multiple network designers, each building a different layer of a network over a common set of nodes. We model this as a multi-layer network formation game where the network designers are the players. We assume that the players have finite budgets and directly compete with each other to purchase edges from a common set. An example of this would be when multiple telecommunications companies allocate their budgets to improve their services between pairs of cities, with the company that spends the most on a given edge winning the communication link on that edge. The proposed network formation game in this paper is based on the classical Colonel Blotto game [13]–[15]. We consider utilities for players that depend on the component sizes and diameter of the formed networks, and characterize the range of player budgets for which the game admits pure Nash equilibria. The developed game also has applications to attack and defense problems in networks [5], [16].

II. DEFINITIONS

An undirected network (or graph) is denoted by $G = (N, E)$ where $N = \{1, 2, \ldots, n\}$ is the set of nodes (or vertices) and $E \subseteq \{(i, j) | i, j \in N, i \neq j\}$. The set of all possible graphs on N is denoted by G^N. Two nodes are said to be directly connected (or neighbors) if there is an edge between them. A path from node v_1 to v_k in graph G is a sequence of distinct nodes v_1, v_2, \ldots, v_k where there is an edge between any consecutive nodes of the sequence. The length of a path is the number of edges in the sequence. The distance between nodes i and j in graph G is the length of the shortest path between those two nodes, and is denoted by $d_G(i, j)$. The diameter of a graph is the largest distance between any two of its nodes, i.e., $\max_{i,j\in N, i\neq j} d_G(i, j)$. A cycle is a path of length two or more from a node to itself.

A tree is a connected acyclic graph. The complement of graph $G = (N, E)$ is denoted by $\overline{G} = (N, \overline{E})$, where $\overline{E} = E^c \setminus E$ and E^c is the set of all possible edges between nodes in N. Two graphs on the same set of nodes are said to be disjoint if their edge sets are disjoint.

III. COLONEL BLOTTO NETWORK FORMATION GAME

We consider a setting for competitive network formation where two players are each given a budget and there is a common set of nodes. These players compete with each other to purchase edges between these nodes. As an example, consider two competing transportation companies. Each company has a fixed budget to spend on service between some or all pairs of cities. Under an idealized allocation rule, the company that spends more on a given edge wins that edge, and the utility to a company is a function of all of the edges that it wins. Similar examples can be formulated for telecommunication companies bidding on spectrum or communication links, and wireless networks where a transmitter and jammer are competing to

This material is based upon work supported by the Natural Sciences and Engineering Research Council of Canada. The authors are with the Department of Electrical and Computer Engineering at the University of Waterloo. E-mail: {emoradis, ssundara}@uwaterloo.ca
send or disrupt information, respectively, with fixed power budgets [17].

Games of this form, where multiple players compete in a bidding war across multiple battlefields, are traditionally known as Colonel Blotto games; here we will extend such games to the network formation setting and characterize the types of equilibria that occur for different utility functions and budgets of the players. We start by reviewing the classical version of this game.

A. The Colonel Blotto Game

The classical Colonel Blotto (CB) game is defined as follows [13], [14].

Definition 1: There are two players P_1 and P_2 with S_1 and S_2 units of resources, respectively. There are n battlefields, and the players choose their actions simultaneously. The strategy space of player P_l, $l \in \{1, 2\}$ is given by

$$X^l = \{(x^l_1, x^l_2, \ldots, x^l_n) \in \mathbb{R}_{\geq 0}^n \big| \sum_{i=1}^n x^l_i = S_l\}.$$

The amount of resources allocated by player P_l to field i is x^l_i. There is a zero sum game between the players in each field i where the player with the higher amount of allocated resources to that field receives a payoff of $+1$ and the loser receives -1; both players receive 0 when they allocate equal resources to a field (although other tie-breaking rules can also be considered). The total payoff to each of the players is given by

$$u_1 = \sum_{i=1}^n sgn(x^1_i - x^2_i)$$

and

$$u_2 = -u_1.$$

Using connections to simultaneous first-price all-pay auctions, [15] showed that this game has no pure Nash equilibrium when $\frac{1}{n} < \frac{S_1}{S_2} \leq 1$, but does have an equilibrium in mixed strategies. Other variants of this game such as having more than two players, different types of functions for scoring over battles, and fields with different values have also been addressed in the literature [13], [14]. Here, we introduce the Colonel Blotto game into the competitive network formation setting, and characterize the set of equilibria that can occur.

B. The Colonel Blotto Network Formation Game

Definition 2: The CB Network Formation Game consists of two players P_1 and P_2, and a set of nodes $N = \{1, 2, \ldots, n\}$. These players play a CB game where the set of battlefields are the $\binom{n}{2}$ edges between these nodes. Player P_l, $l \in \{1, 2\}$ has a positive budget S_l, and strategy space

$$X^l = \{(x^l_{12}, x^l_{13}, \ldots, x^l_{n-1,n}) \in \mathbb{R}_{\geq 0}^{\binom{n}{2}} \big| \sum_{i,j \in N, i \neq j} x^l_{ij} = S_l\},$$

where entry x^l_{ij} indicates the allocation by player P_l to edge (i, j). Each pair of strategies $(x^1, x^2) \in X^1 \times X^2$ induces graphs $G_1(x^1, x^2)$ and $G_2(x^1, x^2)$, where $G_l(x^1, x^2)$ is formed from edges in which player l has the highest allocation for $l \in \{1, 2\}$. There is a utility function $u_l : G^{N} \times G^{N} \rightarrow \mathbb{R}$ for $l \in \{1, 2\}$ that determines the utility of each player based on the formed networks. The pair of strategies (x^1, x^2) is said to be a pure Nash equilibrium if and only if $x^1 \in \arg\max_{x \in X^1} u_1(G_1(x, x^2), G_2(x, x^2))$ and $x^2 \in \arg\max_{x \in X^2} u_2(G_1(x^1, x), G_2(x^1, x))$. For simplicity, we denote $G_l(x^1, x^2)$ by just G_l in the rest of the paper.

Remark 1: The chosen strategy $x^l \in X^l$ of player P_l in equation (1) can equivalently be viewed as a weighted graph F_l, where each player has allocated a nonzero amount of investment on each of the links and zero investment on the links of its complement network. We refer to the strategies of the players as their chosen network or investment vector.

Note that the above game is a version of the CB game where the battlefields exhibit strategic complementarities (i.e., the value of a given battlefield, or edge, depends on the set of all battlefields won by that player). While CB games with complementarities have been studied previously (e.g., [14]), the difference in our setting is that the complementarities arise from network characteristics (such as distance and connectedness), which lends additional structure to the problem.

In the rest of this section, we will assume without loss of generality that player P_1 has a budget $S_1 = 1$, and $S_2 \leq 1$. The following facts will be useful for characterizing the equilibria of the game for various utility functions.

Lemma 1: Consider the CB Network Formation Game with budgets $S_1 = 1$ and $S_2 \leq 1$, and node set $N = \{1, 2, \ldots, n\}$.

1) If $S_2 < \frac{2}{n(n-1)}$, there is an investment vector allowing P_1 to win all edges, regardless of the strategy of player P_2.

2) If $\frac{2}{n(n-1)} \leq S_2 \leq \frac{2}{n}$, there is an investment vector for player P_1 such that player P_2 cannot win a component of size n.

3) If $\frac{2}{n(n-1)} < S_2 \leq 1$ where $2 \leq m \leq n$, then for any given investment vector of player P_1, player P_2 can win a star network with at least m nodes.

Proof: The first case is trivial as it suffices for player P_1 to allocate $\frac{2}{n(n-1)}$ on all of the edges. For the second case, note that P_2 needs at least $n-1$ edges to win a component of size n. If player P_1 allocates $\frac{2}{n(n-1)}$ on each edge, player P_2 can never win a component of size n since that would require a total investment larger than $\frac{2}{n}$.

Finally, in the last case, let S^*_l denote a star network of size m centered at node i with $m-1$ peripheral nodes chosen from the set $N\setminus\{i\}$ (the index j will be used to enumerate such star networks). It is clear that for any $i \in N$, there exists $\binom{n-1}{m-1}$ of these star networks. Denote the sum of the investments of player 1 on the edges of the star network S^*_l by b^*_l. Then we have

$$\sum_{i=1}^{n} \sum_{j=1}^{\binom{n-1}{m-1}} b^*_l = 2 \binom{n-2}{m-2}.$$

This is due to the fact that each edge (u, v) is counted $2 \binom{n-2}{m-2}$ times, where $\binom{n-2}{m-2}$ is the number of possible star networks on node u that contains the edge (u, v) (and similarly for node v). Therefore, there must exist a node i with b^*_l such that

$$b^*_l \leq 2 \binom{n-2}{m-2} = \frac{2(m-1)}{n(n-1)}.$$

1A weighted graph associates a real number (which must be nonnegative in the CB game) to every edge in the graph.
By allocating his or her resources appropriately, player P_2 can win all of the edges in the star network S_2^i.

Remark 2: Note that when $S_2 < 1$, for any given investment vector of player P_2, player P_1 can win all edges of the network by simply matching P_2's investment everywhere, and then spreading the excess budget evenly over all edges. When $S_2 = 1$, no player can win all edges because that would require a total investment larger than 1. However, for any given investment vector of player P_2, player P_1 can win $\binom{n}{2} - 1$ edges as follows: choose an edge where P_2 has a nonzero investment r, match P_2's investment on all other edges and then distribute an additional r evenly over all those edges. The same is true for P_2 by symmetry. These arguments are independent of the utility function and are standard in the study of CB games [13].

We now study the CB network formation game for two natural utility functions.

C. Colonel Blotto Network Formation with Respect to Largest Component

In this section we will define the utility u_i of each player to be an increasing function of the size of the largest component in their formed network, capturing the notion that players wish their network to provide paths between as many nodes as possible. For instance, having a larger component is advantageous for a telecommunications company that provides service to cities. This has also been a measure of interest in network formation and design [19], [20]. Here, we study the CB network formation game when the utility of each player is decreasing in the diameter of the network.

Proposition 1: Let $G_1 \in G^N$ for $l \in \{1, 2\}$ denote the network formed by player P_l as the outcome of the game under strategies $x^1 \in X^1$ and $x^2 \in X^2$. Define the utility functions of the players in the CB network formation game as

$$u_1(G_1, G_2) = h_1(D(G_1)), \quad u_2(G_1, G_2) = h_2(D(G_2)),$$

where $h_1(\cdot)$ and $h_2(\cdot)$ are decreasing functions and $D(G)$ denotes the diameter of graph G. Then the pair of actions $x^1 \in X^1$ and $x^2 \in X^2$ are in Nash equilibrium if and only if one of the following two conditions holds.

1) $S_2 = S_1$ and both G_1 and G_2 have a diameter of 2.

2) $S_2 \leq \frac{2}{n}$ and $G_1 = G^e$ and $G_2 = G^e$.

Proof: We first argue that there is no (pure) Nash equilibrium when $\frac{2}{n} < S_2 < 1$. By Lemma 1, for any given strategy $x^1 \in X^1$, player P_2 can choose a strategy $x^2 \in X^2$ such that he obtains a star, which has diameter 2. However for any given strategy $x^2 \in X^2$, player P_1 can choose $x^1 \in X^1$ such that she wins all edges and obtains a diameter of 1 (as argued in Remark 2). Thus there is no pure Nash equilibrium for this range of S_2.

Suppose $S_2 = 1$. Note from Remark 2 that no player can win all edges, and thus no player can achieve a diameter less than 2. However, for any given investment by one player, the other has a strategy that wins all but one of the edges, thereby winning a network of diameter 2. Thus all Nash equilibria under $S_2 = S_1 = 1$ satisfy the property that both players win a network of diameter 2.

Now suppose that $S_2 \leq \frac{2}{n}$. In this case, by Lemma 1, for any given investment of player P_2, there always exists a strategy for player P_1 to win all edges and obtain a diameter of 1. Thus any Nash equilibrium must have player P_1 winning all edges and P_2 winning none. When player P_1 invests $\frac{2}{n}$ on all edges, player P_2 can never obtain a connected network, and thus any investment vector $x^2 \in X^2$ with less than $\frac{2}{n}$ on each edge yields a Nash equilibrium.

Based on Proposition 2 for $S_1 = S_2$, players are in Nash equilibrium if and only if their formed networks each have a diameter of 2. By definition, the networks G_1 and G_2 formed in the CB network formation game are edge-disjoint. It is easy to check that for $n = 5$, the cycle graph 1-2-3-4-5-1 and its complement both have diameter of 2. We now show that there exist such graphs for any $n \geq 5$. We will use the following notation.

Definition 3: Let $G_i = (N_i, E_i)$, $1 \leq i \leq T$, be a set of graphs. Then $G = (N, E) = [G_1, G_2, \ldots, G_T]$ is a graph such that $N = \cup_{i=1}^T N_i$ and $E = \cup_{i=1}^T E_i$. □
Proposition 3: Suppose that we have \(|N| = 2k \) nodes for \(k \geq 3 \). Let graph \(G_1 \) consist of nodes \(\{1, 2, \ldots, k\} \), \(G_2 \) consist of nodes \(\{k+1, k+2, \ldots, 2k\} \), and \(G_3 \) consist of all nodes \(\{1, 2, \ldots, 2k\} \). Define the edge sets of \(G_1 \), \(G_2 \) and \(G_3 \) as follows (depicted in Figure 1):

1) \(G_1 \) is the path \(1 - 2 - 3 - \cdots - k \).
2) \(G_2 \) is the path \((k+1) - (k+2) - \cdots - (2k) \).
3) \(G_3 \) is the cycle \(1 - (k+1) - 2 - (k+2) - \cdots - (2k - 1) - k - (2k - 1) \).

Define graphs \(F_1 = [G_1, G_2, G_3] \) and \(F_2 = F_1 \). Then both \(F_1 \) and \(F_2 \) have a diameter of 2. When \(|N| = 2k + 1 \) for some \(k \geq 3 \), it suffices to connect the node \((2k + 1) \) to all nodes \(\{k+1, k+2, \ldots, 2k\} \) in graph \(F_1 \).

Fig. 1

\(G_1 \quad G_2 \quad G_3 \)

(a) \(G_1 \)
(b) \(G_2 \)
(c) \(G_3 \)

Proof: The proof of this proposition is straightforward but tedious, and thus we provide only a sketch of the proof in the interest of space. For \(k = 3 \) the proof can be verified by examining the graph directly, and thus suppose \(k \geq 4 \). In graph \(F_1 \), consider node 1. This node is directly connected to nodes in the set \(\{3, 4, \ldots, k, k+1, 2k\} \). It has a path of length 2 to nodes in the set \(\{2, k+3, k+4, \ldots, 2k-1\} \) via node \(k+1 \). Finally, it has a path of length 2 to \(2k \) via node \(2k \). Next consider node 2. This node is directly connected to nodes in the set \(\{4, 5, \ldots, k, k+1, k+2\} \). It has a path of length 2 to node 3 via node \(k+2 \). Finally, it has a path of length 2 to nodes in the set \(\{k+3, \ldots, 2k\} \) via \(k+1 \). This reasoning can be repeated for all nodes in the network to show that \(F_3 \) has a diameter of 2, and similarly that \(F_2 \) has a diameter of 2.

Remark 3: Note that the graphs provided above are not unique in having the property that both the graph and its complement have a diameter of 2. For example, consider the Erdos-Renyi graph \(G(n, p) \) on \(n \) nodes, where each of the possible \(\binom{n}{2} \) edges is independently present with probability \(p \in [0, 1] \). When \(p \) is constant in \((0,1)\), it is well known that asymptotically (in \(n \)) almost surely the graph \(G(n, p) \) will have diameter 2 [21]. Noting that the complement of \(G(n, p) \) is an Erdos-Renyi graph \(G(n, 1-p) \), we see that an Erdos-Renyi graph and its complement will both have diameter 2 with probability tending to 1 as \(n \to \infty \).

IV. Conclusions

In this paper, we introduced a competitive two-player network formation game based on the classical Colonel Blotto game, and characterized the range of player budgets for which this game admits pure Nash equilibria under two different utility functions. There are interesting avenues for further research on this problem, including other classes of utility functions in the CB game that we defined here. While we have only considered pure Nash equilibria in this paper, characterizing mixed strategies in the CB setting would provide further insights into the formation process. Also, a mechanism to incorporate stochasticity and partial information into the network formation process would be of value in modeling the formation of realistic networks.

Acknowledgment

The authors thank Abbas Mehrabian for his helpful suggestions in developing the graphs in Proposition 3.

References