
A Public-key Cryptographic Processor for RSA and ECC

Hans Eberle, Nils Gura, Sheueling Chang Shantz, Vipul Gupta, Leonard Rarick
Sun Microsystems Laboratories

{hans.eberle, nils.gura, sheueling.chang, vipul.gupta, leonard.rarick}@sun.com

Shreyas Sundaram
University of Waterloo

ssundara@ieee.org

Abstract

We describe a general-purpose processor architecture for accelerating public-key compu-
tations on server systems that demand high performance and flexibility to accommodate
large numbers of secure connections with heterogeneous clients that are likely to be limited
in the set of cryptographic algorithms supported. Flexibility is achieved in that the processor
supports multiple public-key cryptosystems, namely RSA, DSA, DH, and ECC, arbitrary
key sizes and, in the case of ECC, arbitrary curves over fields GF (p) and GF (2m).

At the core of the processor is a novel dual-field multiplier based on a modified carry-
save adder (CSA) tree that supports both GF (p) and GF (2m). In the case of a 64-bit
integer multiplier, the necessary modifications increase its size by a mere 5%. To efficiently
schedule the multiplier, we implemented a multiply-accumulate instruction that combines
several steps of a multiple-precision multiplication in a single operation: multiplication,
carry propagation, and partial product accumulation.

We have developed a hardware prototype of the cryptographic processor in FPGA tech-
nology. If implemented in current 1.5 GHz processor technology, the processor executes
5,265 RSA-1024 op/s and 25,756 ECC-163 op/s - the given key sizes offer comparable se-
curity strength. Looking at future security levels, performance is 786 op/s for RSA-2048
and 9,576 op/s for ECC-233.

1 Introduction

In this paper we describe an extension to a general-purpose processor for accelerating
public-key cryptosystems. Supported are the legacy cryptosystems RSA and DH as well as
the newly emerging Elliptic Curve Cryptography (ECC) system. As we will show, minimal
extensions suffice to efficiently support these public-key cryptosystems.

Due to its computational efficiency, ECC is emerging as an attractive alternative to
traditional public-key cryptosystems such as RSA, DSA, and DH. More specifically, ECC
offers equivalent security with smaller key sizes, in less computation time and with less
memory. As a result, ECC offers higher throughput on the server side [9] and smaller
implementations on the client side. By saving system resources ECC is particularly well
suited for small devices such as mobile phones, PDAs and smart cards.

ECC technology is ready for deployment as, in addition to its technical merits, standards
have been put in place and reference implementations have been made available. Several



standards have been created to specify the use of ECC. The US government has adopted
the Elliptic Curve Digital Signature Algorithm (ECDSA [1], the Elliptic Curve variant of
DSA) and recommended a set of curves [26]. Additional curves for commercial use were
recommended by the Standards for Efficient Cryptography Group (SECG) [2]. Also, our
group has added ECC functionality to OpenSSL [21] and Netscape Security Services (NSS)
[20], the two most widely used open source implementations of the SSL protocol [10]. These
cryptographic libraries are used by numerous applications including the Apache web server
and the Mozilla/Netscape browsers.

In this paper, we focus on hardware acceleration of public-key cryptosystems on server
machines. Servers running security protocols such as SSL or IPsec are confronted with an
aggregation of secure connections created by a multitude of heterogeneous clients. Handling
a high volume of secure connections on the server side not only demands high computational
power but also flexibility in responding to client devices that are limited in the set of
cryptographic algorithms supported. We, therefore, made it a goal to support a variety
of cryptographic algorithms to be able to communicate with as many clients as possible.
More specifically, the processor had to support the legacy cryptosystem RSA in addition
to the new cryptosystem ECC, it further had to support arbitrary key sizes for any one of
these algorithms, and with respect to ECC, it had to provide dual-field arithmetic for fields
GF (p) and GF (2m).

2 Related Work

Most published papers on cryptographic processors describe algorithm-specific implemen-
tations. Processors implementing ECC have been reported in [11, 12, 13, 15, 16, 22, 23].
The architectures of these processors are tailored for ECC and do not support any other
algorithm such as RSA. Moreover, these implementations are not flexible enough to support
the whole set of ECC curves specified in [2, 26]. In particular, many of these processors
implement one field type only.

In [11], we described a cryptographic processor that is flexible enough to handle arbitrary
elliptic curves over fields GF (2m). At 6,955 point multiplications per second for NIST curve
163, this is presently the highest performing hardware implementation. The processor has
a 256-bit data path and supports curves up to a field degree of 255. It provides hardware
optimizations for named curves standardized by NIST [26] and SECG [2] and firmware sup-
port for any other generic curves. In subsequent publications [6], we described a technique
called partial reduction [5] that improves the performance for generic curves. While our
previous papers described a cryptographic coprocessor with a data path tailored for ECC
over fields GF (2m), this paper describes a more flexible design that can be implemented
as an extension of a general-purpose processor and that supports ECC over fields GF (2m)
and GF (p) as well as RSA.

There have been only a few attempts at providing support for different public-key cryp-
tosystems including ECC with a common shared hardware architecture. Such efforts have
mostly targeted client devices and, in particular, microcontrollers for smart card applica-
tions [8]. These processors, however, are optimized for low-power consumption rather than
for high performance.

A cryptographic processor for accelerating RSA as well as ECC is described by Satoh
and Takano in [25]. While their design is similar in functionality and performance to



ours, their architecture looks rather different in that it specifically targets the implemented
algorithms. More specifically, it uses a data path optimized for modular multiple-precision
multiplication that uses dedicated memories, registers, and data links. Similarly, control
logic is hardwired for the chosen RSA and ECC algorithms. In contrast, our architecture
uses a general-purpose data path and microprogrammable control logic.

3 Architecture

Our public-key processor supports both the RSA and ECC cryptosystems. Other algo-
rithms such as DSA or DH could be easily supported through firmware without requiring
any hardware modifications.

The RSA algorithm uses modular exponentiation which can be implemented through re-
peated multiplication and squaring. The equivalent core function for the ECC cryptosystem
is called point multiplication. We use a double-and-add algorithm for point multiplications
over fields GF (p) and Montgomery Scalar Multiplication for point multiplications over
fields GF (2m). We use projective coordinates for GF (2m) [17] and mixed coordinates for
GF (p) [3].

In contrast to the cryptographic techniques used for bulk encryption and message di-
gest, public-key cryptosystems are more compute-intense and less data-intense and, thus,
well suited for today’s processor architectures that favor processing data over moving data,
especially if data accesses exhibit locality. Public-key cryptosystems heavily rely on multi-
plication operations which are typically well supported on general-purpose processors.

3.1 A General-purpose Data Path for Public-key Cryptosystems

To adhere to a general-purpose data path, we had to limit the amount and scope of
modifications and additions. Thus, we omitted a number of performance optimizations
that we described in [7]. In particular, we did not implement hardware division and we did
not provide an optimized squarer for GF (2m).

ECC requires modular multiple-precision division that is a time-consuming operation on
general-purpose processors. The number of division operations needed for ECC point mul-
tiplication depends on the chosen coordinate system. If projective coordinates are chosen,
only a single division operation is needed1. In this case, the division, or more precisely,
the inversion can be implemented through a series of multiplications using Fermat’s little
theorem. For the processor described in [7], replacing the hardware divider by a software
implementation added 6% to the execution time of an ECC point multiplication over fields
GF (2m).

General-purpose processors typically have a data path width of 8, 16, 32, or 64 bits
and operate on operands that have sizes equal to the data path widths. Thus, the long
operands of the RSA and ECC algorithms need to be broken up into smaller words, and the
arithmetic operations addition, subtraction, and multiplication need to be implemented as
multiple-precision operations. Since we focus on server applications, we decided on a 64-bit
architecture.

1Based on the number of multiplication and division operations required by the different coordinate
representations, it can be determined that affine coordinates are favored if the ratio of the execution times
for multiplications tmul and divisions tdiv is approximately tdiv/tmul ≤ 6.5 and that projective coordinates
are favored for tdiv/tmul > 6.5.



To reduce the amount of additional logic, we tried to leverage the existing data path as
much as possible. For this reason, we use a modified version of an integer multiplier that
can also support multiple-precision multiplications for the fields GF (p) and GF (2m). A
dual-field multiplier similar to ours has also been described in [25].

3.2 Arithmetic and Control Processors

Multiple-precision multiplications are the predominant operations used by both the RSA
and ECC algorithms2. To achieve optimal performance for multiple-precision multiplica-
tions, the multiplier has to be kept busy at all times. For this reason, we implemented a
dual-issue machine consisting of two processors, an arithmetic processor and a control pro-
cessor. More specifically, we implemented a VLIW architecture, whereby each instruction
word contains an arithmetic instruction and a control instruction. For example, when a
multiple-precision multiplication is performed, the arithmetic processor executes multiply-
accumulate instructions while the control processor, in parallel, executes loop control in-
structions. This way, the critical path of the program execution is determined by the
arithmetic instructions and the control instructions do not add any execution time.

The multi-issue processor architecture described here can be easily mapped onto a mod-
ern superscalar processor architecture. More specifically, the control processor is similar
to the branch pipeline and the arithmetic processor is similar to the integer pipeline. The
difference is that we statically compile tuples of instructions that are issued in the same
cycle, whereas in a superscalar architecture it is decided dynamically which instructions
are issued in parallel.

Figure 1. Data path.

Figure 1 shows a block dia-
gram of the processors. The
arithmetic processor implements
a 64-bit data path consisting of
the data memory DMEM and the
arithmetic units MUL and ALU.
MUL implements multiplication,
and ALU implements subtraction
and addition - arithmetic oper-
ations are implemented for both
fields GF (p) and GF (2m). There
is a source bus SBUS and a des-
tination bus DBUS to transfer
source and destination operands,
respectively, between the DMEM
and the arithmetic units MUL and

ALU. All operands reside in the DMEM, that is, there is no register file in addition to the
memory and instructions access operands directly in memory.

The control processor consists of the instruction memory IMEM and the logic nec-
essary to calculate indices, DMEM addresses and IMEM addresses. A sample instruc-
tion tuple {INCBR, MULACC} is shown in Figure 1 to illustrate the operation of the
control processor: INCBR stands for increment and branch, and MULACC stands for

2While the math for ECC is more complicated than for RSA, it is still the case that the multiplications
make up the majority of instructions executed as we will show in Section 6.



Table 1. Instruction set.
Arithmetic Instructions

Instruction Type/Opcode Name Description
ADD SRC0,SRC1,DST add DST ← (SRC0+SRC1)[63:0];

ALU.CC ← (SRC0+SRC1)[64]
ADDC SRC0,SRC1,DST add with carry DST ← (SRC0+SRC1+ALU.CC)[63:0];

ALU.CC ← (SRC0+SRC1+ALU.CC)[64]
ADDX SRC0,SRC1,DST XOR add DST ← (SRC0 ⊕ SRC1)[63:0];

ALU.CC ← 0
SUB SRC0,SRC1,DST subtract DST ← (SRC0-SRC1)[63:0];

ALU.CC ← (SRC0-SRC1)[64]
SUBB SRC0,SRC1,DST subtract with borrow DST ← (SRC0-SRC1+ALU.CC)[63:0];

ALU.CC ← (SRC0-SRC1+ALU.CC)[64]
MULACC SRC0,SRC1,SRC2,DST multiply and add DST ← (SRC0*SRC1+SRC2)[63:0];

MUL.XC ← (SRC0*SRC1+SRC2)[127:64]
MULACCC SRC0,SRC1,SRC2,DST multiply and add DST ← (SRC0*SRC1+SRC2+MUL.XC)[63:0];

with carry MUL.XC ← (SRC0*SRC1+SRC2+MUL.XC)[127:64]
MULACCX SRC0,SRC1,SRC2,DST XOR multiply and add DST ← ((SRC0 ⊗ SRC1) ⊕ SRC2)[63:0];

MUL.XC ← ((SRC0 ⊗ SRC1) ⊕ SRC2)[127:64]
MULACCXC SRC0,SRC1,SRC2,DST XOR multiply and add DST ← ((SRC0 ⊗ SRC1) ⊕ SRC2 ⊕ MUL.XC)[63:0];

with carry MUL.XC ← ((SRC0 ⊗ SRC1) ⊕ SRC2 ⊕ MUL.XC)[127:64]
NOPA no arithmetic operation

Control Instructions

Instruction Type/Opcode Name Description
CLR IX clear index register IX ← 0
INC IX increment index register IX ← IX+1
INCBR IX,ADDR increment index register branch to ADDR if IX 6= RC.IX MAX; IX ← IX+1
BCS ADDR branch if carry set branch to ADDR if ALU.CC==1
JMP ADDR jump jump
END end end program execution
NOPC no control operation

Symbol Definitions

Symbol Description
← assignment
== equal
6= not equal
+ addition
− subtraction using 2’s complement
∗ multiplication
⊕ addition/subtraction over GF (2m), equivalent to bitwise XOR
⊗ multiplication over GF (2m)

multiply and accumulate - instructions will be explained in detail in the next section. The
control processor translates these instructions into the following operations: increment the
index register, compare the values of the index register and the upper bound of the loop
index stored in the IX MAX register to decide whether a branch has to be taken and
calculate the addresses of the source and destination operands of the MULACC instruction
by adding the value of the index register to the address provided by the instruction.

3.3 Instruction Set

Instructions are fetched in tuples consisting of an arithmetic instruction and a control
instruction. The two instructions of a tuple are executed in parallel; there are no data
dependencies between them. If instructions of a tuple refer to processor state such as
condition code registers or index registers, then the processor’s state before the execution
of the current tuple is referred to. NOP instructions are provided to fill instruction slots
for which no executable instructions are available.

Table 1 lists the arithmetic instructions. The listed instructions implement addition, sub-
traction, and multiplication. Instructions are provided for operations over fields GF (p) and
GF (2m): ADD, ADDC, SUB, SUBB, MULACC, MULACCC specify operations over fields
GF (p) and ADDX, MULACCX, MULACCXC stand for operations over fields GF (2m)3.

The arithmetic instructions specify up to three source operands and one destination
operand. Operands are specified by an instruction field consisting of an index field and

3Addition and subtraction over fields GF (2m) are equivalent to an XOR operation.



an address field. The index field selects one of four index values: 0, IX1, IX2, IX1 + IX2
where IX1 and IX2 refer to index registers. The address of the operand is calculated as
the sum of the address field and the index value. Index value 0 provides a way to specify
absolute addresses. The availability of two index registers allows for implementing loops
with a nesting depth of two as needed for multiple-precision multiplication.

The arithmetic units contain carry logic and registers that allow for efficiently implement-
ing multiple-precision arithmetic. More specifically, ALU.CC[0] holds the carry and borrow
bit needed for multiple-precision addition and subtraction, respectively. And MUL.XC[63:0]
contains the carry bits needed for multiple-precision multiplication - we refer to these bits
as extended carry.

The control instructions determine the flow of program execution. There are basically two
types of control instructions: branch instructions and instructions to manipulate the index
registers. The former type includes the conditional branch instructions BCS and INCBR,
and the unconditional branch instruction JMP. The latter type consists of instructions
CLR and INC. INCBR could also be included in this type as it also manipulates the index
registers. Finally, there is instruction END to mark the end of program execution.

We optimized the formats of the arithmetic and control instructions to allow for sim-
ple decoding logic rather than for high code density. For example, we decided on fixed
instruction lengths and instruction fields with fixed locations. As a result, some instruc-
tions contain empty fields that could be avoided with a more flexible format. Further,
shorter operand fields could be used if register operands rather than memory operands were
used. We decided on memory operands because they simplified access to multiple-precision
operands by avoiding management of a register file. Given the FPGA implementation tech-
nology, the lack of registers does not reduce performance since accessing a register file is
not significantly faster than accessing memory.

The size of the code for ECC point multiplication ranges from 6 to 9.5 kBytes depending
on the key size and the field type. For Montgomery modular exponentiation, the size of the
code is 1 kByte independent of the key size. The code sizes clearly reflect the regularity of
the algorithms: Whereas roughly 100 instruction tuples are needed for Montgomery modu-
lar exponentiation, about 1,000 instruction tuples are required for ECC point multiplication
over fields GF (2m)4. Typical implementations of the RSA algorithm use the Chinese Re-
mainder Theorem (CRT) [18, 24]. With this technique, a modular exponentiation is split
into two smaller exponentiation operations using operands for the base and exponents that
are both half the size of the original operands. While CRT drastically reduces computation
time, it requires a significant amount of instructions in addition to the ones needed for
Montgomery modular exponentiation.

There are some obvious techniques to reduce the code size further, in addition to ap-
plying a denser instruction format. The code size for multiple-precision arithmetic can be
optimized by using hardwired state machines to implement multiple-precision operations
rather than using microcode. Alternatively, subroutines could be provided to implement
multiple-precision arithmetic operations and other routines.

3.4 A Reduced Instruction Set for Public-key Cryptography

Revisiting the instruction set we notice that a sparser set could actually be implemented.
The minimum set of instructions would include five arithmetic instructions and four con-

4ECC point multiplications over fields GF (p) take about 10% less instructions.



trol instructions for a total of nine instructions. The arithmetic instructions are: ADDC,
ADDX, SUBB, MULACCC, MULACCXC; and the control instructions are: CLR, INCBR,
BCS, END. The omitted instructions can be substituted as follows. The arithmetic instruc-
tions ADD, SUB, MULACC, MULACCX can be replaced by the corresponding instructions
that input the carry bits. This requires that the carry is cleared first, for example, by exe-
cuting an arithmetic operation that is guaranteed to generate a value 0 for the carry. The
arithmetic no op instruction NOPA can be implemented by any arithmetic instruction that
does not alter state on which the program depends. The control instructions INC can be
replaced by INCBR in that the jump address is set to the address of the next instruction.
And finally, the control instructions JMP and NOPC can be replaced by BCS. To imple-
ment an absolute jump, the carry tested by BCS has to be set by an arithmetic instruction.
And to realize NOPC, BCS with a jump address set to the address of the next instruction
had to be used.

Examining the point multiplication code we realize that the performance penalty for
using the reduced instruction set is negligible. The arithmetic instructions ADD, SUB,
MULACC, and MULACCX that do not input carry bits are mostly used at the beginning
of multiple-precision arithmetic operations. These instructions can be easily replaced by the
corresponding instructions that do input the carry bits without the need to add instructions
that explicitly clear the carry bits. The reason is that the carry bits are left cleared at the
end of the previous operations. Implementations relying on this invariant do not incur any
overhead when using the reduced instruction set.

Looking at the instruction set needed to support public-key cryptography we note that
most instructions are already implemented by general-purpose processors. The only ex-
tensions needed are support for MULACC and MULACCX. As we will show in Section 5,
existing multiplier designs can be easily modified to provide the necessary functionality.

3.4.1 Implementation

Figure 2. Floorplan.

As a proof of concept, we have prototyped
the cryptographic processor in a Xilinx Virtex-
II XC2V6000 FPGA. The FPGA is interfaced to
the host system via a PCI bus. The 66 MHz PCI
clock serves as the main clock of the processor.
Figure 2 shows the floorplan of the design.

We wrote a simple assembler that allowed us
to develop firmware for the processor. The as-
sembler is also used to instrument the code in
that it provides counts of the executed instruc-
tions. On the host side, the processor is inter-
faced by a driver for the SolarisTM operating
system and a cryptographic library.

4 Modular Multiplication

Modular multiplication is the most critical operation underlying both the RSA and ECC
cryptosystems. Since both cryptosystems operate on operands that are wider than the 64-
bit data path, efficient multiple-precision operations need to be devised. We will first exam-



ine how modular multiplication is implemented as a multiple-precision operation. Next, we
will describe a multiplier architecture that efficiently supports multiple-precision modular
multiplication.

4.1 Montgomery Modular Multiplication

Figure 3. Montgomery modular multipli-
cation.

Modular multiple-precision multiplica-
tions underlie both the RSA and the
ECC algorithms. An efficient multipli-
cation method is the Montgomery multi-
plication [19] that replaces divisions with
multiplications to compute the reduction.
Montgomery multiplication of two integer
operands A and B is defined as C = A∗B ∗
r−1 mod M . For multiple-precision Mont-
gomery multiplication of binary numbers,
r equals 2m with m being the number of
bits in M rounded up to the next multiple
of the word size. For example, for a 160-
bit M on a 64-bit architecture, m would
be m = 3 ∗ 64 = 192. Similarly, Mont-
gomery multiplication can be applied to
polynomials A(t), B(t), and M(t): C(t) =
A(t) ∗B(t) ∗ r−1 mod M(t), where r is typ-
ically tm with m being the degree of M
rounded up to the next multiple of the word size.

Fig. 3 depicts the calculation of the Montgomery multiplication and how it is broken
up into multiply-accumulate instructions. The given example assumes 1024-bit operands
A and B. Operands are broken up into 64-bit words ai and bi, i = 0..15. The modular
product C is the sum of the partial products ai ∗ B and the reduction terms n′

i ∗M . Not
shown is the calculation of n′

i = (−(1/M) ∗ ci) mod t64, ci = ((ai ∗B ∗ t64∗i +
∑i−1

j=0 aj ∗B ∗
t64∗j + nj ∗M ∗ t64∗j) ∗ t−64∗i) mod t64.

The code to compute C(t) ← (A(t) ∗ B(t) + C(t)) ∗ t−m mod M(t) over GF (2m) is
given in Table 25. Each line stands for an instruction tuple. Operands are pointers to
memory variables. A is the multiplier, B is the multiplicand, M is the modulus, C is
the product, and N ′ = −(1/M) mod t64 and n′ = N ′ ∗ C0 are needed for the reduction
computation. The code for multiplication over GF (p) is slightly more complicated as it
also has to consider possible carry bits.

IX1 and IX2 are the indexes used to address the individual words of the multiple-
precision operands. Line 0 initializes IX2 to zero. Line 1 computes the first word of a
partial product and initializes IX1 to zero. Line 2 implements a loop that calculates the
remaining words of the partial products. The extended carry bits are propagated in that
the extended carry of the previous multiplication is added in and the high word of the
result is stored in the extended carry. Line 3 is needed to output the extended carry of the
last multiplication - 0 refers to a value (and not an address). Lines 1 to 3 also perform the

5C(t)← (A(t) ∗ B(t)) ∗ t−m mod M can be calculated by initializing C(t) = 0.



Table 2. Montgomery modular multiplication code.
Arithmetic Instruction Control Instruction

0 NOPA CLR IX2
1 MULACCX A+IX2,B,C,C CLR IX1
2 MULACCXC A+IX2,B+1+IX1,C+1+IX1,C+1+IX1 INCBR IX1, 2
3 MULACCXC 0,0,0,C+1+IX1 NOPC
4 MULACCX N′,C,0,n′ NOPC
5 MULACCX n′,M,C,C CLR IX1
6 MULACCXC n′,M+1+IX1,C+1+IX1,C+IX1 INCBR IX1, 6
7 MULACCXC 0,0,C+1+IX1,C+IX1 INCBR IX2, 1

Description
0 IX2 ← 0;
1 Mem[C] ← (Mem[A+IX2] ⊗ Mem[B]) ⊕ Mem[C]; IX1 ← 0;
2 Mem[C+1+IX1] ← (Mem[A+IX2] ⊗ Mem[B+1+IX1]) ⊕ Mem[C+1+IX1] ⊕ XC;

if IX1 6= RC.IX MAX then branch to line 2; IX1 ← IX1+1;
3 Mem[C+1+IX1] ← XC;
4 Mem[n′] ← Mem[N′] ⊗ Mem[C];
5 Mem[C] ← (Mem[n′] ⊗ Mem[M]) ⊕ Mem[C]; IX1 ← 0;
6 Mem[C+IX1] ← (Mem[n′] ⊗ Mem[M+1+IX1]) ⊕ Mem[C+1+IX1] ⊕ XC;

if IX1 6= RC.IX MAX then branch to line 6; IX1 ← IX1+1;
7 Mem[C+IX1] ← Mem[C+1+IX1] ⊕ XC;

if IX2 6= RC.IX MAX then branch to line 1; IX2 ← IX2+1;

addition needed to add the partial result to the sum of the previously accumulated partial
products. Line 4 computes the reduction factor n′. Lines 5 to 7 are similar to lines 1 to 3
in that a multiple-precision multiplication is performed, this time, multiplying n′ and the
modulus M . By adding n′ ∗M , the previous result in C is reduced by zeroing out the least
significant word of C.

5 A Multiple-Precision Multiplier for GF (p) and GF (2m)

Parallel multipliers typically use a carry-save adder (CSA) tree together with a carry-
propagate adder (CPA). The CSA tree calculates the sum of the partial products in a
redundant carry/sum representation and the CPA performs the final addition of the carry
and sum bits. We modified the CSA tree such that it generates a so-called XOR product
in addition to the integer product. The former is needed for ECC over fields GF (2m) and
the latter for RSA and ECC over fields GF (p).

Figure 4. Multiplier.

Figure 4 shows the organization of the mul-
tiplier. Registers X and Y hold the multipli-
cand and the multiplier, respectively. The par-
tial products Xi∗Y, i = 0..n−1 are added by the
CSA and the carry and sum results are stored
in registers Pc and Ps, respectively. The sum of
Pc and Ps is computed by the CPA and stored
in registers P and XC with P holding the low
word and XC the high word of the result.

A CSA tree consists of full adder (FA) el-
ements and half adder (HA) elements. In its
simplest form, such a tree uses 2n chains each
consisting of 1 to n FAs and HAs to sum up n
partial products. There are techniques to reduce
or compress the chain lengths thereby reducing
the logic delay to obtain the carry/sum result.
With these techniques the tree height is reduced
from n to log1.5n [4, 27].



We will now explain how the CSA tree can be modified to obtain the XOR result in
addition to the integer result. Looking at the functions realized by the FAs and the HAs
we notice that the sum S already provides the XOR function needed: (FA) S = A⊕ B ⊕
Cin, Cout = A · B + A · Cin + B · Cin; (HA) S = A⊕B,Cout = A ·B.

Figure 5. Conventional (a) and modi-
fied (b) CSA tree column.

Thus, the XOR result can be obtained by
chaining the FAs and the HAs in such a way that
the inputs to the CSA tree are added first and
the carry bits Cout are added as late as possible
at the bottom of the tree. Figure 5 illustrates
how a column of a CSA tree for a 6x6 multiplier
is modified such that an XOR result is generated
in addition to an integer result.

The modifications shown require little extra
circuitry - some columns require the addition of
an XOR gate - and do not increase logic delays6.
Analyzing the extra cost of adding support for
XOR results, we found an average increase of 5%
in terms of logic required. It is worth pointing
out that the outlined modifications can be easily
applied to multiplier designs found in general-
purpose processors.

We optimized the multiplier for multiple-
precision operations by implementing a multiply-
accumulate instruction that combines a multi-
plication step and an accumulation step. The
multiply-accumulate instruction comes in four
versions. MULACCC inputs and adds the ex-
tended carry MUL.XC whereas MULACC ig-
nores MUL.XC. Additionally, there are two
sets of instructions, one defined for GF (p) and
another one defined for GF (2m).

Here we want to consider the instruction MULACCC as defined in Table 1. A MU-
LACCC instruction corresponds to one 64-bit multiplication and two 128-bit additions7.
As illustrated in Fig. 4, the two additions are implemented with the help of the CSA tree.
MULACCC generates a 128-bit result whereby the low word is stored in the destination
operand DST and the high word is stored in an extended carry register XC that is lo-
cal to the multiplier. XC is a carry input to the next multiply-accumulate (with carry)
instruction.

6 Performance Analysis

Figure 6 gives the distribution of instructions executed for the RSA and ECC algorithms.
We chose RSA key sizes of 1024 and 2048 bits, the former representing the key size currently

6Since the XOR result is generated early, the critical path does not get affected even if the extra XOR
gate is needed. Also, the multiplexer needed to choose between the integer result and the XOR result should
not affect the critical path typically given by the CSA tree.

7128-bit additions are needed since the result of the multiplication is 128 bits wide.



considered to provide enough security for most applications and the latter offering the
next higher level of security. The instruction counts for RSA-1024 and RSA-2048 are
compared with the ECC counterparts offering a similar level of security. That is, RSA-
1024 is comparable in security strength with ECC-160p and ECC-163b, and RSA-2048 is
comparable with ECC-224p and ECC-233b, with p referring to prime integer fields GF (p)
and b to binary polynomial fields GF (2m). For each algorithm, we show the total number of
arithmetic instructions executed and the total number of multiply-accumulate instructions
executed. The graphs clearly show that both the RSA and ECC algorithms are dominated
by multiply-accumulate instructions.

Figure 6. Instruction counts.

Next, we analyze performance. We give
projected numbers for a fully pipelined pro-
cessor running at a 1.5 GHz clock frequency
which is representative of the clock speeds
of state-of-the-art general-purpose proces-
sors. Table 3 lists the number of operations
per second for RSA8 and ECC. These num-
bers are derived from the instruction counts
of Fig. 6 by assuming a fully pipelined data
path with a throughput of one instruction
per clock. The numbers show a clear per-
formance advantage of ECC over RSA. At
present security levels, ECC-160p offers a
speedup of 2.4 and ECC-163b a speedup of
4.9 over RSA-1024. At future security lev-
els, the comparison favors ECC even more:

ECC-224p is 7.8 times and ECC-233b is 15.0 times faster than RSA-2048. These numbers
not only show a significant performance advantage for ECC, they further illustrate that
the ratio of the computation times for RSA and ECC is going to dramatically increase as
higher security is needed.

Table 3. Performance at 1.5 GHz.
Algorithm Instr. Count Op./s Speedup
RSA-1024 284,900 5,265 1.0x
ECC-160p 117,032 12,817 2.4x
ECC-163b 58,236 25,756 4.9x
ECC-163b-opt 38,009 39,464 7.5x
RSA-2048 1,906,884 787 1.0x
ECC-224p 245,330 6,114 7.8x
ECC-233b 127,365 11,772 15.0x

These performance numbers are some-
what optimistic as data dependencies might
lead to pipeline stalls. Refering to the code
in Table 2 the data dependencies in the two
loops given by lines 1/2 and 5/6, respec-
tively, will cause stalls if the order of the
computations is not rearranged. Code ex-
ecution can be reordered, for example, by
interleaving the calculation of a0 ∗ B,n0′ ∗

M,a1 ∗B,n1′ ∗M, ...
The performance numbers discussed so far were obtained by running code that uses

Montgomery reduction for the modular multiplication. That is, the modulus is not hard-
coded; rather, it can be an arbitrary prime number or irreducible polynomial that can be
passed to the code as a parameter. It is possible to optimize reduction for a given modulus.
This is particularly attractive if the modulus is a pseudo-Mersenne prime, a trinomial, or
a pentanomial containing only few terms [2, 26]. Whereas the reduction using a generic

8We only consider RSA private-key operations.



modulus corresponds to a full multiple-precision multiplication, optimized reduction for
these special moduli can be implemented by a small number of additions, substractions,
and shift operations [26]. Since our architecture is microprogrammable, we were able to
implement these optimizations simply by modifying the firmware. This is in contrast to
other architectures [25], that hardwire the algorithm making it difficult to make changes
once the design is completed. To illustrate this with an example, we have listed perfor-
mance numbers in Table 3 obtained for such an optimized implementation for SECG curve
ECC-163b. This implementation also makes use of a technique called partial reduction
that we introduced in [5]. The optimizations result in a speedup of 1.5x when comparing
generic code (ECC-163b) with curve-optimized code (ECC-163-opt).

7 Conclusions

We have shown that hardware acceleration of public-key algorithms can be added to a
general-purpose processor with minimal modifications. To support the emerging elliptic
curve cryptosystem in addition to the traditional RSA cryptosystem, a dual-field multiplier
is needed that supports operations for both fields GF (p) and fields GF (2m). We have shown
that such support can be provided by a standard integer multiplier simply by rearranging
the carry-save adder tree. The resulting modifications do not add any gate delay to the
critical path of the multiplier and only require a modest amount of additional chip resources.

An analysis of the distribution of the instructions executed by the ECC and RSA algo-
rithms shows that multiplication is the single-most critical operation. For this reason, we
introduced a multiply-accumulate instruction that allows for efficiently scheduling the mul-
tiplier. With a single multiply-accumulate instruction, three tasks are being handled: (i)
word by word multiplication, (ii) carry propagation, and (iii) partial product accumulation.

The performance analysis shows a clear performance advantage for ECC over RSA. At
current security levels, we observe a speedup of 2.4x and 4.9x for ECC GF (p) and GF (2m),
respectively, over RSA. And for future security levels, the corresponding speedups are 7.8x
and 15.0x, respectively.
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