Distributed Calculation of Linear Functions in Noisy Networks via
Linear Iterations

Shreyas Sundaram and Christoforos N. Hadjicostis

Abstract— Given a fixed network where each node has some value. However, the fact that consensus is only reached
given initial value, and under the constraint that each node asymptotically implies that a large number of time-steps
receives noisy transmissions from its immediate neighborsve — anq communication) will be required before all nodes are
provide a distributed scheme for any node to calculate an fficiently cl to th | Furth it
unbiased estimate of an arbitrary linear function of the initial suthciently Close 0 ? Conslensus. va ge. . urthermore, 1
values. Our scheme consists of a linear iteration where, at Was shown in [5] that if the linear iteration is affected by
each time-step, each node updates its value to be a weightedadditive noise at each time-step, the reliance on asyneptoti
average of its own previous value and those of its neighbors. convergence can cause the nodes to be driven arbitrarily
We show that after repeating this process with almost any set far away from the desired consensus value. The problem of

of weights for a finite number of time-steps (upper bounded - . . . . A
by the size of the network), any node in the network will be consensus via linear iterations with noisy transmissicas h

able to calculate an unbiased estimate of any linear functio  Only recently started to gain attention (e.g., see [6], [8]),
by taking a linear combination of the values that it sees over and the existing schemes only allow each node to calculate
the course of the linear iteration. For a given set of weights an unbiasetlestimate of the consensus value asymptotically
this linear combination can also be optimized to minimize tte (ie., they do not obtain an unbiased estimate in a finite
variance of the unbiased estimate calculated by each node. ’ .

number of time-steps).

|. INTRODUCTION Recently, we showed in [10] (for noise-free networks) that

In distributed systems and networks, it is often necessaH}e linear iterative strategy described above can actily
for some or all of the nodes to calculate some functioapplied to the more general function calculation problem,
of certain parameters distributed throughout the networRllowing any node in time-invariant networks to calculate
This problem has been studied by the computer scienca)y arbitrary function of the node values in a finite number
communication, and control communities over the past fe@f time-steps (upper bounded by the size of the network).
decades, leading to the development of various protochls [1n this paper, we extend these results to the case where
[2], [3]. Special cases of the distributed function caltiola €ach node only obtains a noisy (or uncertain) measurement
problem include the transmission of data from one or mulf its neighbors’ values. While noisy transmissions betwee
tiple sources to one or multiple sinks, and thistributed  Nodes in networks can often be handled by utilizing source
consensus problem, where all nodes in the network calculat®r channel coding, the model that we consider in this paper
the same function [1]. applies to situations where coding is not available, or wher

The notion of consensus has recently experienced a resiedes directly sense the values of their neighbors, and thei
gence in the control literature, due to its applicability toSensing or measurement capabilities are subject to ndjse [7
diverse topics ranging from cooperative control and multiOur model can also be used as an abstraction for the case
agent systems to modeling flocking behavior in biologicalvhere each node can only transmit quantized versions of its
and physical systems [4]. In these cases, the approachZ@lues to its neighbors [8]. Using only the first order statss
consensus is to use a linear iteration, where each nodeQhthe noise, we show that each node can obtain an unbiased
the network repeatedly updates its value to be a weight@gtimate of any desired linear function (in strongly corteéc
linear combination of its own value and those of its neighgraphs) as a linear combination of the noisy values it reseiv
bors (e.g., see [4] and the references therein). These wofk@m its neighbors, along with its own values; furthermore,
have revealed that if the network topology satisfies certaiffiis can be done for almost any choice of weights in the
conditions, the weights for the linear iteration can be emos linear iteration, and after running the iteration for a fnit
so that all of the nodes asymptotically converge to the sanféimber of time-steps. If the second order statistics of the
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appropriate size) that has all entries equal to one.. The:  nodes that are neighbors of nodelong with node itself).
identity matrix is denoted by,,. The notationA’ indicates Sincex[k] = W¥x[0], the set of all outputs seen by notle
the transpose of matriA. We will denote the rank of matrix over L + 1 time-steps is given by

A by p(A). The expected value of a random parameter

; Yi[o] &
is denoted byF[A4]. vill] C,W
Il. BACKGROUND yil2l | = [CiW? | x(0] . ®)
The interaction constraints in distributed systems and : :
networks can be conveniently modeled via a directed graph vilL] C,Wt
G ={X,&}, whereX = {z1,...,zn} is the set of nodes W D
yil|O: i,L

in the system and C X x X is the set of directed edges
(i.e., directed edgdz,,z;) € & if node z; can receive WhenL = N — 1, the matrixQ; 1, in the above equation is
information from nodez;). All nodes whose values can bethe observability matrix for the pair(W, C;) [11]. The row
received by node; are said to be neighbors of nodeand space ofQ; ;, characterizes the set of all linear functiéns
are represented by the s&f. The number of neighbors of of x[0] that can be calculated by nodeup to time-stepL.
node; is called the in-degree of nodeand denoted byleg,.  Specifically, if the row space of the observability maifix ;.

At each time-stegk, nodes can update their values basedontains a vectoe’, then one can find a matrik; such that
on some strategy. The scheme that we study in this paperO; ;, = ¢’. Thus, after running the linear iteration (1) for
makes use of linear iterations; specifically, at each tibep;s L+ 1 time-steps, nodé can immediately calculate the linear
each node updates its value as functionc’x[0] as a linear combination of the outputs of the

system over those time steps, i.e.,
,Tz[k + 1] = w”:vz[k] + Z Wi Tj [k],
JEN; Flyl[O : L] = FiOi7LX[O] = CIX[O] . (4)
where thew;;’s are a set of weights. For ease of analysis, thg p(0;.1) = N, the pair(W, C;) is said to beobservable.
values of all nodes at time-stdpcan be aggregated into the | this case, nodé can determine the entire initial value

I
value vectorx[k] = [z1[k] w2[k] -+ an[k]]', so that vectorx|0] from the outputs of the system, and can therefore
the update strategy for the entire system can be represengylate any function of those values.

as An important feature of the observability matrix is that

W W2 win there exists an integef such that the rank of the matré; ;,
X[k +1] = w_21 w'” ' wQ_N x[k] (1) monotonically increases with until L = »; — 1, at which
: : " : point it stops increasing. This means that the outputs of
WN1 WN2 - WNN the systeny;[0],y:[1],...,y:[v: — 1] contain the maximum
ne amount of information that is possible to obtain about the

_ _ _ initial state, and future outputs of the system do not previd
for k = 0,1,..., with the constraint tha;; = 0 if j ¢ V.  any extra information to nodé. The integery; is upper
We assume that each notlbas some initial value;[0] that pounded as; < N — deg; [10], which implies that if
is potentially required for functions calculated by othedes it is possible for nodei to calculate the desired function
in the network. f(21]0],22[0], ..., 2x[0]), it can do so in at most — deg;
In [10], it was shown that, for almost afychoice of time-steps.
weights, the nodes in the system can calculate an arbitraryThe following theorem from [10] indicates that, for almost
function of the other node values after running the lineagny choice of weight matrix, the observability matrix for

iteration (1) for a finite number of time-steps (as long agach node will allow node i to obtain the initial value of
there are paths from the nodes that hold the needed valuessfpnodes that have a path in the network to nede

the nodes that have to calculate the functions). The asalysi Theorem 1 ([10]): Let & denote  the  graph
in that paper starts by modeling the linear iteration as  of the network. Define the set R; -
_ {z;| There exists a path from; to z; in G} U  {z;}.

X[k + 1] = Wx[A] _ Then, for almost any choice of weight matr®&v, node

yilk] = Cix[k], 1<i< N, (2) i can obtain the valuer;[0], z; € R;, after running

where y;[k] denotes the outputs (node values) that ard1® linear iteration (1) forL; + 1 time-steps, for some
available to node during thek—th time-step. Specifically, 0 < Li < [Ri| — deg;; nodei can therefore calculate any
C; is the (deg, +1) x N matrix with a singlel in each abitrary function of the valuegz;[0] | z; € R;}.

row denoting the positions of the state-vecidk| that are In the above theorem, the phrase “almost any” indicates

available to node (i.e., these positions correspond to thdhat the set of parameters for which the theorem does not
hold has Lebesgue measure zero [10]. As discussed in

2As we will explain in more detail later, the phrase “almosy’aim this
context means that the set of weights for which the propertidlated has 3A function f(x1[0],2[0], ...,z x[0]) of the initial values idinear if
Lebesgue measure zero. it is of the form Qx[0] for some matrixQ.



[10], the weights can be chosen (almost arbitrarily) by #he neighbors of nodé The update for nodeis then given
centralized entity and provided to the notlagriori, or they by
can be chosen independently by each node and discovered

by the network after following a simple distributed protbco % [k +1] = [wi W] yilk]

Remark 1: Note that unlike asymptotic consensus = [wi  W;] (Cix[k] + D;n[k])
schemes, wherg[k| converges to a constant vector after an = wyixi[k] + Z wij; k]
infinite number of time-steps, the protocol described above JEN:
does not require x[k] to converge to any particular vector +[0 - 0 Wi 0 - O]nlk] .

(or even to converge at all).
Defining the matrix

I11. THE NOISE MODEL _
W, 0 - 0
In the rest of the paper, we will extend the above results 0 wg -~ 0
to the case where the system is operating in the presence of B= : ) : ) ®)
noise. We will first introduce the noise model, and then show o o0 .. W'N

that each node in the system can use a modified version of
the above techniques to obtain an unbiased estimate of a@ijye obtains the noise model
de5|red_l|near fu_nctlo'h_m a flnlt(_e number qf tlme-steps. x[k + 1] = Wx[k] + Bulk]

Consider the linear iteration in (2). To simplify the devel- _
opment, we will assume without loss of generality that the yilk] = Cix[k] + Dink], 1<i<N . 6)
rows of C; are ordered such that the first row of ea€h  Note that the noise vectai[k] in this case has dimension
c_orrequnds to nodés own yalue in the_ state vectot[k] Z;VZI deg; ) x 1 (sincer.V:l deg; is equal to the number
(i.e., thei—th element of the first row of; is 1, and all other of edges in the graph [12], and since each edge corresponds

entries in that row are zero). Suppose that the values tkht €3, a noisy transmission, one requires a noise term at each
node: receives (or senses) from its neighbors are corrupt e-step for every edgé in the graph)

by noise (i.e., there is a noise component associated wit'hR

h h t val betw 0 iahbori d emark 2: Note that the noise model in (6) can also
€ach exchange ol values between two neighboring no eﬁ}mdle the case where noise only affects the update equation
Let n;[k] denote thedeg, x1 vector containing the nois

; ; . € for each node (e. ., due to quantization), but does nottaffec
that affec.ts the values received by ncdst time-step. qu the exchange (gf \?alues bet\?veen nodes,) simply by seBing
efelchl sis N, I%tDi Qenote thqdegi +1l>< (deg;) matr_|x to be the N x N identity matrix, and choosing eadb; to
given byD,; = {Idcgi, l? i.e., the first row ofD; has all entries  pe the zero matrix. Note that in this case, the noise vector
equal to zero, and the remaining rows form the, x deg;  n[k] will only have N components.

identity matrix. The noisy values that notleeceives attime-  |n [5], the authors considered the problem of asymptotic
stepk are then given by;[k] = C;x[k] + D;n;[k]. Note consensus in the presence of update noise via a linear
that the reason for setting the top row Df;, equal to zero iteration of the formx[k 4+ 1] = Wx[k] + n[k], where
is to model the fact that nodehas noise-free access to itsn[k] is zero mean white noise with covariance matrix
own value. If we define E[n[k]n’[k]] = I, and W is a symmetric matrix providing
, asymptotic consensus, i.€imy_.. z;[k] = +1'x[0] for
n[k] = [mi[k] n(k] .- my[k]] all i. They showed that at — oo, [th]e var]ivance[ ]of the
D, = [0 0D, 0 - 0} , node valuesy;[k] from the value1'x[0] increases without

bound. This phenomenon is essentially due to the fact that

any weight matrix that provides asymptotic consensus must

necessarily have a (marginally stable) eigenvalué i3],

of zeros, the output seen by nodehen becomes[k] — and thus the components of the noise that excite this mode
of the system will accumulate and cause the values of the

Cili] + Din 1 nodes to evolve according to a random walk
Now consider the update equation. Recall that each node Vol ing walk.

. . ' : Recent work has focused on addressing this issue in
uses the values that it receives from its neighbors to Upda\}grious ways [8], [7], [6], but unlike our approach here
its own value. In particular, nodemultiplies the value that Y P PP '

: : _ . _ all of these works focus on obtaining convergence in an

it receives from nodg by the weightw;;. Let w; denote the A . .

1 x deg, vector that contains the weights corresponding tgsymptotlc number of time-steps. In the next section, we
¢ Show that for almost any choice of weight matW, each

4 . : . . node can obtain an unbiased estimate of any linear function
Actually, each node only requires the weights corresponding to the . . . . .
ith row of W, along with the coefficient matrix; that is used in (4) to Of X[0] after running the linear iteration for a finite number
solve for the desired vectar'. of time-steps. Furthermore, if the second order statigifcs
SWe will focus on linear functions because, as we will see,iasdd the noise are known, we show how each node can minimize

estimates of such functions can be obtained as a linear catm of the h . fi . fthe f . f . RO
values seen by each node over the linear iteration. Howenercan also use the variance of its estimate of the function ( or a given ceol

our results to obtain unbiased estimates of more generdiheanfunctions. ~ 0f weight matrixW).

where eactD; matrix hasZ?;ll deg; columns of zeros, fol-
lowed by the matrixD;, followed bij.V:iJrl deg; columns



Remark 3: As we will see in the next section, given corresponding to nodes iR;, Theorem 1 indicates that, for
an appropriate weight matrid%, each node can obtain almost any choice of weight matri®, ¢ will be in the row
an unbiased estimate of its desired linear function simplgpace ofO, ;,, for some0 < L; < |R;| — deg;. One can
by knowing the first order statistics of the noise (and naothen find the smallest; for which the vectorc] is in the
necessarily the second order statistics). If the secondrordow-space of); 1., and this will also be the smallest number
statistics are also known (perhaps only after running thef time-steps required for unbiased estimation by nofer
linear iteration), we will show that each node can refine itthat choice ofW). The above discussion immediately leads
estimate of its linear function by taking an appropriatedéin to the following theorem.
combination (given by the matrik;) of the values it sees  Theorem 2: Let G denote the graph of the network. Define
over the course of the linear iteration. Note that the iniplic the setR, = {z;| There exists a path from; to z; in G}U
assumption of a fixed and known topology is also made bjx;}. Then, for almost any choice of weight mati¥, node
much of the existing literature on distributed consensukén ¢ can obtain an unbiased estimate of any linear function of
presence of noise (e.g., see [5], [8]). In noise-free netajor values in{z;[0]|z; € R;} after running the linear iteration
it is possible for the nodes to calculate their observabilit(1) for L; 4+ 1 time-steps, for somé < L; < |R;| — deg;.
matrices (and the gaifig) in a distributed manner (see [10]), Note that for a giveriw, there may be multiple choices
but the extension of such techniques to noisy networks is af I'; satisfying (9). This leads us to ask the question: if the
open question and an avenue for future research. second order statistics of the noise are also known (perhaps
a posteriori), can we obtain a better estimate of the linear

IV. UNBIASED MINIMUM -VARIANCE ESTIMATION function by choosing the gaif'; appropriately? We will

A. Unbiased Estimation address this question in the following section.

Consider the noisy system model given by (6). The outpy  Minimizing the Variance of the Estimate

seen by node over L; + 1 time-steps is given by In order to minimize the mean square error of each node’s

yi[0] C, estimate of its linear function, suppose that the covaganc
yi[1] C,W of the noise is known (or obtained over the course of the
yi[2] | — | C;W?2 x[0]+ linear iteration), and given by [n[k]n'[j]] = Q;. Note
) o } that we are not assuming any constraints on the second order
: : 5 statistics (e.g., the noise does not have to be stationady, a
| Vi[L] C;WHi can be colored). Examining the estimation error given by (8)
i[0:L:] Oir, we note that after satisfying the unbiased condition (9, th
- D. 0 0 expression for the variance of the error is given by
C,B D; 0 Em 0 = Eleie]
C:WB Ci 0 , 7) = TyM; 1, En[0: L;n[0: L;)] M} T}
: : U n[L] Qo Qo1 -+ Qor,
C;WEH-'B c,Wwli—2B ... D;| L] Qo Qu - Qu .
n[0:L;] =I'iM; L, . . . i Lyt i
ML, :
We will assume here that the noise is zero mean (i.e., Qro Qra - Quu,
E[n[k]] = 0 for all k); this assumption can be easily relaxed, I,
but we adopt it here for simplicity. Suppose each node (10)

7 wants to calculate an unbiased estimate of the function SupposéL; is chosen as the smallest integer for which (9)
/ / i H . z
Cix[(l)l]' for- someLve;:torci. V:]/e Wl(ljl f|nd aﬁqalnlr:z and th.e has a solution (this will be the smallest delay required for
;ma e§t mtgger i g.r ea:j: hode: so that t ehquant:jty unbiased estimation by nodewith the given weight matrix
iyi[0: Li] is an unbiased estimate ofx[0]. To this end, 'W). Let the singular value decomposition of the matfix;,
we use (7) to examine the estimation error be given by®, .. = U, [Ai 0} V' whereU. and V. are
1, L; — Tt 00 i1 ) )
e = Dyys[0 : Li] — ¢/x[0] unitgry matrices, and\; is a diagonal matrix with p_os!tive
—(T,0; 1 — ) x[0] + TyM, ;. nl0: L] . 8 entr|_es. Furthermorep(A;) = p(O;,r,) [14]. Substituting
( s =€) x[0] + TiMi ] ] ® this into (9), we get

The estimatd’;y;[0 : L;] will be unbiased (i.e.F[e;] = 0) A O

for any givenx[0] if and only if matrixI'; satisfies Iy, [01 0] =c;V; . (11)
[0, =c . (9) Clearly, sincec! is in the row-space oD; 1, we have

In other words, the vectas; must be in the row-space of the c;Vi=|[a, 0] (12)

matrix O; r,. Following the notation in Theorem 1, let; ;o . . . .

denote the set of all nodes that have a path to riddethe for some vectoe; W'thf (Oi.1.,) entries. Define the matrix

network. As long as all nonzero entriesejfare in columns I, =10, , (13)



and partition it ad; = [fﬂ IA“Z-Q}, wherel';; hasp(O; ;) 0 9

columns. Equation (11) then becomEﬂfﬁ-l fﬂ} [40] = 6 e
5)

! 0}. From this equation, it is apparent that e

[a;
Fig. 1. Ring with6 nodes from Example 1.

fil = a’iAfl 5 (14)

and fig is completely unconstrained. In other wordA“sm
represents the freedom in the gdip after satisfying the

unbiased constraint given by (9). all maxi<;<n L; + 1 time-steps (which could reduce the
To minimize the variance of the estimation error, wevariance of its estimate).
substitute the above parameterization of the digimto (10) Example 1. Consider the ring withN = 6 nodes in
to obtain Fig. 1. The transmissions between nodes are assumed to
SR Y. be corrupted by zero-mean white noise with unit variance.
gi = [Fil Fﬁ} UM, 1, M 1, Us [F“ Fw} : The objective in this system is for each node to calculate

an unbiased estimate of the average of the initial values. To
b, , accomplish this, we set each edge weightltoand each
[\I'J =UMirL, , (15) self-weight to zero. We can now determine the gain matrix

T"; and the minimum delay.; required by each nodéto
where®; hasp(0; 1) rows. Using (14), the variance of the ca|culate the desired function. For example, node Fig. 1

Define

error becomes receives values from nodésand 6, and has access to its
= = ! own value, which means that; = [5 1000 8} To find
o; = (aéAi_l‘I%‘ + FiZ‘I’i) Iz, (aéAi_l‘I)i + FiQ‘I’i) ' ) 1 000001
N the number of time-steps required for node calculate an
=alA; &1, ®IA; e + alA; BT, WL, unbiased estimate of the average, we first have to find the
+ T W0, &N ey + Dy W, T0,, W/TY, smallest integet; for which ¢’ = 11’ is in the row-space

of the matrix0, r,,. With L; = 0, we haveO, o = C;, and
To minimize the above expression, we take the gradient witlhis condition does not hold. Fdt; = 1, we haveO; ; =

respect tol';; and set it equal to zero, which produces  [C} (C;W)']’, and again the condition does not hold.
Tio = —a/A; ' ®,11, W/ (‘I’iHL.‘I’/-)Jf With L; = 2, we have0; » = [C}  (C: W)’ (Clw2”l’
v e Y and we find that the row-space of this matrix contains the
where the notation(-) indicates the pseudo-inverse of avector +1’. Therefore, nodel can calculate an unbiased
matrix [15]. From (13) and (14), we now obtain the optimalkestimate of the average aftéf +1 = 3 time-steps (i.e., after

gain for nodei as it sees the outputg; [0], y1[1] andy1[2]). Not surprisingly,
A e we find thatL; = 2 for each node, and thus all nodes in
Ui =a;Ay7 T —®;10;, W, (P10, 07) } U; . (16)  the system can calculate an unbiased estimate of the average

. : : . after running the linear iteration fak; + 1 = 3 time-steps.
The variance of the optimal estimate can now be obtain : ; .
from (10). ote that both the radius and the diameter of this graph are

Remark 4: In the above derivation, we took; to be the equal to3, and so no scheme can allow all nodes to calculate

smallest delay for which unbiased estimation is possible bthe average in fewer than three time-steps (i.e., the linear

node;:. If one increased.; past this minimum value, node |¥erat|\{e scheme .'S t|me-opt!mal for this graph). . .
) . . . : Having determined the minimum delay for unbiased esti-
1 can potentially reduce the variance of its estimate. The

i . . . . ._mation by each node, our task becomes to choose the gain
variance of the estimate will be a nonincreasing functio

of the delayL;, and thus the tradeoff between delay an(?i for each nodei satisfying the unbiased condition (9),

. . . while minimizing the variance of the estimation error. To do
variance can be taken as a design parameter for a given

graph. The gail; and the variance; for any value ofL; is, we have to first construct the noisy system model in

(above the minimum required for unbiased estimation) ca§16)' I_:or example, cons!der n.oden Fig. 1. Since the valugs
be obtained by following the above procedure. A quantit received by nodé from its neighbors are corrupted by noise,

tive characterization of the relationship between delag aﬁthe output seen by nodeat time-stepk is given by

variance will be the subject of future research. 0 0

Remark 5: It may be the case that some nodes can obtain yvilk] = Cix[k]+ |1 O ni[k] ,
an unbiased estimate of their desired functions faster than 0 1
others. In such cases, one can have all nodes run the linear —

iteration for max;<;<ny L; + 1 time-steps, so that every Dy
node receives enough information to obtain an unbiasedheren;[k] contains the additive noise on the links from
estimate. Each nodé can either calculate the function node?2 and node6 to nodel at time-stepk. The outputs
c;x[0] after the firstL; 4+ 1 time-steps of the linear iteration seen by all the other nodes can be obtained in a similar

(i.e., with minimum delay), or it can use the outputs ovemanner. We can group the noise vectors seen by each node



into the single noise vector other nodes follow the same procedure, and the values calcu-
lated by nodeg—6 (for this sample run) aré.2716, 1.3985
/ / / / / / / ! '
nk] = [ni[k] np[k] nglk] nifk] ngk] mglR]] 1.9846, 1.7501 and 1.4736, respectively. One can verify
which has twelve entries, since there are six bidirectiong@mpirically (i.e., by running several simulations with -dif
links in the graph. Note than[k] is white noise with ferentinitial conditions and calculating the average sqda

E[n[k]] = 0 and E [n[k]n’[k]] = L2 (by assumption in estimation error) that the variance of the estimation eator
this example). With this notation, the output for notlés €ach node is indeed close to the theoretical value(o25.
given by V. SUMMARY

We have studied the problem of performing distributed cal-
culation of linear functions in systems operating in thespre
ence of noise. In particular, we analyzed a linear iteration
Since each node weighs the values that it receives from i@ised scheme where each node updates its value as a linear
neighbors byl, the state update equation is given by th&ombination of its own value, and those of its neighbors.
first equation in (6), where the matrB is obtained from In the study of traditional linear iterative schemes thdy re
(5)asB = I4®[1 1] (the symbolw denotes the Kronecker on asymptotic convergence, it has been shown that the
product). presence of noise can drive the node values arbitrarily far

yill] =Cix[k]+|D; 0 0 0 0 o} n[k] .

D,

We now have to find the gaif’; for node 1 satis- away from the desired function. To solve this problem, we

fying (9), while minimizing the error variance in (10). utilized results on finite-time function calculation viadiar
To do this, we first find the singular value decompoiterations. Specifically, for a given set of update weigis,

sition of 01 as O U [4 ] V], where A; =
diag(3.682,3.113, 1.4142, 1,0.6653, 0.5564). We omit the

showed that it is possible to calculate a set of gains for each
node that allows it to obtain a minimum-variance unbiased

values of U; and V; in the interest of space. From theestimate of the function after running the linear iteration

above decomposition, we obtain the vecigrin (12) as

1
=21V,
6 [1]
:[—0.2787 —-0.267 0 0 -—-0.0752 —0.1098}.
[2]

!
a

We also obtain the matrice®; and ¥; from (15) (again,
these values are omitted in the interest of space). Sutr
stituting these values into the expression for the optima
gain in (16), with Il E n[0:2]n'[0 : 2]] Is6
(since the noise is white with unit variance), we ob- [4]
tain Ty = 3—16 [-6 -1 -1 -2 2 2 4 3 3].The
mean-square error for the estimate of the average obtaindél
by nodel is calculated by substituting the above gain into
(10), and is found to be; = 0.25. The above procedure can [g)
be repeated to obtain the optimal gains for all nodes, and in
this example the minimum mean-square error for all nodes
is the same (i.e.q; = 0.25 for all 7). 7]

Once the optimal gains are calculated and

provided to each node, suppose that the initial
) (8]

values of the nodes are given byx|0] =

[0.8372 —5.3279 3.6267 4.4384 —2.7324 8.9546],
which has a mean 01.6328. The nodes run the linear [9]
iteration given by (6) for three time-steps witk[0] as
given above, and driven by zero-mean white noise witHO]
unit variance on each link. An example of the outputs seen
by node1 during the three time-steps, with a particular
sampling of noise vectora[0], n[1] andn|[2], is given by [11]
yi[0] = [ 0.8372 —5.7054 8.6587 |, [12]
vi[l] = [ 2.9533 2.9668 —1.7085 |,

yi[2] = [ 1.2583 1.5285 17.8313 | .

Node1 then obtains a minimum—variancc/a unbiased estimaf&b]
of the average ab; [y;[0] yi[1] yi[2]] = 1.4374. The

[13]

[14]

a finite number of time-steps.
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