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Abstract— We study the stability of large-scale discrete-
time dynamical systems that are composed of interconnected
subsystems. The stability of such systems is a function of both
the dynamics and the interconnection topology. We investigate
two notions of stability; the first is connective stability, where
the overall system is stable in the sense of Lyapunov despite
uncertainties and time-variations in the coupling strengths
between subsystems. The second is the standard notion of
asymptotic (Schur) stability of the overall system, assuming
all interconnections are fixed at their nominal levels. We
make connections to spectral graph theory, and specifically the
spectra of signed adjacency matrices, to provide graph theoretic
characterizations of the two kinds of stability for the case
of homogeneous scalar subsystems. In the process, we derive
bounds on the largest eigenvalue of signed adjacency matrices
that are of independent interest.

I. INTRODUCTION

Complex systems (such as the power grid, the Internet,
biological systems, ecological systems, economical systems
and social systems) are composed of smaller interconnected
subsystems. The behavior of the overall system is governed
by both the dynamics of the individual subsystems and the
nature of the interconnections, and the interplay between the
dynamics and topology of networked systems is an active
area of research across multiple disciplines [1]–[4].

A topic of particular interest in the study of such systems
is stability: can the interconnections combine with the in-
dividual dynamics to cause the state of the overall system
to spiral out of control? Early work by May [5] studied
random interaction structures in population dynamics, and
showed that instability occurs once the coupling strength
between subsystems increases past a critical value; see also
[6], [7]. The design of network topologies and feedback
patterns for stabilization of dynamical systems has also
been investigated in the context of decentralized control [8],
[9]. Recent work has investigated the sparsity patterns (and
associated topological conditions) that are required for a
matrix to represent a Hurwitz system [10].

In this paper, our goal is to study the stability of a network
of discrete-time linear systems, and to give topological
conditions for the overall system to be stable. Specifically,
we consider two notions of stability. The first, known as
connective stability, is a strong notion of stability where
the state of the system asymptotically goes to zero despite
uncertainties or time-variations in the coupling between
the subsystems [8]. The second is the standard notion of
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asymptotic (Schur) stability, where the state of the system
goes to zero for fixed (known and time-invariant) coupling.
The former implies the latter, and thus sufficient conditions
for connective stability are also sufficient for Schur stability.
Conversely, necessary conditions for Schur stability are also
necessary for connective stability. For the case of scalar
subsystems, we provide graph-theoretic bounds for the self-
dynamics and coupling strengths in order to obtain the
two kinds of stability. As we will discuss, the two notions
of stability are equivalent when all of the self-dynamics
and coupling strengths are nonnegative, or when the sign
patterns of the interconnections satisfy a certain notion of
structural balance. The gap between connective and Schur
stability becomes more pronounced when the signs of the
interconnections are allowed to be different. To analyze this
scenario, we make connections to spectral graph theory,
and in particular, the spectral theory of signed adjacency
matrices, to obtain bounds on the largest eigenvalue of the
system dynamics matrix. The bounds that we obtain are of
independent interest in the study of signed graphs.

II. NOTATION AND TERMINOLOGY

The set of positive real numbers is denoted by R+.
Element (i, j) in a matrix A will be denoted by aij . The
norm of a matrix A will be denoted by ‖A‖. For a symmetric
n× n matrix A, we will arrange the eigenvalues as

λmax(A) = λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) = λmin(A).

The spectral radius of a square n× n matrix A is given by
ρ(A) , max1≤i≤n |λi(A)|. For a matrix A, the notation A ≥
0 indicates that each element of the matrix is nonnegative,
with analogous definitions for A > 0, A < 0 and A ≤ 0.
The notation |A| indicates the matrix obtained by taking the
absolute value of all elements in matrix A.

An n×n matrix A with nonpositive off-diagonal elements
is called an M-matrix if it satisfies one of the following
(equivalent) properties [1]:

1) There exists a vector c ∈ Rn
+ such that Ac > 0.

2) The real part of each eigenvalue of A is positive.

A. Graph Theoretic Terminology

We use G = {V, E} to denote a graph where V =
{v1, v2, . . . , vn} is the set of vertices (or nodes) and E ⊂
V×V is the set of edges; we assume that (vi, vi) /∈ E for all
vi ∈ V . The graph is said to be undirected if (vi, vj) ∈ E ⇔
(vj , vi) ∈ E . The neighbors of vertex vi ∈ V are given by the
set Ni(G) = {vj ∈ V | (vi, vj) ∈ E}. The degree of vertex
vi ∈ V is given by di(G) , |Ni(G)|. When the context is
clear, we will drop the dependence on G when referring to



the neighborhood and degree of a given vertex. A cycle in
the graph is a sequence of vertices vi1 , vi2 , . . . , vik , vi1 such
that no vertex other than vi1 appears more than once in the
list and each pair of consecutive vertices in the sequence has
an edge from the first vertex to the second.

A subgraph of G is a graph H = {V̄, Ē}, with V̄ ⊆ V and
Ē ⊆ E ∩

(
V̄ × V̄

)
; the subgraph is induced if equality holds

in the latter expression. A clique in graph G is an induced
subgraph H = {V̄, Ē} of G such that Ē consists of edges
between all pairs of different vertices in V̄ . An undirected
graph is a star centered at vi if all vertices other than vi
have a single edge to vi.

The weighted adjacency matrix of a graph G is a matrix
A ∈ Rn×n, where element aij = 0 if (vi, vj) /∈ E , and
nonzero otherwise. When the nonzero elements of a weighted
adjacency matrix take values in the set {−1, 1}, it is said to
be a signed adjacency matrix. When all nonzero elements
are equal to 1, one obtains the classical (unsigned) adjacency
matrix. Associated with each weighted adjacency matrix is
a weighted graph, with weight aij on edge (vj , vi); a signed
graph is a graph whose edges can take positive or negative
values. A signed graph is called structurally balanced if the
multiplication of the signs through each cycle in the graph
is positive. Note that the diagonal elements of adjacency
matrices are zero when there are no self-loops in the graph.
The spectrum of a graph G is the set of eigenvalues of the
adjacency matrix A. More information on graphs can be
found in standard textbooks, such as [11], [12].

III. CONNECTIVE STABILITY

Consider a discrete-time linear system S composed of N
subsystems, where each subsystem is of the form

xi(k + 1) = Aiixi(k) +

N∑
j=1
j 6=i

eijAijxj(k), 1 ≤ i ≤ N, (1)

with state vector xi ∈ Rni and dynamics matrix Aii ∈
Rni×ni . The term Aijxj(k) represents the coupling from
subsystem j to subsystem i. The quantity eij ∈ [0, 1] rep-
resents an uncertain coupling strength which varies between
0 (no coupling) and 1 (maximum coupling). The state of
system S is given by the vector x =

[
xT1 xT2 · · · xTN

]T
.

Definition 1 ( [8]): The system S is connectively stable
if it is stable in the sense of Lyapunov for all eij ∈ [0, 1],
i, j ∈ {1, 2, . . . , N}.

The above definition of connective stability implies that
the system without any coupling (i.e., eij = 0 for all
i, j) must also be stable. Therefore, a necessary condition
for connective stability is that Aii must be Schur for i ∈
{1, 2, . . . , N}.

One can obtain a sufficient condition for connective sta-
bility by using the notion of vector Lyapunov functions [8],
[13]. For the subsystems in (1), the coupling terms can be
bounded using the inequality

‖
N∑
j=1

eijAijxj(k)‖2 ≤
N∑
j=1

eij‖Aij‖2‖xj‖2. (2)

Given that Aii is stable, it is possible to find a Lyapunov
function of the form

vi(xi) = (xTi Hixi)
1/2,∀i ∈ {1, 2, . . . , N} (3)

where H is a positive definite matrix that satisfies

AT
iiHiAii −Hi = −Gi (4)

for some positive definite matrix Gi. To deal with additive
perturbations (such as coupling), one can define a robustness
bound for each subsystem based on its Lyapunov function,
characterizing the size of the perturbation that can be tol-
erated while still having the Lyapunov function decrease at
each time-step.

Definition 2 ( [13]): The robustness bound of the Lya-
punov function (3) for each subsystem is given by

ξv(Gi) =
λmin(Gi)

λ
1/2
max(Hi)λ

1/2
max(Hi −Gi) + λmax(Hi)

. (5)

The robustness bound is strictly positive when the subsys-
tem is stable, and was shown in [13] to provide the least
conservative estimate of tolerable perturbations when Gi is
chosen to be the identity matrix in (4). When the subsystems
are scalar, the following result is straightforward [13].

Lemma 1: For the stable scalar system

xi[k + 1] = aiixi[k],

the robustness bound (5) with Gi = 1 is ξv(1) = 1 − |aii|.

To analyze connective stability of the overall system, it is
natural to consider a Lyapunov function that is constructed
in terms of the Lyapunov functions for each of the individual
subsystems as

v(x) =

N∑
i=1

civi(xi), (6)

where ci is positive for each i. Using the above definition,
the following result is derived in [13].

Theorem 1: The rate of decrease of the Lyapunov function
given in (6), where each subsystem’s Lyapunov function is
of the form (3), can be upper-bounded as

v(x(k + 1))− v(x(k)) ≤ −mTWw̄(x(k)) ∀x(k) ∈ Rn

where

m =
[
c1λ

1/2
max(H1) c2λ

1/2
max(H2) · · · cNλ

1/2
max(HN )

]T
Wij =

{
ξv(Gi) if i = j

−‖Aij‖2 if i 6= j
(7)

w̄(x(k)) =
[
‖x1(k)‖2 ‖x2(k)‖2 · · · ‖xN (k)‖2

]T
.

In the matrix W defined by the above theorem, the system
matrix Aii of each subsystem i determines the robustness
bound ξv(Gi) from (4) and (5), and the worst-case strength of
the coupling (corresponding to eij = 1) is factored in through
‖Aij‖2. Based on the above characterization, the following



result is immediately obtained from the first property of M-
matrices described in Section II.

Theorem 2 ( [8]): The system (1) is connectively stable
if W is an M-matrix, where W is defined as in (7).

The condition in the above theorem guarantees that there
exists a set of positive scalars ci such that the Lyapunov
function (6) is decreasing for any value of eij ∈ [0, 1]
(and in fact, even for time-varying values of eij in this
range). Thus, connective stability is a very strong property of
coupled dynamical systems, and furthermore, the above test
for connective stability is only sufficient in general. In order
to gain more insight into topological properties that influence
connective stability, and to quantify the conservativeness of
the above test, we will focus on the case of homogeneous
scalar subsystems in the rest of the paper; this will allow us
to isolate the effect of the interconnection topology via tools
from spectral graph theory.

IV. A SUFFICIENT CONDITION FOR CONNECTIVE
STABILITY OF INTERCONNECTED SCALAR SYSTEMS

Suppose that the system S is composed of N = n
interconnected scalar subsystems of the form

xi[k + 1] = aiixi[k] +

n∑
j=1
j 6=i

eijaijxij [k], 1 ≤ i ≤ n, (8)

where aij ∈ R, for all i, j ∈ {1, 2, . . . , n}. If subsystem j is
not connected to subsystem i, then aij = 0. As before, we
will say that S is connectively stable if it is stable in the sense
of Lyapunov for all eij ∈ [0, 1]. We will say that S is Schur
stable if it is stable when eij = 1 for all i, j ∈ {1, 2, . . . , n}.

Assuming that |aii| < 1 for all i, using Lemma 1, the
matrix W in (7) for the above coupled subsystems is given
by

Wij =

{
1− |aii| if i = j

−|aij | otherwise.

Let F be the n × n matrix with element (i, j) equal to aij
from (8).1 Thus, we have W = I − |F |. By Theorem 2, a
sufficient condition for connective stability is that W is an M-
matrix. By the second property of M -matrices in Section II,
a necessary and sufficient condition for W to be an M-matrix
is that all eigenvalues of W = I−|F | have positive real parts.
Since |F | is a nonnegative matrix, the Perron-Frobenius
theorem indicates |F | has a positive real eigenvalue that
has the largest magnitude of all the eigenvalues. Thus, all
eigenvalues of W will have positive real parts if and only if
all eigenvalues of |F | have magnitude less than 1, leading to
the following result.

Proposition 1: The system (8) with dynamics matrix F is
connectively stable if |F | is Schur stable.

An immediate corollary of this result is as follows.
Corollary 1: In system (8), suppose aij ≥ 0 for all i, j ∈

{1, 2, . . . , n}. Then the system is connectively stable if and
only if it is Schur stable.

1We use F instead of A here in order to avoid confusion with the
adjacency matrix that we will introduce later.

Thus, for nonnegative systems, Schur stability and the
stronger notion of connective stability coincide regardless of
the interconnection topology, and there is no conservative-
ness in the M-matrix characterization (see also [1], [14] for
related discussions of this fact). Based on the above result,
the only situation where conservatism can arise is when
some of the elements aij are negative; this is perhaps not
surprising, given that negative feedback loops are generally
helpful in the stabilization of dynamical systems.

We consider here another case where connective stability
coincides with Schur stability. First, suppose that the sign
patterns in matrix F are symmetric (i.e., the sign of element
(i, j) is the sign of element (j, i)), and that the graph
is structurally balanced. In this case, matrix F is called
a Morishima matrix [15], [16]. It can be shown that if
F is a Morishima matrix, then the spectrum of F is the
same as the spectrum of |F |; thus, for structurally balanced
systems (which contain nonnegative systems as a special
case), connective stability and Schur stability also coincide
[14], [16].

In the rest of the paper, we will consider systems of the
form (8) where aii = a for all i, and aij ∈ {−b, 0, b} for
some b ∈ R and for all i, j ∈ {1, 2, . . . , n}, i 6= j. In other
words, we will assume that each subsystem has identical
dynamics (given by the scalar a), and has identical coupling
strength b to the other subsystems. If subsystem j is not
connected to subsystem i, then aij = 0, and otherwise, aij ∈
{−b, b} depending on whether the influence is positive or
negative. We will also assume that aij = aji (i.e., subsystems
i and j influence each other in the same direction).2 When
eij = 1 for all i, j ∈ {1, 2, . . . , n}, the overall system S is
given by

S : x[k + 1] = (aI + bA)x[k] , Fx[k], (9)

where I is the n × n identity matrix and A is a signed
adjacency matrix for the graph representing the overall
topology of S . We will take a and b to be nonnegative
without loss of generality; the case where b is negative can
be handled by simply absorbing the negative sign into A, and
the case where a is negative can be handled using entirely
symmetrical arguments to the ones that follow.

Proposition 1 yields the following sufficient condition for
connective stability of (9).

Corollary 2: The system S in (9) is connectively stable if

a+ bλmax(|A|) < 1. (10)

Since |A| represents the unsigned adjacency matrix for
the network, we can use tools from spectral graph theory to
relate topological properties of the graph to condition (10).
One such classical bound is as follows.

Proposition 2 ( [17], [18]): Let G be a graph with maxi-
mum degree dmax and average degree davg . Then the largest

2While restrictive, these assumptions will allow us to gain insight into the
role that the network topology plays in the stability of the system, something
that is not easily obtained when considering arbitrary linear systems of the
form (1).



eigenvalue of the unsigned adjacency matrix A satisfies

max{davg,
√
dmax} ≤ λmax(A) ≤ max

(vi,vj)∈E

√
didj . (11)

Note that the upper bound in the above result is no larger
than dmax, with equality if and only if two vertices of
largest degree are neighbors in the graph. Using the above
bounds in conjunction with Corollary 2 immediately yields
the following graph-theoretic sufficient condition.

Corollary 3: Let the graph G associated with system S
in (9) have maximum degree dmax. Then S is connectively
stable if

a+ b max
(vi,vj)∈E

√
didj < 1. (12)

In the next section, we will provide bounds on the
spectrum of F (based on the network structure and the
sign pattern) that are necessary for Schur stability, and thus
necessary for connective stability as well. This will allow us
to quantify, using topological metrics, the conservativeness
of condition (10) (and (12)) for connective stability, and
generalize the structural balance results provided above.

V. GRAPH-THEORETIC CONDITIONS FOR STABILITY OF
INTERCONNECTED SCALAR SYSTEMS

To study Schur stability of system (9), we will analyze
the adjacency matrix A in its general signed form with A ∈
{−1, 0,+1}n×n. Denote the spectral radius of F by

ρ(F ) , max{λmax(F ), |λmin(F )|}
= max{a+ bλmax(A), |a− b|λmin(A)||}. (13)

Schur stability of (9) requires ρ(F ) < 1, and from the above
expressions, this depends on the extreme eigenvalues of the
signed adjacency matrix A. Thus, in order to relate these
conditions to graph properties, we will start by providing
some results on the spectrum of signed adjacency matrices,
and then apply these results to infer stability properties of
system (9).

A. Spectra of Signed Adjacency Matrices

The following result provides a graph-theoretic lower
bound on the spectral radius of any signed adjacency matrix.

Proposition 3: For a signed symmetric adjacency matrix
A we have

ρ(A) ≥
√
dmax, (14)

where dmax is the maximum degree of the underlying graph.

Proof: First, note that ρ(A2) = ρ2(A). Moreover note
that the i-th diagonal element of A2 is the square of the
2-norm of the i-th row of A; since each row consists of
elements from {−1, 0, 1}, this is just the number of nonzero
elements in the i-th row, which is the degree of node vi.
Suppose node vj has the largest degree, and let ej be a

vector with all elements zero except for a single 1 in the
j-th position. The Rayleigh quotient inequality [19] yields

ρ2(A) = ρ(A2) ≥
eTj A

2ej

eTj ej
= eTj A

2ej = dmax,

leading to the desired bound.
The observation that the diagonal elements of A2 are

the degrees of the nodes was also made in [20] and [21],
although the subsequent derivations in the latter work led to
a weaker lower bound of

√
davg on ρ(A). As pointed out

in [21], the lower bound of
√
davg is attained for a signing

of a davg-regular graph. Since such graphs are also dmax-
regular, this sharpness result carries forward to the above
stronger bound.

While the above result provides a lower bound on the
spectral radius for any signed matrix, we will be interested in
how much the largest eigenvalue of a given signed adjacency
matrix can deviate from the largest eigenvalue of the cor-
responding unsigned matrix. The next three results provide
bounds on this deviation in terms of different topological
properties.

First, recall from Section IV that if A is the signed
adjacency matrix for a structurally balanced graph, then the
spectrum of A is the same as the spectrum of |A|. Here, we
provide a generalization of this result, and show that if a
given graph is “almost balanced”, the largest eigenvalue of
the graph cannot differ too much from the largest eigenvalue
of the unsigned graph. To do this, we will need the following
concept.

Definition 3 ( [22], [23]): The frustration index of a
signed graph is the smallest number of edges that have to be
removed to make the graph balanced.

Proposition 4: Consider a signed graph G with frustration
index k and let A be the associated signed adjacency matrix.
The largest eigenvalue of A satisfies

λmax(|A|) ≥ λmax(A) ≥ λmax(|A|)− 2
√

2k. (15)

Proof: The upper bound follows from classical results
pertaining to nonnegative matrices [19]. For the lower bound,
if a signed graph G has frustration index k and signed
adjacency matrix A, then there is a diagonal similarity
transformation matrix S where each diagonal element is in
{−1, 1}, such that the matrix Ā , SAS has exactly 2k
negative elements [22]. Clearly the spectrum of A is the same
as the spectrum of Ā. We can now write Ā = |Ā| − 2A1,
where A1 is the unsigned adjacency matrix for a graph with k
edges corresponding to the negative elements in Ā. Noting
that |Ā| = |A| and applying Weyl’s inequality [19] to the
above equation provides

λmax(A) = λmax(Ā) ≥ λmax(|Ā|)− 2λmax(A1)

= λmax(|A|)− 2λmax(A1).

Using the fact that for an unsigned adjacency matrix A for
a graph with m edges we have λmax(A) ≤

√
2m [24], we

obtain λmax(A1) ≤
√

2k which yields the result.



When the graph is balanced (i.e., k = 0), the above result
reduces to the fact that the largest eigenvalue of balanced
graphs is equal to the largest eigenvalue of the unsigned
graph. Since the largest eigenvalue of any unsigned graph
is lower bounded by

√
dmax, signed graphs with large max-

imum degree and small frustration index will have largest
eigenvalue relatively close to the corresponding balanced
graph. In other words, small amounts of imbalance cannot
dramatically change the largest eigenvalue.

Another bound for the largest (and smallest) eigenvalues
of arbitrary signed graphs can be obtained from the cliques
of the graph. Specifically, we will say a subgraph H of graph
G is a positive (negative) clique if (1) H is a clique and (2)
all of the signs on the edges are positive (negative).

Proposition 5: For a signed adjacency matrix A with
associated signed graph G, let the size of the largest positive
clique be ω+ and let the size of the largest negative clique
be ω−. We then have

λmax(A) ≥ ω+ − 1, λmin(A) ≤ 1− ω−. (16)

Proof: By permuting columns and rows, one can recast
A into the form [

(J − I)ω+×ω+ ∗
∗ ∗

]
,

where J is a square matrix consisting of all 1’s, and ∗
represents the other elements of the adjacency matrix. Let

x =
1
√
ω+

[
1 · · · 1 0 · · · 0

]T
,

where the first ω+ elements are 1 and the rest are zero.
Applying the Rayleigh quotient inequality, we have

λmax(A) ≥ xTAx

xTx
= xTAx =

ω+(ω+ − 1)

ω+
= ω+ − 1.

Using the same reasoning (i.e., by rearranging the adjacency
matrix so that the largest negative clique appears in the first
ω− rows and columns), we obtain λmin(A) ≤ 1− ω−.

The structural properties targeted by the above two re-
sults are NP-hard to characterize in general [25], [26]. The
following result provides another lower bound for λmax(A)
that depends only on the maximum number of negative edges
incident on any node in the graph.

Proposition 6: Consider a signed graph G with associated
signed adjacency matrix A. Let d− be the largest number of
negative elements in any row of A. Then

λmax(|A|) ≥ λmax(A) ≥ λmax(|A|)− 2d−. (17)

Proof: Note that for any signed adjacency matrix A, one
can write A = |A|−2B, where B is the unsigned adjacency
matrix with Bij = 1 if and only if Aij = −1. Once again
applying Weyl’s inequality provides

λmax(A) ≥ λmax(|A|)− 2λmax(B)

≥ λmax(|A|)− 2dmax(B),

where the last step follows from (11). The adjacency matrix
B corresponds to the subgraph of G obtained by taking only
the negative edges, and the largest degree in this subgraph
is d−, which yields the desired result.

The following three examples show there are graphs where
each of the bounds in equations (15), (16) and (17) can
outperform the other bounds. In each example, G is an
undirected signed graph on n vertices that we will specify,
and A is the corresponding signed adjacency matrix.

Example 1: Suppose G is a star centered at v1. Let the
signs of all edges be negative. The largest eigenvalue of
|A| for a star is

√
n− 1 [27]. This is an acyclic graph and

thus structurally balanced, with frustration index k = 0. The
largest positive clique in this graph is of size 1, and the
maximum degree of the subgraph containing the negative
edges is n−1 (as it is the entire graph). Thus the frustration
index bound (15) is exact, whereas the clique bound (16)
predicts λmax(A) ≥ 0 and the maximum degree bound (17)
predicts λmax(A) ≥

√
n− 1− 2(n− 1), both of which can

be arbitrarily loose.
Example 2: Suppose G is the graph shown in Figure 1(a)

consisting of n = 3k + 1 vertices for some k ∈ N. There
are k cycles of length 3, and each of the cycles has a single
vertex connected to the central vertex v1. All of the signs on
edges in the cycles are negative, and the signs on the edges
connecting v1 to the cycles are positive. Since this graph has
k negative cycles, one edge from each cycle must be removed
in order to make the graph balanced, and thus the frustration
index is k. The size of the largest positive clique is 2, and
the maximum degree of the negative subgraph is 2. Thus
the maximum degree bound (17) predicts that λmax(A) ≥
λmax(|A|)−4. The gap in the frustration index bound (15) is
2
√

2k, which can be arbitrarily bad. Finally, the clique bound
(16) predicts λmax(A) ≥ 1. By (11), we have λmax(|A|) ≥√
k. Thus the clique bound can also be arbitrarily bad.
Example 3: Consider the graph G shown in Figure 1(b)

with an even number n of vertices. The sets S1 and S2 are
cliques on n

2 vertices, and each vertex in set S1 has exactly
one neighbor in S2 and vice versa. Suppose all of the signs
on the edges in clique S1 are positive, and all of the signs
in clique S2 are negative. The signs on the edges connecting
S1 to S2 are negative. The maximum degree of the negative
subgraph is n

2 . To make this graph balanced, every odd cycle
in S2 must be broken; there are at least bn6 c disjoint triangles
in S2, and thus the frustration index is at least bn6 c. The size
of the largest positive clique is n

2 . Since the graph is n
2 -

regular, we have λmax(|A|) = n
2 [17]. The clique bound

predicts λmax(A) ≥ n
2 − 1, whereas the gaps in the other

bounds increase with n.

B. Applications to Schur Stability of Interconnected Systems

We can now apply our results on the spectrum of signed
adjacency matrices to study the conservativeness of the
condition for connective stability given in Corollary 2.

Proposition 7: Let G be the signed graph associated with
the system S in (9), and let A be the corresponding signed
adjacency matrix. Let k be the frustration index of the graph,
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Fig. 1: (a) Signed graph in Example 2 with k = 4. (b) Signed
graph in Example 3. Sets S1 and S2 induce complete graphs
on n

2 nodes. All edges inside S1 (S2) are positive (negative),
and all edges between the sets are negative.

and let d− be the largest number of negative edges incident to
any node. Furthermore, let ω+ denote the size of the largest
positive clique in G. Define

R = min{2
√

2k, 2d−, max
(vi,vj)∈E

√
didj − ω+ + 1}.

Then a necessary condition for Schur stability of S is

a+ b(λmax(|A|)−R) < 1.

Proof: The proof follows by noting that a necessary
condition for stability of S is that a + bλmax(A) < 1. We
now apply the bounds in Propositions 4, 5 and 6. For the
last bound, note from Proposition 5 that

λmax(A) ≥ ω+ − 1 = λmax(|A|)− (λmax(|A|)− ω+ + 1)

≥ λmax(|A|)− ( max
(vi,vj)∈E

√
didj − ω+ + 1),

using (11). The result thus follows.
Comparing this to Corollary 2, we note the graph-theoretic

parameter R in the above proposition quantifies the degree
of conservativeness of the sufficient condition for connective
stability. Loosely speaking, when the signed graph induced
by the interconnections between the subsystems in (9) has a
small frustration index, few negative edges incident to each
node, or has a large positive clique compared to its max
degree, the gap between the necessary condition and suffi-
cient condition for connective stability also becomes small.
Thus, for example, in the graph considered in Figure 1(b)
the sufficient condition (10) for connective stability is

a+ bλmax(|A|) = a+ b
n

2
< 1,

whereas the necessary condition for connective stability
from Proposition 7 is a + b

(
n
2 − 1

)
< 1. Since b must

scale as O( 1
n ) in order for the necessary condition to be

satisfied, we see that the sufficient and necessary conditions
asymptotically coincide, despite the fact that this graph is far
from structurally balanced.

VI. CONCLUSION

We studied a set of dynamical systems interconnected
over a graph. For homogeneous scalar subsystems, we pro-
vided graph-theoretic bounds on the dynamics and coupling

strengths in order for the system to be stable, both in a con-
nective sense and in the classical Schur sense. To capture the
effect of the signs of interconnections, we developed bounds
on the largest eigenvalue of signed adjacency matrices, and
provided conditions under which the sufficient conditions
and necessary conditions for connective stability coincide.
An important and challenging area for future research is to
extend these results to more general heterogeneous systems.
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